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ABSTRACT 

Atomic force microscopy (AFM) can be used for atomic and nanoscale surface 

characterization in both air and liquid environments. AFM is basically used to measure the 

mechanical, chemical and biological properties of the sample under investigation. AFM 

contains basically a base-excited microcantilever with nano tip along with a sensing circuit 

for scanning of images. Design and analysis of this microcantilevers is a challenging task in 

real time practice. In the present work, design and dynamic analysis of rectangular 

microcantilevers in tapping mode with tip-mass effect is considered. Computer simulations 

are performed with both lumped-parameter and distributed parameter models. The 

interatomic forces between the nano tip mass and substrate surfaces are treated using Lennard 

Jones (LJ) model and DMT model. The equations of motion are derived for both one-degree 

of freedom lumped parameter model with squeeze-film damping and distributed parameter 

model under the harmonic base excitation. Also the nonlinearity of the cantilever is 

investigated by considering cubic stiffness. The distributed parameter model is simplified 

with one mode approximation using Galerkin’s scheme. The resulting nonlinear dynamic 

equations are solved using in numerical Runge-Kutta method using a MATLAB program. 

The natural frequencies of the microcantilever and dynamic response are obtained. Dynamic 

stability issues are studied using phase diagrams and frequency responses. An experimental 

work is carried out to understand the variations in dynamic characteristics of a chromium 

plated steel microcantilever specimen fabricated using wire-cut EDM process. An 

electrodynamic exciter is attached at the cantilever base and laser Doppler Vibrometer (LDV) 

is used to provide sensing signal at the oscilloscope. The sine sweep excitation is provided by 

a signal generator and power amplifier set-up. The frequency response obtained manually is 

used to arrive-at the natural frequencies and damping factors.  



 
 

The principle of atomic force microscope can be used in micro sensing applications in 

many areas like aerospace, biological and fluid-flow engineering. The microsensor in such 

applications encounters various types of fluid media. Therefore, the study of conventional 

micro-cantilevers is not applicable in liquids. The behavior of the AFM cantilever in liquid 

media has been studied by many researchers during the past five years. Hydrodynamic forces 

in the system are often modeled as nonlinear functions of the tip displacement. On the other 

hand micro-cantilevers sensors can also be used for measurement of microscale viscosity, 

density, and temperature in avionic applications by analyzing the frequency response of the 

cantilever. In this line, present work considers the additional hydrodynamic forces in the 

model equations of base-excited cantilever system with its tip operating in tapping mode. The 

results of the one-mode approximated distributed parameter model are tried to validate with 

finite element model of the beam operating in liquids.   
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1. INTRODUCTION 

Scanning probe microscope (SPM) is an instrument used to image and measure properties 

of material, chemical and biological surfaces. SPM images are obtained by scanning a sharp 

probe across the surface using tip-sample interactions to get an image. There two basic forms 

of SPM are scanning tunneling microscopy (STM) and Atomic Force Microscopy (AFM). 

The STM was first developed in 1982 at IBM in Zurich by Binning et al. 

The scanning tunneling microscope is used to measure force at the atomic levels. The 

atomic force microscope is a combination of a scanning tunneling microscope and the stylus. 

Invented in year 1985, the AFM has become one of the most versatile instrument in 

nanotechnology. AFM operates in a much similar way as a blind person reads a book. 

However, instead of moving a hypersensitive fingertip over the Braille language, the AFM 

moves its tiny probing finger over much smaller objects such as DNA molecules, live yeast 

cells or the atomic plateaus on a graphite surface. The AFM finger is actually, a cantilever 

beam about a few hundred micrometers long, with a very sharp pointed tip protruding off the 

bottom, similar to the needle of a record player. This probe is scanned back and forth across a 

specimen. The best resolution reported for AFM is of order 0.01 nm measured in vacuum, but 

AFM can be used in air and in liquids.  

Atomic force microscope consists of a tip mounted on a microcantilever and is close to 

the specimen surface as shown in Fig.1.1.  Most of the cases cantilever is made up of silicon 

or silicon nitride with tip radius of curvature in orders of nanometers. As the tip moves on the 

surface to be investigated, the forces like  van der Waals’ forces, capillary forces, chemical 

bonding, electrostatic forces, magnetic forces etc. between the tip and the surface induces the 

transverse displacement of the tip. The cantilever motion can either be measured optically or 

by using sensing elements built into the cantilever itself. In optical approach, a laser beam is 

http://en.wikipedia.org/wiki/Van_der_Waals_force
http://en.wikipedia.org/wiki/Capillarity
http://en.wikipedia.org/wiki/Chemical_bond
http://en.wikipedia.org/wiki/Chemical_bond
http://en.wikipedia.org/wiki/Coulomb%27s_law
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transmitted to the tip of the cantilever and allowed to reflect back. The reflected laser beam is 

detected using a photosensitive detector located few centimeters away.  

 

 

 

 

 

 

 

 

Fig.1.1 AFM Schematic Diagram with microcantilever  

The output of this photosensitive detector is provided to the computer for processing the 

data so that we can get a topographical image of the surface with atomic resolution. Atomic 

force microscopy is used to measure the forces as small as 10
-18

N. 

There are three basic operating modes of AFM: (i) contact mode, (ii) noncontact mode, 

and (iii) tapping mode. In contact mode, the tip of the cantilever is always in contact with the 

sample surface. The cantilever beam acts as a spring, so the tip is always pushing very lightly 

against the sample. In this mode, overall forces are repulsive. As the probe encounters surface 

features, the microscope adjusts the vertical position of the cantilever’s base so that force 

applied to the sample remains constant. This is done in a feedback loop. In noncontact mode 

(1987), tip of the cantilever does not in contact with the sample surface. Nonetheless, in 

noncontact mode, the probe needs to be excited at or near its resonant frequency, while the 

Actuator 

Laser 

Photodectector 

(deflection sensor) 

Cantilever probe 

Sample 
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distance between the tip and sample’s surface must be kept constant. In tapping mode (1993), 

cantilever oscillates up and down near to its resonance frequency. That is, the probe’s tip can 

hover over the sample’s surface while the microcantilever is oscillating at amplitudes mainly 

higher than the amplitudes in the noncontact mode. The amplitude of oscillation is typically 

20-100nm. The amplitude of oscillation decreases when the probe’s tip approaches the 

surface due to nanoscale interaction forces. This mode is well suited to examine soft 

(biological) samples that are too fragile for the lateral, dragging force exerted in contact 

mode. In tapping mode, the feedback loop does not have a set point deflection to maintain; it 

strives to maintain a set point amplitude. In the tapping mode, cantilever may either have a 

frequency modulation (FM) mode or amplitude modulation mode. In FM mode, cantilever is 

made to oscillates at its natural frequency and when it is brought close to the sample, the long 

range forces between the tip and sample cause the frequency to shift. Thus, feedback loop 

works to maintain a set point frequency. This keeps the tip-sample distance constant so that 

surface topography can be measured. 

