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Abstract

Grid computing is an extension to parallel and distributed computing. It is an

emerging environment to solve large scale complex problems. It enables the sharing,

coordinating and aggregation of computational machines to fulfil the user demands.

Computational grid is an innovative technology for succeeding generations. It

is a collection of machines which is geographically distributed under different

organisations. It makes a heterogeneous high performance computing environment.

Task scheduling and machine management are the essential component in

computational grid. Now a day, fault tolerance is also playing a major role in

computational grid. The main goal of task scheduling is to minimize the makespan

and maximize the machine utilisation. It is also emphasis on detection and

diagnosis of fault. In computational grid, machines may join or leave at any point

of time. It may happen that machine is compromised by an advisory or it may be

faulty due to some unavoidable reason like power failure, system failure, network

failure etc. In this thesis, we address the problem of machine failure and task

failure in computational grid. Also, we have focused on improving the performance

measures in terms of makespan and machine utilisation. A simulation of the

proposed heuristics using MATLAB is presented. A comparison of our proposed

heuristics with other existing heuristics is conducted. We also demonstrate that

number of task completion increases even if some of the machine work efficiently in

computational grid.

Keywords: Computational Grid, Batch Mode, Independent Task, Task Scheduling, Makespan,

Quality of Service, Fault Tolerance
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Notations

m Total number of tasks (or meta-tasks)

n Total number of machines (or resources)

Ti Task ID of task i

Mj Machine ID of machine i

S A scheduling strategy

Ei,j Execution time for task i on machine j

M(S) Makespan of scheduling strategy S

M(SMj
) Makespan of machine j using scheduling strategy S

MU(S) Machine (or resource) utilisation of scheduling strategy S

MU(SMj
) Machine (or resource) utilisation of machine j using scheduling

strategy S

F (S) Completion time of scheduling strategy S

F (STi) Completion time of task i using scheduling strategy S

I(S) Idle time of scheduling strategy S

I(SMj
) Idle time of machine j using scheduling strategy S

E(S) Total execution time of scheduling strategy S

E(STi) Execution time of task i using scheduling strategy S

Ti→Mj Task i is scheduled to Mj

Ti 6→Mj Task i is not scheduled to machine j
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Chapter 1

Introduction

1.1 Introduction

The computational power of a single computer cannot provide sufficient power to

run large scale complex problems [38]. It can be enhanced by improving the speed,

memory, processor and many more. Even if it has speedily increased up to some

extent, still some future improvements are required. Alternatively, it is possible to

connect more than one computer together to achieve large computational powers.

The collection of independent computers that provides the user as a single system

image is called distributed system. The computers are independent of each other

and it is under different organisations. The computers may join or leave at any

point of time. Grid computing is an example of a distributed system. The grid

was coined by Ian Foster and Carl Kesselman in the mid 1990s [1]. The purpose of

the grid computing is to provide computational power to solve large scale complex

problems. It is heterogeneous structure. It means each participating computer in the

grid may have different specifications. The machines are distinguished in many ways

like reliability, availability, scalability, performance and fault tolerance. It depends

on the user requirements to assign the machines according to the problem. There is

always a trade off between the machine specifications. For example, a machine may
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be available for 24 hours but gives poor performance or a machine may be available

for very few hours but gives high performance.

Grid computing provides flexibility to solve a very large problem in a single

computer. Also, it provides a multi-user environment. Multi-user environment

offers the user to participate in the grid project and use the computer for personal

propose at the same time. For example, BOINC project [2]. In this project, we

can participate in any number of projects without interfering our personal work.

The grid computing environment consists of PCs, workstations, clusters, servers

and supercomputers [51]. This environment has various entities like grid user,

machine, GMB, GIS, input, output and many more. The grid users or producers

or machine owners have responsibility to satisfy the end user or consumer demands.

To fulfil the user demands, GMB leases or hires grid machines and services based

on cost, efficiency, capability and availability [62]. Both producer and consumer are

distributed geographically with different standard time zones [3] [36] [39] [40] [58].

1.2 Chapter Organisation

The organisation of the rest of the chapter and a brief outline of the sections is as

follows.

In Section 1.2, an introduction to grid computing, types of grid and characteristics

of computational grids are discussed.

In Section 1.3, the real life grid projects are discussed.

In Section 1.4, the grid architecture proposed by Buyya et al. is presented. The

four layer architecture and its functionality is briefly discussed [13].

In Section 1.5, the different types of grid faults are discussed.
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In Section 1.6, the nature of scheduling is discussed.

Applications of grid computing, objective and motivation is presented in Section

1.7, Section 1.8 and Section 1.9 respectively.

1.3 Grid Computing

Grids are widely used for high performance computing applications because of

the high cost of massively parallel processors and the wide availability of network

workstations [4]. It enables sharing, aggregation, monitoring, pooling and selection

of data and computational machines [3] [43] [44] [45]. A computational grid acts like

a virtual organisation consisting of heterogeneous machines. A virtual organisation

consists of a set of individuals or institutions or providers. They are defined by a

sharing rule like what is shared, who is allowed to share, who is allowed to view the

content, what is the boundary of sharing and the conditions under which the sharing

takes place [5]. In most organizations or institutions, the computing machines are

idle most of the time. Alternatively, the machines are not utilised properly.

The easiest use of the grid is to create a replica of tasks and run it on several

machines [57]. The machine on which some tasks are running might be busy. So,

the execution of the later tasks is delayed till the previous tasks are served. By

creating a replica of tasks, the task can be run on an idle machine.

Let us consider a banking system or an institution, If a cashier or a staff works for

seven hours per day than the total work period in a week is forty two hours. But,

there are 168 hours per week. So, the machine utilisation is only 25%. So, machines

are under utilized. The rest 75% can be used for other works like to participate in

BOINC projects. In a IBM case study in 2000, it is mentioned that the average

utilisation rate is 5 to 10% for PCs and 30 to 35% for servers [6]. The observation
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carried out are true even today [7]. Computational grid provides a way to explore

these idle machines and increase the efficiency of the machine.

Scheduling and machine management is the key component of a grid system [54].

These components are responsible for fulfilling the user requirements. However,

GMB is responsible for mapping the jobs to the available machines [60]. Also, it

finds the available machine list from GRS. It splits the job into a number of small

units and each unit is distributed to a machine. At last, it combines the results from

different machines and get back to the user. But, the user has no knowledge of the

distributed machines. It has submitted the job to the single system and gets the

results from that system only. This property is called as SSI.

Message passing interface and parallel virtual machines allow the network of

heterogeneous machines to get a large amount of computational power and memory.

It allows the programmers to write parallel programs [7].

1.3.1 Types of Grid

There are different types of grid used for different applications. They are based

on two factors: functionality and scale.

Types of Grid on Basis of Functionality

� Computational Grid: It is a collection of machines in a network that is used

to solve a particular problem at the same time.

� Data Grid: It gives an environment to support data selection, data storage and

data manipulation of huge amounts of data stored in different systems [52].

� Collaborative Grid: It is used to solve a problem by multiple organisations to

get a common benefit. For example, users from different domains are working on

different components of a BOINC project without disclosing the technologies [8]

[48].
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� Network Grid: It gives a fault-tolerant, high speed communication and reliable

services [8].

� Utility Grid: It is not only shared computational power and data but also share

software and special equipments [8].

Types of Grid on Basis of Scale

� Cluster Grid: It is homogeneous structure. It provides services to the group

or departmental level. The number of machines is in between 2 to 100. They are

connected by system area network or local area network [48].

� Enterprise Grid: It is heterogeneous structure. It provides services to the

multiple groups or multiple departments or organisational level. The number of

machines is many 100s.

� Global Grid: It is also heterogeneous structure. It is the collection of multiple

enterprise grids. It provides services to the national or international level. The

number of machines is many 1000s or millions.

1.3.2 Characteristics of Computational Grids

The characteristics of computational grids are described as follows:

� Machine Configuration: There are two types of machine configuration:

homogeneous and heterogeneous. In homogeneous, all machines can have same

operating systems, processors, speed, model, system type and memory. But, in

heterogeneous, all machines can have different operating systems, processors, speed,

model, system type and memory [4]. The grid is heterogeneous in nature.

� Single System Image: In Grid, the collection of machines is interconnected in

such a fashion that appears like a unified machine. It is called as SSI. It resides

between the operating system and user-level environment [4].

� Machine Sharing: The machines are widely distributed and may be owned by

different administrative domains. It may join or leave at any point of time.

� Scalability: The grid machines may be ranging from a few to millions. It
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may leads the problems of performance degradation. So, the grid must be able to

accommodate the growth.

� Geographical Distribution: The grid machines are distributed in different

places. It is under different domains or organisations.