 Being the main part of AFM, microcantilever probe system requires close attention. 

Accurate simulation of cantilever dynamics coupled with nonlinear tip-sample interactions 

necessitates the comprehensive techniques during the modeling. 

1.1 MICROCANTILEVER OF ATOMIC FORCE MICROSCOPY 

Microcantilever is the basic element of Atomic Force Microscope. It is used to get 

information on shape and dimensions of the element that is being studied. Fig. 1.2 shows the 

schematic diagram of a V-shaped AFM cantilever.  The cantilever is placed just above the 

sample specimen, which is under investigation.  This cantilever moves over a sample 

specimen surface and due to the attractive and repulsive forces, it starts to vibrate. Up till now 

the designs of microcantilever of atomic force microscope are divided in to two groups. In 
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first group there are micro-probes with tip in the form of a cone or pyramid. Scanning across 

a surface, AFM interacts with the sample surface through its tip.  

 

 

 

 

 

Fig.1.2 Typical V-Shaped microcantilever beam 

According to the nonlinear nature of the tip-sample interaction forces, the behavior of the 

cantilever is nonlinear. The imaging rate and contrast of topographical images considerably 

depends on the resonant frequency and sensitivity of the cantilever. Therefore, an accurate 

model to represent the mechanics of microcantilever is very much important in order to study 

the AFM system and improve the resolution of the acquired image. There are several models 

available in literature such as lumped-parameter models and distributed parameter models. In 

lumped-parameter models, the lower frequency oscillations are utilized when first few modes 

are excited.  To represent a distributed parameter model of an AFM cantilever using Euler-

Bernoulli beam theory, there are advanced models in literature. For small beams, the 

Timoshenko beam assumptions are required where the shear deformation and rotary inertia 

becomes significant. Different tip-sample interaction force assumptions are also available. 

These forces can be expressed either in the form of Hertz contact model, piecewise linear 

contact model, Derjaguin-Muller-Toporov (DMT), a combination of the van der Waals 

attraction and the electrostatic repulsion between two surfaces in a liquid environment etc. 

These microcantilever structures are often made-up of silicon/silicon nitrides.    

t 

b 

L 
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1.2 LITERATURE SURVEY 

This section deals with relevant literature available on the dynamics and control of AFM 

cantilevers. Several authors dealt with design issues with reference to various configurations 

of cantilevers such as triangular and rectangular tapered cantilevers.  

1.2.1 Design Issues 

G. Binning et al. [1] and A. Raman et al. [2] proposed a system where the scanning 

tunneling microscope (STM) is used to measure the motion of cantilever beam with an ultra-

small mass and designed a new tool atomic force microscope (AFM) to increase level of 

sensitivity. AFM is used to measure any type of force; not only interatomic forces, but 

electromagnetic forces as well.  

Zhang et al. [3] presented nonlinear dynamics and chaos of a tip-sample dynamic system 

in tapping mode by modelling microcantilever as a spring-mass system and interaction force 

was considered as Lennard Jones (LJ) potential. 

Payam and Fathipour [4] presented dynamic mode AFM microcantilever-tip system based 

on Euler’s beam theory and solved it numerically to study the effects of tip mass, beam 

density, length and interaction forces by linearizing all the terms. 

 Korayem et al. [5] studied the dynamic behavior of microcantilever-sample system in 

tapping mode and adopted the sliding mode controller design for minimizing the nonlinear 

behavior. 

Brenetto et al. [6] explored the possibilities of extracting energy from mechanical 

vibration using ionic polymer metal composites in which the hydrodynamic function-

expressions were proposed over some range of Reynolds’s numbers. 

Lee et al. [7] proposed an improved theoretical approach to predict dynamic behavior 

of long, slender and flexible microcantilevers affected by squeeze film damping at low 
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ambient pressure. They investigated the relative importance of theoretical assumption made 

in the Reynolds-equation-based approach for flexible micro electromechanical systems. The 

uncertainties in damping ratio prediction introduced due to assumption to the gas refraction 

effect, gap height and pressure boundary conditions are studied. They attempted to calculate 

squeeze film damping ratios of higher order bending modes of flexible micro cantilevers in 

high Knudsen number regimes by theoretical method. 

1.2.2 Analysis Issues 

This section deals with relevant literature available on the analysis done on AFM models to 

study the natural, resonant frequency as well as to detect the vibration amplitude variations. 

Sedeghi and Zohoor [8] presented the nonlinear vibration analysis for double-tapered 

AFM cantilever using Timoshenko beam theory and partial differential equations were solved 

by the differential quadrature method. 

Zhang and Murphy [9] presented a multi-modal analysis in the intermittent contact 

between tip and sample. When AFM is operated in liquids, the methods of actuation and 

system integration increases the damping. 

A first estimate of the distributed lift of thin beam with rectangular cross section is given 

by Sader [10]. In this work, length to width ratio was selected very large and is subjected to 

low frequency excitation, so that the beam is locally considered as infinitely long cylinder 

and fluid loading is analyzed using numerical findings based on unsteady Stokes flow. 

Tapping mode (TM) AFM is firstly used by Putman et al. [11]. They successfully 

measured the frequency responses and tip–sample approach curves of V-shaped silicon 

nitride cantilevers in both air and liquid. 

Korayem et al. [12] showed that the frequency response behavior of microcantilever in 

liquid is completely different from that in air and studied the influence of mechanical 
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properties of the liquid like viscosity and density on frequency response analysis. They used 

finite element method to study the dynamic behavior of AFM in both air and liquid 

environment. In theoretical modeling, hydrodynamic force exerted by the liquid on the AFM 

is approximated by hydrodynamic damping. They showed that, microcantilever operating in 

liquids differs in resonant frequencies from natural frequencies also there is reduction in 

vibration amplitude. Also they studied the effect of liquid viscosity and liquid density on 

frequency response. The dynamic behavior of the AFM cantilever under tip sample 

interaction in both repulsive and attractive regions is analyzed.  Then compared the results of 

finite element simulations with experimental results, which were shown nearly same. 

Song and Bhushan [13] used finite element model to know frequency and transient 

response analysis of cantilevers in tapping mode operating in the air as well as liquid. They  

approximated hydrodynamic force exerted by the fluid on AFM cantilever by additional mass 

and hydrodynamic damping. The additional mass and hydrodynamic damping matrices 

corresponding to beam element is derived. Also numerical simulations are performed for an 

AFM cantilever to obtain the frequency transient response of the cantilever in air and liquid. 

Song and Bhushan [14] has developed a comprehensive finite element model for 

numerical simulation of free and surface-coupled dynamics of tip cantilever system in 

dynamic modes of AFM. They did formulation for reflecting the exact mechanism are 

derived from tapping mode (TM), torsional resonance (TR) and lateral excitation (LE)mode. 

They suggested that TR and LE modes cannot be ignored as they mostly affects amplitude 

and phase of cantilever responses. 

 

 



 

8 
 

1.2.3 Experimental Issues 

This section deals with relevant literature available on the experiments carried out to 

know how the environment effects on the atomic force microscopy. And to know the various 

shapes of cantilever 

Lee et al. [15] has discussed the nonlinear dynamic response of atomic force microscopy 

cantilevers tapping on a sample through theoretical, computational and experimental analysis. 

They carried out the experiments for the frequency response of a specific microcantilever 

sample system to demonstrate nonlinearity using modern continuation tools. Also they 

studied the effect of forced and parametric excitation on bifurcation and instabilities of the 

forced periodic motions of the microcantilever system. 

Hossain et al. [16] demonstrated the dynamic response of microcantilever beams and 

characterized rheological properties of viscous material. Initially they measured the dynamic 

response of the mini cantilever beam experimentally which is partially submerged in the air 

and water for different configurations using a duel channel PolyTec scanning vibrometer. 

Then they implemented finite element analysis (FEM) method to predict the dynamic 

response of the same cantilever in air and water, and compared with corresponding 

experiments. They also conducted numerical analysis to investigate the variation in modal 

response with changing beam dimensions and fluid properties. 

Vancura et al. [17] analyzed characteristics of the resonant cantilever in viscous liquids 

using rectangular cantilevers geometries in pure water, glycerol and ethanol solution with 

different concentrations. Their study results can be used in resonant cantilevers as 

biochemical sensors in liquid environments. 



 

9 
 

Muramatsu et al. [18] fabricated polymer tips for AFM for study of the effects of tip 

length and shape on cantilever vibration damping in liquids. They studied the tip sample 

distance and the normalized vibration amplitude in liquid for the four tips of different length. 

Jones and Hart [20] have demonstrated a simple method for utilising the system as a 

micro viscometer, independently measuring the viscosity of the lubricant for the test. They 

studied the drag and squeeze film damping effect on microcantilever and discussed cantilever 

response in water for large range of cantilever speeds. In the more viscous fluids, that the 

bulk drag and dynamic response of the cantilever become increasingly important. 

1.3 SCOPE AND OBJECTIVE 

Based on the above literature available, it is found that there is a lot of scope to work 

with the cantilever design and analysis tasks in an atomic force microscope to get more 

effective scanning ability. Both the air and liquid media in which these cantilevers are made 

to operate have affect in the overall resolution and scanning ability. 

In this work an attempt is made to model the base excited microcantilever with nano-tip 

using a lumped and distributed parameter systems. The intermolecular forces are considered 

during the tapping mode of oscillation. An experiment is carried out on a tiny metallic 

cantilever sample to know the frequency response characteristics in air. A 3D finite element 

model is also used to verify the dynamic characteristics. The effect of surrounding liquid 

media on the tapping mode dynamics of cantilever is tested using available hydrodynamic 

models. 
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2. MATHEMATICAL MODELING 

This chapter deals with mathematical models used to represent microcantilevers.  

2.1 CONTINUOUS SYSTEM MODEL OF MICROCANTILEVER 

In continuous system model analysis, beam dynamics and interaction force are two important 

things. As shown in following Fig. 2.1, probe measurement system moves upward to preset measuring 

position through the motion of z-scanner.  

 

Fig 2.1 Cantilever microprobe 

Its end vibrates as a result of straying away from the expected position caused by the 

deflection of the probe. The probe is a cantilever beam of constant cross-section and fixed to 

base platform and other end is free. Writing the expressions for kinetic and potential energies 

respectively as: 









 
L

0

2
e

22 )]t,L(u)t(d[mdx)]t,x(u)t(d[)t(dm
2

1
T            (2.1) 

 
L

0

2 dx)]t,x(u[EI
2

1
U

  
            (2.2) 
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where m is mass of z-scanner (base), me is mass of probe tip, L is length of probe up to tip, 

d(t) is displacement  of base platform, u(t) is transverse displacement, I is moment of inertia 

of the probe cross section,  is the linear density of the probe. The virtual work done by the 

non-conservative forces is 

W=f(t) d(t)+Fi (t){d(t)+u(L,t)}                         (2.3) 

Here f(t) is external force applied at the base, Fi(t) is the interaction force between tip and 

sample. By using Hamilton’s principle, the following equation of motion is obtained: 

EIu(x,t) + 0)}t,x(u)t(d{                (2.4) 

)t,L(umdx)t,x(u)t(d)mLm( e

L

0
e

   =f(t)+ Fi(t)           (2.5) 

Here the symbol  indicates 
4

4

x


and double dot superscript represents 

2

2

t


. 

The boundary conditions are: 

u(0,t)=0, u(0,t)=0, EIu(L,t)=0  and 

EIu(L, t) -me )t(F)}t,L(u)t(d{ i              (2.6) 

The nanomechanical interaction force between the probe's tip and sample may be obtained 

either using Hertz contact model or Derjaguin-Muller-Toporov (DMT) contact model or the 

Lennard–Jones (LJ) model. For example, Hertz model can be used to express:  

Fi(t)= )]t,L(u)t(d[k                (2.7) 

Where k=-(6E
*
RFo)

1/3
 is a spring constant in which R is radius of the tip (modelled as a 

sphere), Fo is an interaction force at the equilibrium position and E* is the effective modulus 
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of tip-sample given by:

1
22

* )1()1(









 





s

s

t

t

EE
E


, where Et, Es, t, s are the elastic moduli 

and Poisson’s ratio of the tip and sample respectively. Writing u(x,t)=w(x,t)-d(t), we can 

express the equations of motion more conveniently as follows: 

)t(f)t,L(kw)t,L(wmdx)t,x(w)t(dm e

L

0

  
           (2.8) 

0),(),()(  tLkwtLwEItwme
            (2.9) 

This model is compared with the well-known point-mass model of AFM microcantilever,  

which is defined according to the following equations: 

)t(f))t(w)t(d(k)t(dm c             (2.10) 

)t(F))t(d)t(w(k)t(wm iceq            (2.11) 

with  kc=3EI/L
3
 and meq=me+L/3               (2.12) 

In the analysis of continuous system model, following parameters of AFM probe are 

considered: Material rigidity EI=310
-11

 Nm
2
, probe length L=232 m, mass density 

=3.26210
-7 

kg/m, mass of base platform m=0.001 kg,, mass of probe tip me=3.210
-12

 kg, 

tip radius R=310
-7

 m and spring constant k=340 N/m. The natural frequencies are obtained 

from the frequency parameter i as: i
2
=i

4
EI/, which is arrived by solving the following 

equation: 

    i
3
(1+cosiL coshiL) + 




















4
iem

EI

k
(siniLcoshiL-sinhiLcosiL)=0   (5.1) 

Substituting L and other parameters, we get with MATLAB: 
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1=7.7810
3
 and corresponding 1=579.210

3
 rad/s or 92.1 kHz, where as from eqs. (2.10)-

(2.12), by solving eigenvalue problem, we get the natural frequency as: 80.14 kHz. Fig.5.2 

shows variation of natural frequency with tip mass ratio. 