� Multiple administrations: Each domain or organisation may have different

security policies like public key infrastructure under which the machines can be

accessed [9] [63]. The machine may be left at any point of time if security policies

does not met.

1.4 Grid Projects

Some of the grid real life projects are SETI@home, Milkyway@home and

Einstein@home [10] [11] [12]. SETI@home is funded by NSF , NASA [10]. These

projects are running in BOINC middleware systems [2]. BOINC is an open source

systems. The BOINC-based projects are categorized into following types:

1.4.1 Astronomy, Physics and Chemistry

The following projects are under astronomy, physics and chemistry categories:

Asteroids@home, Constellation, Cosmology@home, eOn, Leiden Classical,

LHC@home, LHC@home Test4Theory, Milkyway@home, SETI@home,

Spinhenge@home and uFluids@home.

1.4.2 Biology and Medicine

The following projects are under biology and medicine categories: Docking@home,

FightMalaria@home, GPUGrid.net, Malariacontrol.net, POEM@home, RNA

World, Rosetta@home, SIMAP, Superlink@technion and The Lattice Project.
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1.4.3 Cognitive Science and Artificial Intelligence

The following projects are under cognitive science and artificial intelligence

categories: FreeHAL, MindModeling@home.

1.4.4 Distributed Sensing

The following projects are under distributed sensing categories: Quake Catcher

Network and Radioactive@home.

1.4.5 Earth Sciences

The following projects are under earth sciences categories: Climateprediction.net

and Virtual Prairie.

1.4.6 Mathematics, Computing and Games

The following projects are under mathematics, computing and games

categories: ABC@home, Chess960@home, Collatz Conjecture, DistRTgen,

Enigma@home, NFS@home, NumberFields@home, OProject@home, Primaboinca,

PrimeGrid, SAT@home, SubsetSum@home, Sudoku@vtaiwan, Surveill@home,

SZTAKI Desktop Grid, VolPEx and VTU@home.

1.4.7 Multiple applications

The following projects are under multiple application categories: CAS@home,

EDGeS@home, Ibercivis

1.5 Grid Architecture

Grid architecture is the art that identifies the components and its relation with

each other. It consists of four layers: fabric, core middleware, user-level middleware
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and applications and portals layers [13]. Each layer constitutes the services offered

by the lower layer and provides some services at the same layer. The architecture

in Buyya et al. is shown in Figure 1.1 [13].

1.5.1 Grid Fabric

This layer consists of distributed machines like computers, networks, storage

systems, data sources and scientific instruments. The machines are in the form

of clusters of PCs or piles of PCs, supercomputers, servers or workstations and

ordinary PCs which run on different platforms. Scientific instruments like a

seismograph (for recording earthquake), seismometer (for measuring earthquake

intensity), seismoscope (for detecting earthquake), telescope and sensor networks

give real time data that can be stored in a storage system and transmitted to

computational sites [13].

1.5.2 Core Middleware

This layer consists of distributed machine services like security, QoS, trading and

process management. This layer hides the complexity and heterogeneity of the lower

level (i.e. fabric level) by giving a consistent method for accessing the machines [13].

1.5.3 User-level Grid Middleware

This layer consists of compilers, libraries, debuggers and web tools. It utilizes the

interfaces provided by lower level middleware (i.e. core middleware) to provide

higher levels of abstractions [13]. Machine broker is responsible for managing,

selecting and scheduling the tasks on machines.

1.5.4 Applications and Portals

Grid application includes scientific, engineering applications. It is developed grid

enabled programming environments and interfaces. For example, a challenging
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problem like milkyway@home requires computational power, access to remote data

and may need to interact with scientific instruments. Grid portals offer web enabled

applications in which users can submit the tasks and get back the results from remote

machines [13].

Figure 1.1: A Layered Grid Architecture and Components

1.6 Fault

A fault is an abnormal condition or unexpected behavior in the machine. In the

grid, a machine can be behave abnormally due to various reasons like hardware fault,

software fault, application fault and many more. It is important to detect, manage
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and recover the fault in time irrespective of user intervention. The grid user should

get the scheduling result even if the fault exists.

There are various types of faults in the grid. They are:

1.6.1 Hardware Fault

It may occur due to faulty hardware components like CPU , RAM , ROM , SMPS,

cache, hard disk and motherboard. Hardware fault rates are low and still decreasing

[14]. One of the main reasons behind the hardware fault is violating the hardware

specification. For example, a computer system is designed to work on 220V to 240V

AC power supply. Otherwise, it is prone to failure. The variation in the power

supply may lead to hardware component failure.

1.6.2 Software Fault

It may occur due to an unhandled exception like array index out of bound, divided

by zero, invalid input and specifying an incorrect path of a file, data or memory etc.

1.6.3 Network Fault

It may occur due to connection fault, machine fault and packet loss. As machines

are distributed geographically, network faults are more obvious. Packet loss may

cause due to machine out of order, network congestion and link breakage. A packet

may be corrupted in transmission because of network problems [64].

1.6.4 Application and Operating System Fault

It may occur due to specific application problems like memory leak and operating

system problem like deadlock, improper machine management, dynamic link library

problem and program crashing problem [14].
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1.6.5 Response Fault

It may occur due to a lower level fault, slow connection and faulty processor. The

system gives an arbitrary result which may or may not be correct. Alternatively, it

oscillates in between correct and incorrect result.

1.7 Task Scheduling in Grid

Task scheduling is the dynamic mapping of a group of independent tasks into the

distributed machines. It has two steps: matching and scheduling [15] [37]. Matching

is the mapping between the tasks and the machines. Scheduling is the execution

order of the tasks. In this thesis, the heuristics are non-preemptive in nature and

assumed that the tasks have no priorities or deadlines. Mapping the tasks onto the

distributed machines is an NP-complete problem [15] [16] [17] [18] [50] [53] [61].

There are different types of scheduling in grid used for different applications. They

are listed below.

1.7.1 Immediate versus Batch Mode Scheduling

In immediate mode, the tasks is computed one after another. Alternatively, the

task arrives first in TQ, will be computed first. Even if, more than one tasks are

arrived at a time, this mode takes one task at a time and selects the first one rather

than the best one. In batch mode, a batch of tasks arrives at a time. One of the

task is selected from the batch of the tasks. Alternatively, the task arrives first in

TQ, may or may not be computed first. If the batch size is one, then batch mode

heuristics acts like immediate mode heuristic.
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1.7.2 Static versus Dynamic Scheduling

In static scheduling, once the matching phase is over, the GMB cannot interfere

in scheduling phase. New tasks cannot be joined in the middle of computations.

So, a high priority task cannot be processed at the scheduled time. The deadline

based tasks may not be processed before the deadline. In dynamic scheduling, the

tasks are arrived in between the computation. The GMB can alter the scheduling

sequence. New task may be participating in the middle of computations. A high

priority task may be processed in scheduled time. Also, the deadline based tasks

may be processed before the deadline.

1.7.3 Non-preemptive versus Preemptive Scheduling

In non-preemptive scheduling, once a task is assigned to a machine, it cannot

be released before the completion. A deadline based task has to wait until the

computation is over even if it misses the deadline. In preemptive scheduling, a task

may be released before the completion is over. When a high priority task arrives, the

current task checks the priority. If the current task priority is low, then it releases

the machine. Otherwise, it continues the computation.

1.8 Applications of Grid Computing

1. SETI@home

2. distributed.net in 1977 has been applied a method to crack RSA 64-bit

encryption algorithm. The task was completed on 14th July 2002 using more

than 3,00,000 machines over 1757 days [42].

3. folding@home project (from stanford university) is used to solve large scale

molecular simulations [42].
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4. climateprediction.net project (from oxford university) is used to predict the

weather climate throughout the world [42].

5. Enabling Grids for E-sciencE project

6. Distributed European Infrastructure for Scientific Applications projects

7. UKs National Grid Service

1.9 Objective

The main objectives we find from the motivation to work in scheduling are

discussed as follows:

� Scheduling Problem: To design an efficient scheduling heuristic by which

the makespan is minimised and machine utilisation is increased.

� Fault Problem: To design an efficient scheduling heuristic which deals with

the machine and task failure.