 

Fig. 2.2 Variation of natural frequency with tip mass 

2.2 INTERACTION FORCE MODEL 

The interaction between a cantilever tip and sample surface can be modeled as the interaction 

between a sphere and a flat surface as shown in Fig.2.3.  

 

 

 

 

Fig.2.3 Tip-sample interaction 

The tip-sample interaction is often modeled by the LJ potential given as 

x)z6(

R
2

A

7x)z1260(
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A
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0
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                       (2.13) 
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where A1 and A2 are the Hamaker constants for the attractive and repulsive potentials, 

respectively. The Hamaker constants are defined as     
        and     

        in 

which    and     are the densities of the two interaction components, and    and    are the 

interaction constants respectively. Also, z0 is the equilibrium gap between tip and sample and 

x(t) is the variable transverse displacement. In this model equivalent radius of the tip is R. The 

LJ force can be defined as the sum of attractive and repulsive forces and expressed as 

x)z6(

R
2

A

7x)z180(

R
1

A

x

U
F LJ

LJ












00

        (2.14) 

There are other models like DMT, where the interaction between a cantilever tip and sample 

surface can be modeled as interaction between a sphere and a flat surface just like above. If 

the long-range attractive force is described by van der Waals force and the short range 

repulsive force using DMT model, the force calculation is expressed as: 














otherwiseRxaE
x

RA

adfor
x

RA

F
n

DMT

,)(
3

4

6

,
6

2/3

0

*

2

1

02

1

          (2.15) 

Here x(t) is the transient tip-sample separation and a0 is the intermolecular distance. 

2.3 HYDRODYNAMIC FORCES  

2.3.1 Beam vibration in liquids 

We considered flexural vibration of cantilever beam under harmonic base excitation. Let x be 

the co-ordinates along the beam axis with y and z are the coordinates along width and 

thickness. Beam is slender and composed of homogeneous and isotropic material. The 

classical linear Euler-Bernoulli beam theory gives the equation of motion as: 

 
 

 
)(),(),(

,,
2

2

2

2

2

2

tFtxStxF
t

txu
bh

x

txu
K

x
hyd 






















    (2.17) 
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where, 
12

3Ebh
K  with b and h are width and thickness, =Mass density of cantilever, 

u(x,t)=Beam deflection,     tFtF sin0 Harmonic base excitation,  
 
t

txw
BtxS






,
, is 

the damping force,  Length of beam, Fhyd(x,t) describes hydrodynamic action exerted on 

the beam by the encompassing fluid. The effect of liquid viscosity can be taken care by a 

simple model. Researchers [eg.,13] have approximated the hydrodynamic forces to be in 

proportion to the cantilever acceleration and velocity as: 

 
2

2

,
t

u

t

u
ctxF aahyd









         (2.18) 

Where, additional hydrodynamic damping coefficient= 







  liqb 2

4

3
3  and 

additional mass density




















liq

liqa bb
2

4

3

12

1 2
. Here,  is vibrating frequency of 

the cantilever,  is kinematic viscosity of liquid, liq is density of the liquid.   

2.3.2 Solution methodology 

Fig.2.4 shows the microcantilever considered with its nomenclature. In order to solve the 

dynamic equations in continuous form, the Galerkin’s approximation method is employed. 

Here we considered u(x,t)= 


M

i

ii tqx
1

)()(  where M is the number of modes used,  is its 

normalized modal function. As the first mode dominates, often u(x,t) is approximated as 

1(x)q1(t). Here, 1=1(x) is obtained from the boundary conditions of the beam.  

 

L

ac

)(xi
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Fig 2.4 Micro-cantilever beam under consideration 

The mode shape function 1(x) is multiplied on both sides of the differential eq.(2.17) and the 

resultant equation is integrated along the cantilever length. i.e.  

dxtqFdxqcBdxqbhdx
x

Kq

LL

a

L

a

L

 




0

110

0

2

11

0

2

11

0

4

1

4

11 sin)()( 


   (2.19) 

In addition to the hydrodynamic and harmonic forces, the system is subjected to an atomic 

interaction force fID(t) in microscopic level. The general mode shape function is obtained 

from the following boundary conditions:  

At x = 0: w(0,t) = 0, and 0
),0(






x

tw
      (2.20) 

At x = L, 0
),(
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2


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x

tLw
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2

3

3

tf
x
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x

tLw
K IDe 









         (2.21) 

Here, fID(t)=-ktsw(L,t) is linearized tip-sample interaction force, with contact stiffness 

),(

)(

tLw

tf
k ID

ts



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   (2.22) 

Here me is equivalent tip mass added. The frequency equation and eigenfunction can be 

obtained from above four boundary conditions as follows (see appendix-IV) 
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    0coshcos12sinhcoscoshsin2 34 







 LLEILLLL

A

EI
mk ets 


  (2.23) 

where 24 



EI

A
 . The normalized mode shape is  

 )cosh)(cossinh(sin)sinh)(sincosh(cos
1

)( xxLLxxLL
N

x      (2.24) 

where  

)sinhcoscosh(sin2 LLLLN        (2.25) 

Table 1.1 shows the data considered for analysis in MATLAB coding. 

Table 1.1 Parameters of simulation for the AFM cantilever [5] 

Cantilever length (L) 200 µm 

Cantilever width (b) 140 µm 

Cantilever thickness (t) 7.7 µm 

Cantilever mass density () 2730 Kg/m
3
 

Cantilever Young’s Modulus (E) 130 GPa 

Quality factor of air (Q) 900 

Liquid density(liq) 1030 Kg/m
3
 

Liquid viscosity() 13.2×10
-4 

Kg/m
3
 

Tip length(l) 10 µm 

Tip radiud(R) 10 nm 

Hamarker constant (A1) 2.96×10
-19

 J 

Intermolecular distance (a0) 0.38 nm 

Effective elastic modulus (E
*
) 10.2 GPa 

Effective elastic modulus (G
*
) 4.2 GPa 
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The computations are performed with a MATLAB 7.10.0 (R2010a) symbolic logic program, 

which can resolve the equations into ordinary differential form in terms of q1. Runge Kutta 

forth order method is used for solving this equation. MATLAB function ode45 is also used 

which is a variable time-step Runge-Kutta formula necessary to obtain solution of nonlinear 

equations. MATLAB code employed for this is indicated below:  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

syms u x 

global l b rho th I1 I2 omega u E I Bd 

%alp is tip mass ratio 

l=200e-6;    %length of microcantilever 

b=140e-6;   %width of microcantilever 

th=7.7e-6; %thickness of microcantilever 

Area=b*th; 

I=(b*th^3)/12; 

rho=2730; 

E=130e9; 

alp=0.01; % tip-mass ratio 

 % NOTE u=beta*l; 

omega=(3.516*sqrt(E*I/(rho*Area))/l^2);% NATURAL FREQUENCY WITH A SIMPLE CANTILEVER 

ksy=rho*Area*l*(omega)^2; % microcantilever stiffness 

kts=0.1*ksy;%0.0398 

me=rho*Area*l*alp; 

Bd=2*sqrt(ksy/me)*0.05;% Corresponding to Q=1000 

p1=me*E*I/(rho*Area*l^4);%=3.2196e-004 

p2=2*E*I/l^3;%=0.0644 

u=1.8; 

%TO SOLVE THE TRANCEND. EQ. IN TERMS OF u WE USE NEWTON-Raphson'S METHOD FOR WHICH 

DIFFERENTIAL IS REQUIRED 

 for i=1:50 

   freq=2*(kts-p1*u^4)*(sin(u)*cosh(u)-cos(u)*sinh(u))+p2*u^3*(1+cos(u)*cosh(u));    

   dfreq=-8*p1*u^3*(sin(u)*cosh(u)-cos(u)*sinh(u))+2*(2*kts-

2*p1*u^4)*sin(u)*sinh(u)+3*p2*u^2*(1+cos(u)*cosh(u))+p2*u^3*(-sin(u)*cosh(u)+cos(u)*sinh(u)); 

   u=u-freq/dfreq; 

end 

display(u^2); 

omega1=(u/l)^2*sqrt((E*I)/(rho*Area)); % NATURAL FREQUENCY WITH EQUIVALENT INTERACTION SPRING 

AND TIP-MASS BOUNDARIES 

  

% DEFINITION OF MODE SHAPE FUNCTION 

N=2*(sin(u)*cosh(u)-cos(u)*sinh(u)); 

A=(cos(u)+cosh(u))/N; 

B=-(sin(u)+sinh(u))/N; 

C=-(cos(u)+cosh(u))/N; 

D=(sin(u)+sinh(u))/N; 

 

phi=A*sin(u*x/l)+B*cos(u*x/l)+C*sinh(u*x/l)+D*cosh(u*x/l); 

I1=eval(int((phi*phi),0,l)); 

I2=eval(int(phi,0,l)); 

  

%SOLVING THE DIFFERENTIAL EQUATION 

dt=1e-5; 

tspan=0:dt:5; 

q0=[0.0001;1e-3]; 

[t,q]=ode45(@cs, tspan, q0); 

plot(q(:,1),q(:,2)); 

xlabel('displacement of cantilever'); ylabel('velocity of the cantilever'); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Various forces considered for obtaining the response from above coding are given in the 

following MATLAB function: 

================================================================ 

function f1 = cs(t, x) 

global l b rho th I1 I2 u E I Bd omega 

  

f0=1; % UNIT AMPLITUDE TIP HARMONIC EXCITATION 

Ks=E*I; 

omega2=1e6; % EXCITATION FREQUENCY IN RAD/S 

nita=13.2e-4; %VISCOSITY OF THE LIQUID 

rhliq=1030; %DENSITY OF  LIQUID ENVIRONMENT 

Ca=3*pi*nita+(3/4)*pi*b*sqrt(2*nita*rhliq*omega); %ADDITIONAL HYDRODYNAMIC DAMPING COEFFICENT 

rhoa=((1/12)*pi*rhliq*b^2)+(3/4)*pi*b*sqrt(2*rhliq*nita/omega); %ADDTITIONAL MASS DENSITY 

%mm=1/(rho*b*th+rhoa); %1.1499e+5 

mm=1.1499e3; 

%STATE SPACE REPRESENTATION OF THE SYSTEM. 

f1=zeros(2,1); 

f1(1)=x(2); 

f1(2)=(-((u^4)*mm*Ks*I1*x(1))-(Bd+Ca)*mm*I1*x(2)+f0*mm*I2*sin(omega2*t)*x(1)); 

return 

================================================== 

First the frequency equation is solved and results are shown. The effect of equivalent linear 

interaction stiffness: k/kk̂ tsts  , where k=Aln
2 

on natural frequencies is as shown in Fig. 

2.5 both with and without tip-mass.  

 

Fig 2.5  Natural frequency versus normalized interaction stiffness   
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Here, the dotted line indicates the natural frequency of normal cantilever in air without tip 

mass. It is seen that even if interaction stiffness is zero, the natural frequency mismatch with 

dashed line is due to the tip-mass boundary condition. Quality factor is defined as 
B

Al
Q


 , 

where B is damping coefficient. For constant values of mass and damping coefficient it is a 

function of natural frequency. Fig.2.6 shows the variation of quality factors with interaction 

stiffness (negative for attraction, zero for free oscillation and positive for repulsive 

interaction). 

 

Fig.2.6 Quality factor Q vs Normalized interaction stiffness 

The viscous damping ratio considered in present work is 0.05.  

The differential equations are solved and Fig.2.7 shows the time history with tsk̂ =0.1. 
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Fig 2.7 Variation of the displacement(µm) of system with respect to time (s) 

Fig.2.8 shows the corresponding phase diagram, which indicates a chaotic state. 

 

Fig. 2.8 Graph of displacement vs. velocity of the cantilever. 
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2.4 LUMPED PARAMETER MODELING 

This model of a spring mass system is considering circular tip at the end of cantilever. 