1.10 Motivation

Computational grids are used widely for executing large scale applications with

computation intensive problems in science and engineering. Braun et al. presented

an extensive survey on eleven static heuristics for mapping independent tasks onto

a distributed computing system [17]. Maheswaran et al. proposed two immediate

mode and one batch mode heuristics for mapping independent tasks onto distributed

computing system [15]. Xiaoshan et al. introduced QoS guided heuristics for

mapping independent tasks [18]. Amudha et al. introduced QoS priority based

scheduling for mapping independent tasks [59]. Xhafa et al. simulated all immediate

mode and batch mode heuristic in C++ [19] [20]. Apart from that, a new batch

mode heuristic called longest job to fastest resource - shortest job to fastest resource
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heuristic was introduced. Chaturvedi et al. implemented ten static heuristics for

mapping independent tasks and a new mode of heuristic was introduced [21]. In

scheduling, authors are not paying that much attention towards skew data and

fault tolerance for mapping independent tasks. It may lead to serious performance

degradation interns of makespan and machine utilisation. Some authors have

proposed fault tolerance scheduling based on the fault occurrence history strategy

[22] [23].

In this thesis, we proposed efficient scheduling heuristics for skew data set and

fault tolerance to solve the problems mentioned above.

1.11 Thesis Organisation

The organisation of the rest of the thesis and a brief outline of the chapters is as

follows.

In chapter 2, some basic concepts of scheduling and its natures have been

discussed.

In chapter 3, some related work on immediate mode scheduling, batch mode

scheduling, QoS batch mode scheduling and fault tolerance scheduling heuristics

have been discussed.

In chapter 4, we have presented our proposed approaches for task scheduling in

computational grid with scheduling model, the architecture of the task scheduler,

timeline of the task scheduling sequence and the scheduling heuristics.

In chapter 5, we have presented our proposed approaches for fault tolerance

scheduling in computational grid with scheduling model, timeline of the fault

tolerance scheduling sequence and the scheduling heuristics.
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In chapter 6, we focus on the implementation and experimental results. The

evaluation strategies are introduced in this chapter and a comparison study of the

proposed heuristics with other heuristics is provided.

Finally, chapter 7 is given to the conclusion and future work.

1.12 Summary

In this chapter, we have discussed briefly about the grid computing, various grid

projects, the grid architecture, different types of fault and applications. Also, we

have discussed about the different mode of scheduling and the its processing criteria.
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Chapter 2

Basic Concepts

In this chapter, we discuss a few basic concepts based on which our approach has

been developed.

2.1 Introduction

The main key components of scheduling is the task and the machine. The mapping

of both components are represented in matrix form. The matrix is a two dimensional

array, arranged in rows and columns. The row indicates the task and the column

indicates the machine. Each element in the matrix represents an execution time of

a task on a machine.

2.2 Chapter Organisation

The organisation of the rest of the chapter and a brief outline of the sections is as

follows.

The different types of task is discussed in Section 2.2. The different functionality

of machine is presented in Section 2.3. The different types of matrices are discussed

in Section 2.4.
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2.3 Task

A task is a set of instructions or data. Instruction is measured in millions

instruction unit and data are measured in megabytes or megabits. The task may

have low or high heterogeneity. In the grid, task is of two types: independent and

dependent. The complete hierarchy of task is shown in 2.1.

Figure 2.1: Hierarchy of Task

2.3.1 Independent Task

Independent task has no relationships between each others. Let us consider the

task Ti and the task Tj that has independent of each others. So, the scheduling

sequence does not affect the computations. Alternatively, the tasks are scheduled in

two ways: Ti followed by Tj and Tj followed by Ti. Independent tasks are represented

in matrix form. The tasks that do not have any dependency among each others are

referred as Meta tasks [41] [56].

Independent tasks are scheduled in two ways: immediate and batch mode. In

immediate mode, tasks are scheduled as soon as it arrives. In batch mode, tasks are

scheduled in a batch.
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2.3.2 Dependent Task

Dependent task has a relationship between each others. Let us consider the task

Ti and the task Tj that has dependent of each others i.e. the task Tj is dependent on

the task Ti. So, the scheduling sequence will affect the computations. Alternatively,

the tasks are scheduled in only one way: Ti followed by Tj. Dependent tasks are

represented in directed acyclic graph form or task graph form.

2.4 Machine

Machine is the producer or service in the grid. It is distributed geographically

and it is under different organisations or institutions or domains. It may participate

or leave at any point of time from the grid. Each machine may have different

security policies or guidelines. It provides different functionality like reliability,

availability, scalability, performance and fault tolerance. According to user

functional requirements, the scheduler assigns the tasks to the machines.

2.5 Types of Matrix

There are three types of matrices: consistent, inconsistent and semi-consistent [7].

2.5.1 Consistent Matrix

A matrix is said to be consistent if and only if a machineMi takes earliest execution

time to execute a task Ti than machine Mj, then the machine Mi always takes earliest

execution time to execute any task Ti than machine Mj. It can be mathematically

expressed as follows: Let us consider the EET matrix shown in Equation (2.1).
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Here, each row indicates a task and each column indicates a machine.
E1,1 E1,2 ... E1,n−1 E1,n

... ... ... ... ...

Em,1 Em,2 ... Em,n−1 Em,n

 (2.1)

Assume that, E1,1 < E1,2 < ... < E1,n−1 < E1,n

then ∀i(Ei,1 < Ei,2 < ... < Ei,n−1 < Ei,n) are true.

where i = any task Ti ranges from 1 to m

2.5.2 Inconsistent Matrix

A matrix is said to be inconsistent if and only if a machine Mi takes earliest

execution time to execute a task Ti than machine Mj, then the machine Mi may or

may not takes earliest execution time to execute any task Ti than machine Mj.

The machine Mi may be faster for some tasks and slower for rest. It can be

mathematically expressed as follows: Let us consider the EET matrix shown in

Equation (2.1).

Assume that, E1,1 < E1,2 < ... < E1,n−1 < E1,n

then it is not necessary that ∀i(Ei,1 < Ei,2 < ... < Ei,n−1 < Ei,n) are true.

where i = any task Ti ranges from 1 to m

2.5.3 Semi-consistent Matrix

A matrix is said to be semi-consistent if and only if a sub matrix is consistent. It

can be mathematically expressed as follows: Let us consider the EET matrix shown

in Equation (2.1).

Assume that, E1,1 < E1,2 < ... < E1,n−1 < E1,n

then ∀i(Ei,j < Ei,j+k < ... < Ei,j+k1 < Ei,j+kx) are true.

where 1 ≤ j ≤ m, i = any task Ti ranges from 1 to m,

j < j + k < j + k1 < j + k2 < ... < j + kx,

k < k1 < k2 < ... < kx
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2.6 Summary

In this chapter, we have discussed briefly about the task, the machine and various

types of matrix. Also, we have discussed the nature of each matrix.

20



Chapter 3

Related Work

In this chapter, we will provide a brief literature survey of existing scheduling

heuristics with merits and demerits.

3.1 Introduction

Researchers have proposed various heuristics based on different criteria. The works

are categorized into two types: immediate and batch mode heuristic. Again, each

mode of heuristic is applied to three types of matrices: consistent, inconsistent and

semi-consistent. The batch mode heuristics are categorized into two types: QoS and

non-QoS.

3.2 Chapter Organisation

The organisation of the rest of the chapter and a brief outline of the sections is as

follows.

Related work on immediate mode, batch mode and QoS batch mode and fault

tolerance scheduling is discussed in Section 3.2, Section 3.3, Section 3.4 and Section

3.5 respectively.
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3.3 Related Work on Immediate Mode

Scheduling Heuristics

In this section, five immediate mode heuristics are explained. These are:

3.3.1 MET

It is also called as LBA and UDA [15]. It assigns each task to the machine that

gives the least amount of execution time. Also, it assigns each task to the machine

in FCFS basis. The least execution time taken machine is fully overloaded and

other machines are completely idle in consistent type of matrices because, it is not

considering machine ready time. This heuristic requires O(n) time to assign each

task to the machine [15] [24].

Merits: It is very simple and inexpensive.

Demerits: Load imbalance

It can be mathematically expressed as follows:

Let us consider the EET matrix shown in Equation (2.1). The EET of task Ti

can be calculated as shown in Equation (3.1).

Ti −→ min(Ei,1, Ei,2, Ei,3, ..., Ei,n) (3.1)

3.3.2 MCT

It assigns each task to the machine that gives the earliest completion time. Also,

it assigns each task to the machine in FCFS basis like MET [47]. The completion

time can be calculated as shown in Equation (3.2). The ready time of the machine is

the time required for the machine to complete all assigned tasks to it. This heuristic
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requires O(n) time to assign each task to the machine [15] [24].

Completion time = Execution time+Ready time (3.2)

Merits: It is an improvement over MET . Load imbalance is reduced to some

extent.

Demerits: It requires the ready time as an extra parameter.

It can be mathematically expressed as follows: Let us consider the EET matrix

shown in Equation (2.1). The EET of task T1 can be calculated as shown in Equation

(3.3).

T1 −→ min(E1,1, E1,2, E1,3, ..., E1,n) (3.3)

Let T1 −→ Mαthen the execution time of the task T1 on machine Mα is E1,α So,

the expected completion time of the task T2 can be calculated as shown in Equation

(3.4). Here, E1,α is the ready time of machine α.

T2 −→ min(E2,1 + E1,α, E2,2 + E1,α, E2,3 + E1,α, ..., E2,n + E1,α) (3.4)

where E1,α =
{

1 if Ti−→Mα

0 Otherwise

}

3.3.3 OLB

It assigns a task to the machine that becomes idle next. It is not taking the

execution time of the task and completion time of the task into consideration. This

heuristic requires O(n) time to assign each task to the machine [15] [16].

Merits: It is very simple and inexpensive [46].

Demerits: Execution time of the task is not considered.

It can be mathematically expressed as follows: Let us consider the RT matrix

shown in Equation (3.5). The task T1 is assigned to the least ready time machine
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as shown in Equation (3.6). The EET of task T1 can be calculated as shown in

Equation (3.7).

(R1 R2 R3 ... Rn) (3.5)

T1 −→ min(R1, R2, R3, ..., Rn) (3.6)

T1 −→ E1,1 +R1, E1,2 +R2, E1,3 +R3, ..., E1,n +Rn (3.7)

where Ri =
{

1 T1−→Mi
0 Otherwise

}
3.3.4 KPB

It assigns each task to the machine based on the value of K. It chooses a subset of

machines (n′) from the available machines. The (n′) depends on the value of n and

K. The (n′) can be calculated as shown in Equation (3.8). At last, it assigns each

task to the machine that gives earliest completion time from the K machines. KPB

heuristic acts like MCT heuristic when K = 100 and it acts like MET heuristic

when K = 100/n. The heuristic selection is shown in Equation (3.9). If K = 100,

then the (n′) is same as n. If K = 100/n, then (n′) is a proper subset of n. KPB

heuristic requires O(n log n) time to assign each task to the machine [15].

Merits: It takes less time to assign each task.

Demerits: It depends on the value of K. If K = 100/n then it may lead to the

load imbalance problem (consistent matrix).

(n′) = n× (K/100) (3.8)

where (n′) ⊆ n

Heuristic =


MET ifK = 100/n

MCT ifK = 100

KPB Otherwise

 (3.9)
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3.3.5 SA

It is a hybrid heuristic based on MET and MCT . Let rmax is the maximum

ready time of all available machines; rmin is the minimum ready time of all available

machines and π is the load balance index. The value of π can be calculated as shown

in Equation (3.10). The value of π is in between 0 to 1. The initial value of π is 0.

This heuristic uses two threshold values: πl (low load balance index) and πh (high

load balance index). Note that 0 < πl < πh < 1. It starts with MCT heuristic and

continue task mapping. When the value of π is reached to πh or above, it uses MET

heuristic to decrease the load balance factor. If the value of π is reached to πl or

below then it uses MCT heuristic to increase the load balance factor. This heuristic

gives optimum makespan value when πl = 0.6 and πh = 0.9. It requires O(n) time

to assign each task to the machine [15].

π = rmin/rmax (3.10)

Merits: It gives the makespan value in between MET and MCT for consistent and

semi-consistent matrices [20].

Demerits: It is very difficult to choose the optimum value πl and πh in each data

set.

3.4 Related Work on Batch Mode Scheduling

Heuristics

In this section, nine batch mode heuristics are explained. These are:

3.4.1 Min-Min

It is a hybrid heuristic based on MET and MCT immediate mode heuristics.

Let us consider the EET matrix shown in Equation (2.1). It chooses a machine for

each task that provides earliest completion time. The resultant matrix is a column
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matrix as shown in Equation (3.11). Again, it chooses an earliest completion time

from the column matrix as shown in Equation (3.12). Let task Ti takes earliest

completion time in Equation (3.12) where i be the any value from 1 to m, depends

on the min function. Then, this heuristic assigns task Ti to the machine that gives

earliest completion time. If the number of long tasks is more than the number of

short tasks, then the min-min heuristics gives optimum makespan value than the

max-min heuristic (Section 3.2.2) [15] [24]. Alternatively, if the completion times

of tasks are positively skewed, then min-min gives optimum value than max-min

heuristic. It requires O(m2n) time to assign the tasks to the machines [15] [24].

E1,α

E2,β

E3,γ

...

Em,v


(3.11)

where E1,α = min(E1,1, E1,2, E1,3, ..., E1,n)

E2,β = min(E2,1, E2,2, E2,3, ..., E2,n)

E3,γ = min(E3,1, E3,2, E3,3, ..., E3,n)

............................................

Em,v = min(Em,1, Em,2, Em,3, ..., Em,n)

Ti → min(E1,α, E2,β, E3,γ, ..., Em,v) (3.12)

where i = 1 or 2 or ... or m

3.4.2 Max-Min

It is also a hybrid heuristic based on MET and MCT immediate mode heuristics.

Let us consider the EET matrix shown in Equation (2.1). It chooses a machine

for each task that provides earliest completion time. The resultant matrix is a

column matrix as shown in Equation (3.11). Again, it chooses a latest completion
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time from the column matrix as shown in Equation (3.13). Let task Ti takes latest

completion time in Equation (3.12) where i be the any value from 1 to m, depends

on the max function. Then, this heuristic assigns task Ti to the machine that gives

earliest completion time [49]. If the number of long tasks is less than the number

of short tasks, then the max-min heuristics gives optimum makespan value than

the min-min heuristic [15] [24] [35]. Alternatively, if the completion times of tasks

are negatively skewed, then the max-min gives optimum value than the min-min

heuristic. It requiresO(m2n) time to assign the tasks to the machines [15] [24].

Ti → max(E1,α, E2,β, E3,γ, ..., Em,v) (3.13)

where i = 1 or 2 or ... or m

3.4.3 Sufferage

This heuristic assigns the tasks to a machine based on sufferage value. Sufferage

value is the difference between the second earliest completion time and first earliest

completion time. It is shown in Equation (3.14). A task that suffers most is assigned

to a machine first. Let sufferage value of the task Ti and the task Tj is S1 and S2

respectively. Assume that the task Ti is already assigned to a machine Mi and the

task Tj is going to assign to the machine Mi. Then, this heuristic finds the status

of the machine i.e. either assigned or unassigned. According to the above situation,

it is assigned to the task Ti. So, S1 (Ti) and S2 (Tj) are compared. If S1 (Ti) < S2

(Tj), then unassigned the task Ti from the machine Mi and assign the task Tj to the

machine Mi. The task Ti is scheduled in the next iteration. It requires O(S2n) time

to map a task of size S [15].

Sufferage V alue = Second earliest completiontime − First earliest completion time

(3.14)

27



Chapter 3 Related Work

3.4.4 Duplex

It is a hybrid heuristic based on min-min and max-min. It performs both the

heuristics and uses the optimum solution. It is preferable in which min-min or

max-min gives optimum solution [15].

3.4.5 WMTG-min

It assigns the task to a machine that has maximum weighted mean execution

time. Let us consider the EET matrix shown in Equation (2.1). At first, it finds

the average execution time of each machine. It is shown in Equation (3.15). Next,

it finds the sum of average execution time. Let wj is the performance metric of the

machine Mj. It can be calculated using Equation (3.16). At last, we calculate the

weighted mean execution time (ei) as shown in Equation (3.17). It finds the task Ti

that gives the maximum value of ei [25].

Average = (
(E1,1 + E2,1 + E3,1 + ...+ Em,1)

m
,

(E1,2 + E2,2 + E3,2 + ...+ Em,2)

m
,

..................................................,

(E1,n + E2,n + E3,n + ...+ Em,n)

m
)

(3.15)

wj =
Averagej∑

(Averageexecutiontime)
(3.16)

ei =
n∑
k=1

wkEi,k (3.17)

3.4.6 WMTSG-min

This heuristic is an improvement of sufferage heuristic. Like WMTG − min, it

finds the average execution time of each machine and the sum of average execution

time. It also calculates the performance metric wj. Then, it uses the sufferage

heuristic to assign each task to a machine. Initially, all the machines are considered
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as unassigned. Then, it calculates the value of ei as shown in Equation (3.18). Next,

it finds the task Ti that gives the maximum value of ei [25]. The task Ti finds the

machine Mj and Mk that gives the first earliest completion time and second earliest

completion time respectively. Sufferage value (S) can be calculated using Equation

(3.14). If the machine Mj is unassigned then the task Ti is assigned to the machine

Mj and the machine Mj is marked as assigned. If the machine Mj is assigned to a

task Tk then sufferage value of the task Tk and the task Ti is compared. If S1 (Tk)

< S2(Ti), then unassigned the task Tk from the machine Mj and assign the task Ti

to the machine Mj [25].

ei =
n∑
k=1

wk(Ri + Ei,k) (3.18)

where Ri = Ready time of machine Mi

3.4.7 Selective

It is a hybrid heuristic based on min-min and max-min. Let us consider the

EET matrix shown in Equation (2.1). It chooses a machine for each task that

provides earliest execution time. The resultant matrix is a column matrix as shown

in Equation (3.11). Assume that, the column matrix is in sorted order. Then, it

finds population standard deviation (PSD) measures of dispersion using the column

matrix. The PSD formula is shown in Equation (3.19). It finds a place p in the

column matrix where the difference of two consecutive completion times is more

than PSD. If the place p lies in the lower half i.e. (m/2) then it applies min-min

heuristic. Otherwise, it applies max-min heuristic. This heuristic requires O(m2n)

time to assign the tasks to the machines [24].