System is being run in tapping mode and effects of the LJ potential force, squeeze film 

damping force are predicted. During the AFM operation in the TM, a low-dimensional model 

reduction can provide an accurate description of the cantilever dynamics. The cantilever is 

driven by the harmonic driving force, the tip-sample interaction force FLJ (LJ force) and the 

force due to squeeze film damping Fs. The governing equation of motion of the cantilever 

subjected to base harmonic force f0 cos(t) can be written as 

tfzxxFzxFxkkxxcxm sLJ cos),,(),( 000

3

3      (2.26) 

where x is the instantaneous displacement of the cantilever tip measured from the equilibrium 

tip position in the absence of external forces with positive values toward the sample surface, 

 ̇ and  ̈ are the instantaneous velocity and acceleration of the cantilever tip, m, k and c are the 

equivalent mass, spring stiffness and damping coefficients of the cantilever in the air. The 

constant k3 is nonlinearity in the system as cubic stiffness. Solving this second order partial 

differential equation with Runge-Kutta method, we can study the effect of nonlinearity, 

damping forces and frequency of oscillation. The results for this analysis are shown with the 

numerical data depicted in Table-1.2[3]: 

Table 1.2 Input data for lumped parameter model [3] 

Property Value 
Length 449µm 

Width 46µm 

Thickness 1.7µm 

Tip radius 150nm 

Material density 2,230kg/m3 

Young’s Modulus 176GPa 

Bending stiffness 0.11N.m-1 

Quality Factor 100 

Hamaker constant(Rpulsive) 1.3596×10-70J.m6 

Haaker constant (attractive) 1.856×10-19J 
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The coding developed in MATLAB is as follows 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

dt = 1e-6; 
tspan = [0:dt:0.01]; 
y0 =[0 0]; 
[t y]=ode45(@func,tspan,y0); 
plot(y(:,1), y(:,2)); 
xlabel('x'); 
ylabel('$\dot x$','interpreter','latex'); 
y1=y(:,1); 
Fs=1/dt; 
L=length(y1); 
NFFT=2^nextpow2(L); 
y1f=fft(y1,NFFT)/L; 
fre=Fs/2*linspace(0,1,NFFT/2+1); 
figure 
plot(fre,(2*abs(y1f(1:NFFT/2+1)))); 
xlabel('Frequency'); 
ylabel('Amplitude'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

Various forces considered in lumped parameter model for obtaining the response from above 

coding are given in the following MATLAB function: 

function  

L=449e-6; 

B=46e-6; 

H = 1.7e-6; % height of cantilever 
Ro = 2330; 
mass = Ro*L*B*H; 
F0 = 1; 
k = 0.11; 
omegan= sqrt(k/mass); 
omega=omegan*0.5; 
Q = 100; 
eta = 1/(2*Q); 
Cc = 2*sqrt(k*mass); 
C = eta*Cc; 
beta = 0.42;% 
A1 = 1.3596e-70; 
A2 = 1.865e-19; 
R = 150e-6; 
D = (A2*R)/(6*k); 
Zs = 1.5*(2*D)^1/3; 
kc = 2; %(beta*k)/(Zs^2); 
alfa = 1.2; 
z0 = 1;%alfa*Zs; 
mu = 18.3e-6; 
Pa = 1.013e-5; 
L0 = 65e-9; 
P0 = 0.8*133.32; 
Kn = Pa*L0/(P0*(z0-x(1))); 
mueff = mu/(1+9.638*Kn^1.159); 
m = 1/mass; 
f = zeros(2,1); 
f(1) = x(2); 
f(2) = m*(F0*cos(omega*t)-C*x(2)-kc*x(1)^3-k*x(1)+A1*R/(180*(z0+x(1))^8)-

A2*R/(6*(z0+x(1))^2)+x(2)*mueff*B^3*L/(x(1)+z0)^3); 
return 

=================================================================== 
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Results obtained from the program for lumped parameter model are as follows: Fig.2.9 shows 

a phase diagram for the harmonically excited linear system with interaction force. 

 

Fig.2.9 Linear system with harmonic excitation 

From this phase diagram we observed that the system is stable when only harmonic force exists in the 

system. 

The corresponding FFT is shown in Fig.2.10. 

 

Fig 2.10 Frequency response with harmonic base motion 
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Fig.2.11 shows a phase diagram for both harmonic force and the interaction LJ potential force. 

 

Fig 2.11 System under both harmonic loads and interaction forces 

In addition to harmonic force, when interaction forces incorates in the system the system is 

still behaves as a stable system. 

The corresponding frequency response is illustrated in Fig.2.12 

 

Fig 2.12 Frequency response under harmonic loads and interaction forces 
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Fig. 2.13 shows the phase diagram of the model with harmonic force with LJ potential and 

squeeze film damping force 

 

Fig 2.13 System under harmonic force, LJ potential force, squeeze film damping 

When we consider the LJ potential force in the system with harmonic force and interaction 

force, we can see from phase diagram system is stable. 

Corrousponding FFT is shown in the fig.2.14. 

 

Fig 2.14 Frequency response when system is under harmonic force,  

LJ potential force and squeeze film damping 
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When the system has nonlinearity also (k3=2 N/m
3
) and is subjected to harmonic force with LJ 

potential and squeeze film damping, the phase diagram is a chaotic attractor as shown in 

Fig.2.15. 

 

Fig 2.15 System under all forces 

Corresponding frequency response change in FFT is shown in the Fig. 2.16 

 

Fig 2.16 Fast Fourier Transform  
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3. FINITE ELEMENT MODELING 

This chapter presents the analysis of base excited microcantilever using finite element 

modeling. Both one dimensional and three dimensional finite element models are used to 

represent the AFM cantilever structure.   

3.1 BEAM ELEMENTS 

Dynamic analysis of AFM cantilevers under tip sample interaction can be done using a finite 

element model. In this one-dimensional FE model for AFM cantilever system, the 

microcantilever is discretized by beam element and tip is modeled as rigid mass element. It is 

assumed that tip was located exactly at the end of the cantilever. Fig.3.1 shows the beam 

element under consideration.  

 

                                

Fig.3.1 Beam element 

At the simplest level, cantilever is descritized into two elements. There are two degrees of 

freedom (DOFs), one displacement and another one rotation as seen from Fig.3.1. The 

element nodal displacement vector is  

 T

yzyz

e ddd 2211 ,,,          (3.1) 

Corresponding element nodal force vector consists of shear force and one moment at each 

node is 

Node 1 Node 2 

y1 
Dz1 y2 Dz2 
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 
2211 ,,, yzyz

e MFMFf          (3.2) 

For beam element with a length of Le, the element mass damping and stiffness matrices are 

expressed as 


eL

Te NdxANm
0

          (3.3) 


eL

Te NdxcNc
0

         (3.4) 


eL T

y

e dx
dx

Nd

dx

Nd
EIk

0

2

2

2

2

        (3.5) 

where N is a cubic Hermite shape function vectors. The FE motion equation of cantilever 

operating in TM mode in air reduces to: 

)(tgMIFKuuCuM zzts
         (3.6) 

Here u, u , u  are the system relative displacement, velocity and acceleration vectors, respectively. Fts 

is the force vector due to the tip sample interaction. And M, C and K are the global mass, damping 

and stiffness matrices for cantilever vibrating in the air and are obtained by assembling the 

contributions from the all the beam elements. Matrices M and K are given by 
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The viscous damping matrix c
e
 is a linearly proportional matrix of m

e
 and k

e
. The FE model motion 

equation of cantilever operated in TM and immersed in liquid are modified as: 

dzzts FtgMIFKuuCuM  )(       (3.7) 