PSD =

√
(E1,α −M)2 + (E2,β −M)2 + ...+ (Em,v −M)2

m
(3.19)

where M =
E1,α+E1,β+...+Em,v

m
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3.4.8 RASA

It is also a hybrid heuristic based on min-min and max-min. It performs the

min-min heuristic when the available machine is odd. Otherwise, it performs

max-min heuristic. If the first task is assigned using the min-min heuristic then

second task is assigned using the max-min heuristic. This heuristic requires O(m2n)

time to assign the tasks to the machines [26].

3.4.9 LBMM

It is also a hybrid heuristic based on min-min and MCT . It performs the min-min

heuristic to assign each task to a machine. It finds the task Ti that gives the

maximum completion time less than the makespan. Then, it reschedules the task Ti

to avoid the load imbalance problem [27].

3.5 Related Work on QoS Batch Mode Scheduling

Heuristics

In this section, three QoS batch mode heuristics are explained. These are:

3.5.1 QoS Guided Min-Min

QoS is different meaning in different applications. In the grid, it may be the

bandwidth, speed, deadline, priority etc [28]. Generally, the tasks are divided into

two levels of QoS: high QoS and low QoS. A task with the low QoS request can be

scheduled to both low QoS and high QoS machines. However, a task with a high

QoS request can only be scheduled to high QoS machines. This heuristic maps the

tasks with high QoS request before the low QoS request. It performs the min-min

heuristic on both high QoS and low QoS requests. However, it finds a machine from

the set of QoS qualified machines in high QoS requests [18].
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3.5.2 QoS Priority Grouping

In this heuristic, the tasks are divided into two groups. Tasks that can be executed

on all available machines are included in the low QoS group. Alternatively, tasks

that cannot be executed on at least one machine are included in the high QoS group.

According to QoS level, it uses sufferage heuristic to assign the tasks to a machine

[28].

3.5.3 QoS Sufferage Heuristic

It also divides the tasks into two groups: high QoS and low QoS. It schedules

both high QoS and low QoS tasks based on sufferage heuristic [29].

3.6 Related Work on Fault Tolerance Scheduling

Heuristics

Nazir et al. presented the problem of fault tolerance in the form of machine failure

[30]. In this scheme, the GIS maintains a history of the fault occurrence. GMB

uses the GIS history information to schedule the tasks. This scheme uses check

pointing strategy to make scheduling more efficient and reliable.

Khanli et al. presented machine fault occurrence history strategy for scheduling

in grid [22]. It is also maintains the history of the fault occurrence. Like Nazir et

al., it uses genetic algorithm to schedule the tasks. This scheme uses check pointing

strategy to make scheduling more efficient and reliable.

Priya et al. proposed task level fault tolerance [31]. The proposed approach

considers retry, alternate machine, check pointing and replication task level

techniques. Like Nazir et al. and Khanli et al., it uses genetic algorithm to schedule
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the tasks. This scheme uses check pointing strategy to make scheduling more efficient

and reliable.

Upadhyay et al. proposed a fault tolerant technique based on checkpointing and

passive replication [32]. Both techniques are combined using genetic algorithm to

perform the scheduling.

Guo et al. introduced local node fault recovery technique for grid systems [33]. It

is also given a study on grid service reliability modeling. To be more effective, it uses

an ant colony optimization algorithm to perform the multi-objective scheduling.

Nanthiya et al. proposed a load balancing architecture with fault tolerance [34].

It introduced a load balancing algorithm among the machines. The algorithm has

two phases. In the first phase, the machines are arranged according to the deadline

and the fault tolerant factor. In the second phase, the load balancing algorithm is

applied to balance the load of the machine.

3.7 Summary

In this chapter, we have discussed briefly about related work on immediate, batch

mode, QoS batch mode heuristics along with merits and demerits. Also, we have

discussed some related work in fault tolerance scheduling.
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Efficient Scheduling Heuristics in

Computational Grids

4.1 Introduction

Let us assume a decentralised computational grid infrastructure with

geographically distributed machines. The machines are managed, controlled and

organised by different administrative domains. But, GRS keeps track of all

information about the machines. Machines may have different specifications e.g.

operating system, processor, speed, model, system type and memory [55]. Like

machine, tasks are submitted from different administrative domains. The task may

have different specifications e.g. deadline, scheduling policy, volume of instruction,

volume of data and execution time [38].

4.2 Chapter Organisation

The organisation of the rest of the chapter and a brief outline of the sections is as

follows.
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The problem definition is presented in Section 4.2. In Section 4.3, we have

presented the assumptions taken in this thesis. The scheduling model, architecture

of GMB, timeline sequence and a research model of grid is presented in Section 4.4,

Section 4.5, Section 4.6 and Section 4.7 respectively.

The SIM2, TSA and RRTS heuristics is shown in Section 4.8, Section 4.9 and

Section 4.10 respectively. In each Section, an illustration shows the analysis of the

heuristics.

4.3 Problem Definition

In this thesis, we focus on the problem of scheduling m tasks on n machines.

The aim is to minimize the overall processing time (or makespan) and utilizing the

machines efficiently. To formulate the problem mathematically, let us consider Ti

where i = 1, 2, 3, ...,m as m independent tasks and Mj where j = 1, 2, 3, ..., n as

m machines. So, m tasks and n machines are of m × n order. EET for task Ti

on machine Mj is Ei,j. EET for m tasks and n machines are shown in Equation

(2.1). The main goal is to find an efficient scheduling strategy S, which minimizes

the overall processing time and maximizes the machine utilisation.

4.4 Assumptions

In this thesis, we have considered following assumptions:

1. The tasks are nonpreemptive in nature.

2. The tasks are independent of each other.

3. The tasks have no deadlines or priorities.
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4.5 Scheduling Model

The scheduling model consists of four blocks. The blocks are users, grid machine

broker, grid referral service and machines. User submits the job(s) to the grid

machine broker. The scheduling model is shown in Figure 4.1. The grid machine

broker obtains available machine information from the grid referral service. It maps

the jobs to available machines based on the scheduling strategy. Also, it splits

the job into a number of small units called task. The grid referral service obtains

information about the available machines. It is responsible for machine registration,

machine directory management and status of the machine. It maintains the machine

characteristics like operating system, processor, speed, bandwidth, model, system

type, memory and processing cost. It provides information to the grid machine

broker.

Figure 4.1: Scheduling Model
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Task TASK MI TASK SIZE

T1 100 50

T2 25 75

Table 4.1: Grid User Task Information

4.6 Architecture of GMB

The architecture of the GMB is shown in Figure 4.2. The grid user submits

the task(s) in different specifications like TASK IDs, TASK MI (million

instruction), TASK SIZE (in megabits), TASK MODE (immediate or

batch), TASK POLICY (preemptive or non-preemptive), TASK BUDGET ,

TASK DEADLINE, TASK LIMIT and TASK CATEGORY (high QoS

or low QoS) to the GRB. After getting the details of user task(s), GMB

gets the available machine information from the GRS. GRS may have

different machine specifications like MACHINE ID, MACHINE MIPS

(millions instructions per second), MACHINE MBPS (mega bits per second),

MACHINE PROCESSOR, MACHINE OS, MACHINE MEMORY ,

MACHINE COST , MACHINE SY STEM and MACHINE INDEX. The

above specification may vary with respect to the types of grids. Here, we have

presented a general specification.

GMB starts mapping the tasks and the machines according to the specifications.

It calculates the EET of a task as shown in Equation (4.1). Let us consider an

example with two tasks and two machines as shown in Table 4.1 and Table 4.2

respectively. The calculated EET of the tasks using Equation (4.1) are shown in

Table 4.3.

EET =
TASK MI

MACHINE MIPS
+

TASK SIZE

MACHINE MBPS
(4.1)
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Machine MACHINE MIPS MACHINE MBPS

M1 60 20

M2 40 55

Table 4.2: Grid Machine Specification

Task / Machine R1 R2

T1 4.17 3.41

T2 4.17 1.99

Table 4.3: EET of The Tasks on Each Machine

GMB also checks the deadline of the task as shown in Equation 4.2. It schedules

the task to the machine which gives the result on or before the deadline.

TASK DEADLINE ≥ EET +READY TIME (4.2)

GRB also calculates the cost of the computation. The cost of the computation

must be less than or equal to the user specified budget. The budget can be calculated

as shown in Equation 4.3. Here, MACHINE COST is calculated per second.

TASK BUDGET ≥ EET ×MACHINE COST (4.3)

The directory of the tasks and the machines are maintained in the GMB directory

as shown in Figure 4.2.
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Figure 4.2: Architecture of GMB

4.7 Timeline Sequence

At first, the GMB sends a request i.e. available machine list (AML) to GRS.

The GRS acknowledges by issuing AML. Then, the GMB sends the task machine

lists (TMLs) to each individual domain. This list contains the mapping between

the tasks and the machines. It also gives information about the machines under

different domain. The domain assigns the task to the machine according to the

TMLs. Finally, the results are returned back to the GMB.
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Figure 4.3: Timeline Sequence

4.8 A Research Model of Grid

A research model is described in Figure 4.4. It contains nine blocks. The

scheduling algorithms are based on these nine blocks. In this thesis, we have

considered computational grid, dynamic, batch, independent, preemptive and

non-preemptive, all types of matrices, high QoS and low QoS, a task without

duplication and all performance matrices from first to ninth block respectively.
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Figure 4.4: A Research Model of Grid

4.9 A Semi-Interquartile Min-Min Max-Min

(SIM2) Approach for Grid Task Scheduling

4.9.1 Heuristic Description

In this section, we present a semi-interquartile min-min max-min (SIM2) task

scheduling heuristic. At the first step, the meta-tasks are sorted in ascending order

of the execution time. From the second step to the last step, all the steps are

repeated until no meta-tasks are present in the TQ. In the third and fourth step,

the meta-tasks are assigned to all the machines to calculate the completion time of

each task in each individual processor. Completion time can be calculated using the

Equation 3.2. It is shown in the fifth step.
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In the step eight and nine, MCT of each meta-tasks are determined. This

step gives a one dimensional array. Then, we calculate the difference between

two consecutive meta-tasks MCT in step eleventh and store it in a DQ.

Semi-interquartile range and Interquartile range are calculated in step twelve, using

a formula shown in Equation 4.4 and 4.5 respectively.

Interquartilerange = Q3 −Q1 (4.4)

Semi− Interquartilerange =
Q3 −Q1

2
(4.5)

where Q1 = First Quartile, Q3 = Third Quartile

To calculate interquartile range, we need to find the median. Then, we divide the

one dimensional array into two halves using the median. First quartile value is the

median of the lower half of the array. Similarly, third quartile is the median of the

upper half of the array. In step thirteen, it finds an element which is greater than

the calculated semi-interquartile range and store it in location l. If no element is

found, then it returns l value as null. If position l is null or greater than equal to the

half of the total number of tasks i.e. m
2

then it selects max-min strategy in the first

iteration. Otherwise, it selects min-min strategy. It is shown in the step fourteen to

seventeen. Finally, it deletes the executed meta-task from TQ and updates the TQ

in step eighteen. Then, second iteration starts to schedule another task. After all

iterations are over, we calculate makespan and AMU . It is shown in the last step.

This heuristics can be mathematically expressed as follows:

Let us consider the EET matrix shown in Equation (2.1). The SIM2 heuristic

chooses the MCT of each task as shown in Equation (4.6). Then, it sorts the task

to calculate the semi-interquartile range as shown in Equation (4.7). After the tasks

are sorted in ascending order, it calculates the difference between two consecutive

tasks as shown in (4.8). Then, it calculates first and third quartile from the one
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dimensional array. Finally, it calculates the semi-interquartile range.

E1,α

E2,β

E3,γ

...

Em−1,v

Em,v


(4.6)

sort(E1,α, E2,β, E3,γ, ..., Em,v) (4.7)

DQ→ E2,β − E1,α, E3,γ − E2,β, ..., Em,v − Em−1,v (4.8)

4.9.2 Heuristic

Algorithm 1 shows the semi-interquartile min-min max-min heuristic.

Algorithm 1 - Semi-Interquartile Min-Min Max-Min Heuristic

1: Sort the meta-tasks in ascending order of their execution time.

2: while TQ ! = NULL

3: for all meta-tasks Ti in TQ

4: for all machines Mj do

5: Ci,j = Ei,j +Rj

6: end for

7: end for

8: for all meta-tasks Ti in TQ

9: Find minimum Ci,j and machine Mj that holds it.

10: end for

11: Calculate difference between two consecutive minimum Ci,j and Store in DQ.

12: Calculate semi-interquartile range.

13: Find an element e in DQ semi-interquartile range and Store the location l.

14: if l = (m
2

) or l = NULL

15: then assign meta-task Tm to machine Mk that holds minimum Cm,k.

16: else assign meta-task T1 to machine Mk that holds minimum C1,k.

17: end if

18: Delete the meta-task, update TQ.

19: end while

20: Calculate Makespan and AMU .
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4.9.3 Illustration

Figure 4.5 shows an illustration of SIM2 heuristic. In Figure 4.5, first example

calculates the interquartile range (IQ) = 46.5. So, semi-interquartile range (SI) is

IQ
2

= 23.25. Then, it finds a location l in DQ where the SI value is greater than

or equal to the value present in DQ. Here, the location l is at position number 4

because the difference between the location 5 and 4 is more than the SI value. As

the location 4 is greater than equal to 5
2
, max-min heuristic is applied for the first

iteration. Like this, in the second example, as it is less than 5
2
, min-min algorithm

is applied for the first iteration.

Figure 4.5: Illustration of SIM2 Heuristic

4.10 A Three-Stage Approach for Grid Task

Scheduling

4.10.1 Heuristic Description

In this section, we present a three-stage approach (TSA) task scheduling heuristic.

Here, three stages are used to schedule tasks. The first stage is used to find the

workload of a machine. It is calculated using an average formula. Threshold and

priority assignment is done in the second stage. Task allocation is started in the

third stage. β and α are two scheduling metrics used in our approach. β is a matrix
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used in first stage. After applying threshold, α matrix is formed.

4.10.2 Heuristic

Algorithm 2 shows the semi-interquartile min-min max-min heuristic.
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Algorithm 2 - Three-Stage Approach for Grid Task Scheduling

1: for all machines Mj

2: Avgj =
∑m
i=1

βij
m

3: end for

4: for all machines Mj

5: for all tasks Ti

6: if βij > Avgj

7: then αij = βij

8: else αij = 0

9: end if

10: end for

11: end for

12: for all tasks Ti

13: for all machines Mj

14: if αij = 0

15: else counti = counti + 1

16: end if

17: end for

18: end for

19: Sort the tasks in descending order of their count and place it in TQ.

20: Repeat

21: if two or more tasks having a same count value in TQ

22: then Calculate SV .

23: if two or more tasks having a same SV value

24: then Ties are broken randomly.

25: else Re-order the tasks

26: end if

27: Place tasks into a TEQ.

28: Repeat

29: for each task Ti find the optimal ECT machines Mj

30: Assign the task Ti to the machines Mj .

31: Rj = Rj + βij

32: Delete the task Ti from TQ and TEQ.

33: end for

34: Until the TEQ is empty.

35: else find the optimal ECT machine Mj for task Ti

36: Assign the task Ti to the machines Mj .

37: rj = rj + βIj

38: Delete the task Ti from TQ.

39: end if

40: Until the TQ is empty.
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4.10.3 Illustration

Let us consider an example to see how TSA approach works. In this example, we

have considered 20 tasks (T1, T2, . . . , T20) and 10 machines (M1, M2, . . . , M10).