Here    buCbuMF aad
  =the hydrodynamic force vector. By putting Fd in above 

eq. (3.7) we get simplified form as: 

      bCbMMFKuuCCuMM aatsaa
      (3.8) 

Assuming Fts = 0, b = b0sin(t), u = u0sin(t) = u0e
it
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Where  

    aa CCjMMKK   2*

      (3.11a) 
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In the above eq. h refers to transient distance between and surface which depends on angle and length 

of the tip (l). In present case h = l+u. The results of frequency response analysis are obtained from a 

simple MATLAB code which assembles element matrices and computes the amplitudes at various 

values of . Fig.3.2 shows the FRF plot for the cantilever in air & liquid (water) along with the other 

properties considered as in Table 3.1. 
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Table 3.1 Properties of cantilever and liquid considered [13] 

 

Property Value Property Value 

Beam length 252 µm Density of liquid 1000 kg/m
3
 

Beam width 35 µm Elastic modulus 1.3×10
11

 N/m
2
 

Thickness 2.3 µm Kinematic viscosity 8.54×10
-4

 kg/ms 

Tip mass ratio 0.05 Intermolecular distance (a0) 0.38 nm 

 

 

Fig.3.2 FRF plot of the microcantilever with 2 elements operating in liquid and air 

It is seen that resonance in air occurs  at around 40KHz and it drops inside the liquid 

environments due to hydrodynamic damping. The additional inertia has little effect. 

3.2 SOLID ELEMENTS 

The cantilever with known dimensions is modeled in commercial software CATIA V5 R19. 

Fig 3.3 shows the image of cantilever part modeled with the dimensions mentioned in Table 

3.1. The commands used during modeling are Rectangle, Pad, and draft. This CATIA part is 

used further analysis. 
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Fig 3.3 Solid model of a microcantilever with nano tip. 

3.3 DETAILS OF MESHING 

The commercial software ANSYS 14.0 is available for finite element analysis, is used to 

develop the finite element model of the beam which is under consideration. The CATIA part 

is imported using command import in ANSYS for further study. As the CATIA   part is 

imported, the material properties are given from the ANSYS library.  It is meshed in ANSYS 

using SOLID185 (8 noded brick with three degrees of freedom at each) elements. The beam 

is fixed at one end. Its modal analysis gives natural frequencies and corresponding mode 

shapes when operating in air. The fluid region between the cantilever and substrate surface is 

modeled by FLUID80 elements. This element is suitable for fluid solid interaction problems. 

The solid and fluid elements at the interface share same node. Fluid 80 element has three 

degrees of freedoms per node (ux, uy, uz) and in total there are 8 nodes.  The following 

boundary conditions are applied for the fluid region. 1) ux = 0 for the fluid nodes located at 

the left most and right modes located. 2) uy = 0 for the fluid nodes located at bottom most 
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plane. 3) uz = 0 for the fluid nodes located at the leftmost and right most planes (front to 

back) as seen in Fig.3.4.  

 

 

 

 

 

 

 

Fig.3.4 Boundary conditions of fluid mesh 

The finite element model is shown in the fig 3.5 with the beam fixed at one end. 

 

Fig 3.5 Geometry of the cantilever ANSYS 14.0 workbench 
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After the geometry is made, meshing is done for the analysis of microcantilever in first air 

and then in water. Boundary conditions are given accordingly, one end is fixed and other end 

containing tip free to move. Then it is solved for modal analysis and the approximate natural 

frequency is correlated as 41,000 Hz. Fig.3.6 shows the meshing screenshot of ANSYS for 

liquid medium.  

 

Fig 3.6 Screen shot of meshing for liquid medium 

The density and kinematic viscosity of water are entered for the lower region additionally 

considered. The hexahedral mesh is employed. The fluid boundary conditions are also 

incorporated. On modal analysis, it is found several other lower modes (due to fluid effect) 

before reaching the natural frequency of structure at 31,299 Hz.  
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Fig.3.7 shows the corresponding mode shape of the beam. 

 

Fig 3.7 Mode shape of the beam. 

This analysis has not taken care of any intermolecular forces into account. The effect of 

hydrodynamic forces is therefore clearly illustrated. 
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4 EXPERIMENTAL ANALYSIS 

This chapter presents the experimental details carried out in this work. Even experiments are 

not carried out at micro scale, a mesoscale alloy-steel specimen is considered to know the 

behaviour with base excitation. The sample is obtained from a wire-cut EDM machine and its 

micro structural analysis is firstpredicted from a scanning electron microscope (SEM). 

4.1 DYNAMIC TESTING AND SAMPLE PREPARATION 

Apart from the sample obtained from wire-cut EDM machine, another sample is also 

prespared on a rough scale. Fabrication process started with fabrication of mini-cantilever 

beam. We took a thin plate for making the mini cantilever beam of 35mm in length, 5mm in 

width, 1mm in thickness. By using grinding wheel we reduced the width of an aluminium 

plate for getting defined shape. Then by using hammer it is flattened to required thickness. 

And then filed using small files for getting smooth surface area. Sample specimen micro-

cantilever and mini-cantilever is as shown in the fig. 4.1.a and b. 

             

Fig. 4.1.   a) Microcantilever beam          b) Minicantilever beam 

After then the small spherical ball is fixed on the tip of the cantilever. Thus, the cantilever 

beam with a tip mass is fabricated for doing the experiment. 
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Before doing experimental setup we started with mounting base preparation. We prepared the 

base in a workshop, to get the exact dimensions of the base it is filed as well as drilled at 

center for fixing purpose and then the base is fixed on the stringer of the exciter. 

4.2 SEM ANALYSIS 

The microcantilever used is tested under scanning electron microscope JSM 6480 LV in 

metallurgy laboratory. This SEM has two attachments one is coating machine and another one 

is EDX part. Coating machine is used to coat the sample therefore it will become conducing, 

so that it can be used to scatter the electrons. EDX part is used to study the chemical 

composition of the sample. From this SEM we get two types of images: Back electron 

scattered (BES) and Secondary electron image (SEI). From BES we can see different phases 

and elements in sample. From SEI we can identify different composites available in the 

sample.different parameters set for study our sample are as Voltage 20 KV, working 

distance=10mm, spot size is sample area. Also high voltage mode is used. Material 

composition and dimensions of the microcantilever are observed. The SEM image by 

mounting the sample vertically is shown in Fig. 4.2. 