Table 4.4 shows the ET of tasks on different machines. All values in Table 4.4 in

seconds. Our approach is a three-stage approach. First, we calculate the average of

all tasks on each machine. It can be calculated using a formula shown in Equation

4.9. Table 4.5 shows the Avgj.

Avgj =
m∑
i=1

βij
m

(4.9)

where βij = Task Ti on machine Mj

Avgj = Average on machine Mj

46



Chapter 4 Efficient Scheduling Heuristics in Computational Grids

Table 4.4: Execution Time of Tasks

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

T1 58 40 35 82 51 85 74 55 12 74

T2 54 45 15 43 89 56 59 63 49 16

T3 87 36 59 89 59 93 24 13 86 87

T4 26 77 26 39 15 70 67 62 88 94

T5 32 63 14 77 20 58 28 36 27 99

T6 12 77 76 40 41 82 63 25 21 86

T7 94 92 24 81 75 88 66 49 57 79

T8 65 98 44 76 83 99 73 19 64 51

T9 48 19 69 38 79 20 89 12 42 17

T10 64 14 36 21 32 87 98 20 30 40

T11 55 70 74 79 53 61 77 14 95 13

T12 65 49 39 95 29 94 58 19 78 23

T13 54 53 69 33 11 53 93 24 10 94

T14 72 53 71 67 13 48 58 64 14 30

T15 52 86 44 44 68 80 31 28 16 29

T16 90 48 41 84 50 23 12 54 62 33

T17 22 86 33 19 50 87 70 57 65 94

T18 10 67 42 16 49 63 50 25 65 65

T19 11 74 27 14 58 85 54 94 32 42

T20 26 52 19 18 99 25 85 21 44 73

Table 4.5: Average of Tasks

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

49.85 59.95 42.85 52.75 51.2 67.85 61.45 37.7 47.85 56.95

Second, we assign the priority among the tasks. Avgj is used as a threshold to

determine priority. If task Ti on machine Mj is more than the threshold (Avgj) then

it is assigned to αij. Otherwise, it is not assigned. ”X” sign in Table 4.6 indicates

that the corresponding task-machine pair is below the threshold value. It shows
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which machine contains heavy loaded tasks. Heavily loaded tasks are scheduled

first in order to get a better Makespan. Table 4.6 shows the ET of tasks after the

threshold is applied. For M1, Avgj is 49.85. Task T1, T2 and T3 having 58,54 and 87

ET respectively. As these values are more than the threshold value, it is assigned

to αij. Task T4, T5 and T6 having 26, 32 and 12 ET respectively. But, these values

are below the threshold. So, it is not assigned to αij.

For T1, machine M1, M4, M6, M7, M8 and M10 are satisfying the threshold criteria.

So, T1 has a priority (or count) 6. Alternatively, Only 4 machines are below the

threshold. Similarly, T2 has a priority 4. It indicates T1 is less number of high speed

machines than T2. So, T1 is processed before T2. RQ is used to maintain the task

sequence in descending order of their priority. RQ is scanned from left to right and

one by one until priority is changed. For example, Task T3 and T11 are having same

priority i.e. 7. So, they are processed to repeat a block at the same time. It may

happen that two or more tasks are assigned to same priority. In order to break the

tie, we use sufferage value. Again, two or more tasks contain a same sufferage value.

Finally, ties are broken randomly. In our example, T1, T4 and T17 have priority 6.

SV of these tasks are 28, 11 and 3 respectively. So, Sequence order is T1, T4, and

T17. We use TQ to store the sequence temporarily.
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Table 4.6: Execution Time of Tasks After Threshold

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Count

T1 58 X X 82 X 85 74 55 X 74 6

T2 54 X X X 89 X X 63 49 X 4

T3 87 X 59 89 59 93 X X 86 87 7

T4 X 77 X X X 70 67 62 88 94 6

T5 X 63 X 77 X X X X X 99 3

T6 X 77 76 X X 82 63 X X 86 5

T7 94 92 X 81 75 88 66 49 57 79 9

T8 65 98 44 76 83 99 73 X 64 X 8

T9 X X 69 X 79 X 89 X X X 3

T10 64 X X X X 87 98 X X X 3

T11 55 70 74 79 53 X 77 X 95 X 7

T12 65 X X 95 X 94 X X 78 X 4

T13 54 X 69 X X X 93 X X 94 4

T14 72 X 71 67 X X X 64 X X 4

T15 52 86 44 X 68 80 X X X X 5

T16 90 X X 84 X X X 54 62 X 4

T17 X 86 X X X 87 70 57 65 94 6

T18 X 67 X X X X X X 65 65 3

T19 X 74 X X 58 85 X 94 X X 4

T20 X X X X 99 X 85 X X 73 3

4.11 RRTS: A Task Scheduling Algorithm to

Minimize Makespan in Grid Environment

4.11.1 Heuristic Description

In this section, we present a round robin task scheduling to minimize makespan in

Grid Environment. In our heuristic, tasks are present in the TQ and then sorted

according to the fastest processors execution time. Dynamic time slice (DTS) can
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be calculated using a formula shown in equation 4.10. DTS is assigned to the tasks

present in the task queue. Machines are assigned to the tasks based on the concept

of round robin. Tasks can be switched between machines to minimize the completion

time. Fastest processor remains 100 percent busy in our approach.

DTS =
MaximumExecutionT ime−MinimumExecutionT ime

TotalNumberoftasks
. (4.10)

4.11.2 Heuristic

Algorithm 3 shows the semi-interquartile min-min max-min heuristic.

50



Chapter 4 Efficient Scheduling Heuristics in Computational Grids

Algorithm 3 - RRTS: A Task Scheduling Algorithm to Minimize Makespan in Grid Environment

1: Select the machine M which takes less execution time for all tasks.

2: Sort the tasks in ascending order of their execution time. (Rest machines tasks are sorted accordingly)

3: Calculate dynamic time slice (DTS) = MaximumExecutionTime−MinimumExecutionTime
TotalNumberoftasks

.

4: while TQ ! = NULL

5: for i = 0 to m

6: i = i mod m

7: j = i mod n

8: Assign TQi to the machine Mj

9: Assign DTS to task TQi

10: TQi → DTS

11: RET = ET [TQi]−DTS

12: if RET == 0

13: Task TQi has successfully executed.

14: swap();

15: else if RET > 0

16: Pre-empt the task and re-schedule it to end of the TQ.

17: Update the rest machines RET .

18: else if RET < 0

19: Task has successfully executed before DTS expires.

20: swap ();

21: end if

22: end for

23: Update TQ and m.

24: end while

swap()

1: if (TQ == NULL && M == NULL)

2: Pre-empt the task from machine which takes less ET after M and re-schedule it ro M.

3: else

4: Return 0;

5:end if

4.11.3 Illustration

Let us consider a problem having four tasks T0, T1, T2 and T3 and two machines M0

and M1. It shows that m = 4 and Y = 2. Table 4.7 shows the execution time of the

tasks. The procedure is shown in the following steps.
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Table 4.7: Execution Time of Sorted Tasks

M0 M1

T3 1 12

T1 2 13

T0 3 10

T2 5 15

1. Select the machine M which takes less ET for all tasks i.e. M0.

2. Sort the tasks in ascending order of their ET .

3. Calculate DTS. DTS = (5 - 1) / 4 = 1. So, DTS is 1 for all the tasks.

4. TQ contains T3, T1, T0 and T2 respectively.

5. Initially, i value is 0.

6. New value of i = i mod m = 0.

7. Similarly, j = i mod n = 0.

8. T3 is assigned to M0.

9. Assign DTS = 1 to task T3.

10. T3 has ET = 1.

11. RET = 1 - 1 = 0.

12. The condition for RET = 0 is satisfied.

13. Task 3 has successfully executed.

14. Call swap function. As TQ not equal to NULL, it returns 0. Go to Step 5.

15. Now, i value is 1.
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16. New value of i = i mod m = 1.

17. Similarly, j = i mod n = 1.

18. T1 is assigned to M1.

19. Assign DTS = 1 to task T1.

20. T1 has ET = 13.

21. RET = 13 - 1 = 12.

22. The condition for RET = 0 is not satisfied.

23. The condition for RET > 0 is satisfied.

24. Pre-empt the task and reschedule it to end of the TQ.

25. Update the rest machines RET . Go to Step 5. Table 4.8 shows this scenario.

Table 4.8: Execution Time of Tasks After Second Iteration

M0 M1

T1 1.85 12

T0 3 10

T2 5 15

4.12 Summary

In this chapter, we have proposed three batch mode heuristics: SIM2, TSA and

RRTS. These three methods are mainly used for scheduling the tasks in efficient

manner. SIM2 uses an interquartilerange concept to schedule the tasks, TSA uses

thresold value concept is used and in RRTS a Round Robin concept is used to

schedule the tasks efficiently. We have described the three heuristics by considering

three illustrations respectively.
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Chapter 5

Fault Tolerance Scheduling

Heuristics for Independent Tasks

in Computational Grids

5.1 Introduction

The grid failures are considered from two perspectives. First, a machine is

completely failing to execute the tasks that were assigned to it. It is called a

permanent fault. In this case, the task has to be assigned to the second least

completion time machine or it has to be assigned in the upcoming iteration. It may

be possible that the second least completion time has failed. Then, it is assigned

to third least completion time machine and so on. Let us consider a task Ti that is

assigned to a machine Mi.