 

Fig 4.2 Measurement of height of microcantilever 

Microscopic examination of the sample has given chemical composition and material data. 
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4.3 TEST BED DESCRIPTION 

The experiment consists of the micro cantilever beam mounted on the rigid base, a mini-

shaker unit (exciter) (5N), digital oscilloscope (Tektronics DPO 4034 Digital phosphor 

oscilloscope), a piezoelectric accerlometer, signal generator and power amplifier. The block 

diagram and connections made for vibration testing is as shown in following Fig. 4.3. 

 

 

 

 

 

 

 

 

Fig 4.3. Block diagram for vibration testing. 

Then microcantilever is fixed on the top edge base with the help of feviquick. Base is excited 

with the help of sinusoidal force from exciter. The amplitude of the force is maintained 

constant by using power amplifier continuously. An accelerometer mounted on the base of 

cantilever is used to measure the input waveform provided from signal generator and is 

connected to the oscilloscope at channel 1. To measure the vibrations of the cantilever, Laser 

Doppler Vibrometer (Ometron Vh 1000 D) is used. The laser beam is focused at the tip of the 

cantilever beam. The output of the laser beam is connected to the oscilloscope at channel 2. 

Fig.4.4 shows the physical set-up employed in the sweep-test experiment. 
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Power amplifier 
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Fig 4.4 Experimental modal analysis on microcantilever 

4.4 SINE SWEEP TESTING  

Sine sweep vibration test is used to determine the certain natural frequencies of in  

structure.  In sine sweep test, the output sensor (LDV) amplitudes are measured by increasing 

the excitation frequency at constant input amplitudes. The frequency is varied from 100Hz 

to10KHz in present case. Fig 4.5 shows screen shot of oscilloscope. 

 

Fig 4.5 Screen shot of oscilloscope  
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4.5 EXPERIMENTAL RESULTS 

The amplitudes of output sensor (LDV) are recorded at each frequency of input sinusoid. The 

output waveform is adjusted everytime till a sinusoidal signal is obtained. The output signal 

data is obtained both as a screenshot as well as an excel data file. Finally a graph is plotted 

between excitation frequency and output amplitudes from the specimen. Fig.4.6 shows the 

resultant frequency response drawn manually.  

 

Fig.4.6 Experimentally obtained frequency response 

By noting that the sample has no tip-mass, the results are compared with wellknown cantilever 

beam formula: 1=
A

EI

2

5156.3


 rad/s. Experimentally measured resonance frequency is 

2100Hz. 
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5 CONCLUSIONS 

In this work, analytical modeling of microcantilever beams with tipmass as application to 

atomic force microscopy has been presented. The effect of various forces like, nonlinear 

spring (beam nonlinarities)forces, interaction forces between tip and sample surface and 

hydrodynamic forces were observed on the dynamic stability of base excited cantilever. 

Interaction force was modeled by LJ potential force and DMT contact models, while system 

damping was idealized to be a combination of viscous and squeeze film damping (in liquids 

especially) and beam nonlinearity was modeled by cubic stiffness. All the studies were 

carried-out in tapping mode of operation. The analytical results were verified by lumped-

parameter models and one mode approximated distributed-parameter models along with finite 

element analysis. A simple experiment analysis is conducted for obtaining the frequency 

response of the test specimen.  

 In overall sense, the objective of this study is to enhance the scanning ability of the system 

by proper design considerations of microcantilever beam. It is observed that the working 

performance of atomic force microscope in air is different from that in the liquid enviroments 

for the same microcantilever probe structure in terms of dynamic characteristics. There was a 

variation between the natural frequencies in air and liquid. Vibration amplitude and 

resonance frequency reduces as environment changes from the air to liquid. Frequency 

response in liquid environment is basically depends on two main parameters hydrodynamic 

and squeeze film forces and nonlinear tip sample interaction.  

5.1 FUTURE SCOPE 

As future scope of this work, the microcantilever beam dimensions are to be arrived for 

maximizing the quality factor and natural frequency. It requires actual microfabrication 

techniques to prepare the sample and test it in more accurate set-up like, scanning probe laser 
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Doppler vibrometers to get more inference. A user-interactive graphics user interface is to be 

developed to study the dynamic characteristics of the cantilever system operating both in 

liquids and air and an image processing software tool is to be linked up with the cantilever 

deflections to know the variations in scanning of samples. Further, a detailed study of 

stability issues of the cantilever is also an important task in future.   
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APPENDIX I 

RUNGE KUTTA METHOD FOR TIME INTEGRATION 

A forth order Runge’s-Kutta Formula used for solving the first-oder differential equation 

),( xyf
dx

dy
 is     43210 22
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 3004 , kyhxhfk   

This is known as Runge-Kutta fourth oder method. The error in this formula is of the order 

4h . This method has greater accuracy. This method is programmable using nested loops. In 

MATLAB, the values of k, y can be put into vectors to easily evaluate in matrix form. It can 

be extended for second order differential equations also by writing them as two first oder 

equations and solved them as simultaneous equations.  
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APPENDIX II 

SYMBOLIC LOGIC TOOLBOX FOR SOLVING FREQUENCY EQUATION 

Symbolic logic toolbox in MATLAB provides functions and interactive tool performing 

symbolic computations. It performs computations in terms of the symbols. Sometimes, this is 

of advantage such as in computation of definite differentials and integrals of various 

functions defined in symbols. In present work, the mode shape function is expressed in terms 

of the position variable (symbol) and the compuations are carried to solve and integrate the 

equations. For example to solve an equation: x2+2x+3=0 in symbolic logic toolbox, we write: 

   syms  x; 

   x=solve(‘x^2+2*x+3’); 

Similary int(‘x^2+2*x+3’,0,5) is used to perform definite integration between the limits 0 to 

5.  
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APPENDIX III 

NEWTON RAPSON APPROACH FOR OBTAINING A SOLUTION TO FREQUENCY EQUATION 

By this method, we get a closer approximation of the root of the equation if we already know 

its approximate root. 

Let the equation be   0xf  

Let its approximation root be a  and better approximation root be ha   

Now we find h 

  0 haf  Approximately  |as ha  , is the root of   0xf     (AIII.1) 

By Taylor’s theorem 
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Or                 afhafhaf       (AIII.2) 

Since h is veery small, we neglect 
2h  the and higher power of h 

From eq
n
 A1 and A2, we have 
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Similarly third approximation root 
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By repeating the operation we get a closer approximation of the root. “for” loop is used for 

repetetive iteration. So that it can be used for solving the frequency equation. 
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APPENDIX IV 

SOLUTION FOR FREQUENCY EQUATION 

Modal function is approximated in terms of frequency parameter  as:  

xCxCxCxCx  sinhcoshsincos)( 4321   

The constants C1 to C4 are obtained from following boundary conditions: 
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Eliminating  C1 and C2 frm eqs.(AIV.1) and (AIV.2), we get the frequency equation in 

terms of . 
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