Ti →Mi

But, the machine Mi is faulty. So, it is not possible to map the task Ti with the

machine Mi.

Ti 6→Mi
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Then, the task Ti has to be assigned to the next least completion time machine

Mj and so on.

Ti →Mj

where ECT (Mi) < ECT (Mj)

Second, a machine is partially failed to execute the tasks that were assigned to it.

It is called a transient fault. In this case, the task has to be assigned to the next

least completion time machine until the machine available again. IRCTC website is

an example of this case. The website is down in between 11:30pm to 00:30am for

maintenance purpose.

5.2 Chapter Organisation

The organisation of the rest of the chapter and a brief outline of the sections is as

follows.

The problem definition is presented in Section 5.2. In Section 5.3, fault system

model is discussed. The timeline sequence for fault tolerant scheduling is presented

in Section 5.4. The proposed heuristics i.e. FT-MET, FT-MCT, FT-Min-Min,

FT-Max-Min are presented in Section 5.5, Section 5.6, Section 5.7 and Section 5.8

respectively.

5.3 Problem Definition

In this chapter, we focus on the problem of scheduling m tasks on n resources

in a faulty environment. We have considered only the permanent fault. If a fault

occurs, then the task has to be assigned in the upcoming iteration. The aim is to

minimizing makespan and maximizing the machine utilisation.
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5.4 Fault System Model

The fault system model considers two types of failure: machine and network link.

In machine failure, the machine is not able to complete any task. But, in network

failure, the task is not able to reach in the machine. Until unless the GMB get back

the result from the machine, it is impossible to predict the failure i.e. machine or

network link [65]. In this theis, we have considered only the machine failure.

The following methods are used to detect and prevent the fault:

5.4.1 Round Trip Time

The round trip time (RTT) is the sum of the time to send the task to a machine

and acknowledge for that task. Equation 5.1 shows the RTT for task i on machine

k present in domain j. Its equivalent expression shown in Equation 5.2. If GMB

does not get back result within ζ of RTT than it assumes that the machine is faulty.

Here, ζ varies from 1 to 2. It is shown in Equation 5.3. In this thesis, we have

considered the RTT method to detect the fault.

RTTTi→DNj ,Mk
= DGMB−DNj+DDNj+DDNj−Mk

+DMk
+DEMTi

+DMk−DNj+DDNj+DDNj−GMB

(5.1)

= 2× (DGMB−DNj +DDNj +DDNj−Mk
) +DMk

+DEMTi
(5.2)

RTTTi→DNj ,Mk
= Round trip time of task Ti on machine Mk present on domain j

DGRB−DNj = Communication delay between GMB and DNj

DDNj = Delay on domain j including queuing delay

DDNj−Mk
= Communication delay between domain j and machine k

DMk
= Delay on machine k including queuing delay

DEMTi
= Delay in execution time of task Ti using scheduling strategy S

DMk−DNj = Communication delay between machine k and domain j

DDNj = Delay on domain j including queuing delay

DDNj−GRB = Communication delay between DNj and GMB
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RTTTi→DNj ,Mk
≤ ζ × 2× (DGMB−DNj +DDNj +DDNj−Mk

) +DMk
+DEMTi

Mk is not faulty

RTTTi→DNj ,Mk
> ζ × 2× (DGMB−DNj +DDNj +DDNj−Mk

) +DMk
+DEMTi

Mk is faulty

(5.3)

ζ = varies from 1 to 2 (depends on the types of grid)

5.4.2 Checkpointing

Checkpointing is a fault tolerance technique. It periodically saves the results on

a permanent storage. If a failure happens, it goes back to the previous checkpoint

state. In this thesis, we have considered the checkpointing method to prevent or

recover the fault.

5.5 Timeline Sequence for Fault Tolerance

Scheduling

At first, the GMB sends a request i.e. available machine list (AML) to GRS.

The GRS acknowledges by issuing AML. Then, the GMB sends the task machine

lists (TMLs) to each individual domain. This list contains the mapping between

the tasks and the machines. It also gives information about the machines under

different domain. The domain assigns the task to the machine if and only if the

machine is not failed. It means the task is approved for computation. The domain

acknowledges the GMB in one of the three states: approved, not approved or no

response. A task is not approved because of QoS violation, requirement violation or

overload machine. If there is a network failure then it is in no response state. The

GMB sends the updated AML to the GRS. The GRS acknowledges to the GMB

i.e. AML updated.

The GMB again sends the updated TMLs (excluding approved tasks) to the

domains and the same steps are followed.
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The machine sends task status list (TSLs) to the respective domains. It is in one

of the states: task complete or task incomplete. The domains send the list to the

GMB. Finally, the GMB acknowledges for TSLs to the respective domains. The

process is repeated until the GMB does not contain any task.
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Figure 5.1: Timeline Sequence for Fault Tolerance Scheduling
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5.6 Fault Tolerant - Minimum Execution Time

Heuristic

5.6.1 Heuristic Description

The heuristic is divided into two phases: matching and scheduling. The matching

phase is similar to the existing MET heuristic. Lines 1 to 3 in Algorithm 4 show

the matching phase. But, in scheduling phase, the GRB gets the current status of

the machine from GRS. If the machine is faulty, it finds the next least execution

time machine. Then, it again checks the status of the machine. If the machine is

not faulty, it assigns the task to the machine. Line 5 to 10 in Algorithm 4 show the

scheduling phase.

5.6.2 Heuristic

Algorithm 4 shows the fault tolerant - minimum execution time heuristic.

Algorithm 4 - Fault Tolerant - Minimum Execution Time Heuristic

1: for task Ti

2: for all machines Mj

3: Find minimum Ei,j and machine Mj that holds it.

4: Set k = 1.

5: Find the status of Mj from GRS.

6: if (Mj == Faulty)

7: Find (k + 1) minimum Ei,j for Ti and machine Mj that holds it.

8: Go to Step 5.

9: else Assign task Ti to machine Mj

10: end if

11: end for

12: end for
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5.6.3 Illustration

Let us consider a problem consisting three machines M1, M2 and M3 and four

tasks T1, T2, T3 and T4. Table 5.1 shows the EET matrix for 4 tasks and 3 machines.

For task T1, the least execution time machine is M3. So, it is assigned to machine

M3. Like task T1, the least execution time for task T2, task T3 and task T4 is machine

M1, machine M2, machine M1 respectively. So, the overall makespan is 63.

Assume that, the machine M1 is failed due to some unavoidable circumstance. So,

the task T2 and the task T4 are not computed successfully. The overall makespan is

reduced to 32.

In our proposed heuristic, if the machine M1 is failed due to some unavoidable

circumstance, then the task T2 and the task T4 are assigned to machine M3 and M2

respectively. The overall makespan is 125.

Table 5.1: EET Matrix for 4 Tasks and 3 Machines

Task / Machine M1 M2 M3

T1 120 75 32

T2 40 110 93

T3 71 24 49

T4 23 34 47
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5.7 Fault Tolerant - Minimum Completion Time

Heuristic

5.7.1 Heuristic Description

The heuristic is divided into two phases: matching and scheduling. The matching

phase is similar to the existing MCT heuristic. Lines 1 to 7 in Algorithm 5 show

the matching phase. But, in scheduling phase, the GRB gets the current status of

the machine from GRS. If the machine is faulty, it finds the next least completion

time machine. Then, it again checks the status of the machine. If the machine is

not faulty, it assigns the task to the machine. Line 9 to 14 in Algorithm 5 show the

scheduling phase.

5.7.2 Heuristic

Algorithm 5 shows the fault tolerant - minimum completion time heuristic.

62



Chapter 5
Fault Tolerance Scheduling Heuristics for Independent Tasks in Computational

Grids

Algorithm 5 - Fault Tolerant - Minimum Completion Time Heuristic

1: for task Ti

2: for all machines Mj

3: Ci,j = Ei,j +Rj

4: end for

5: end for

6: for task Ti

7: Find minimum Ci,j and machine Mj that holds it.

8: Set k = 1.

9: Find the status of Mj from GRS.

10: if (Mj == Faulty)

11: Find (k + 1) minimum Ci,j for Ti and machine Mj that holds it.

12: Go to Step 9.

13: else Assign task Ti to machine Mj

14: end if

15: end for

5.7.3 Illustration

Let us consider a problem consisting three machines M1, M2 and M3 and four tasks

T1, T2, T3 and T4. Table 5.1 shows the EET matrix for 4 tasks and 3 machines.

For task T1, the least completion time machine is M3. So, it is assigned to machine

M3. Like task T1, the least completion time for task T2, task T3 and task T4 is

machine M1, machine M2, machine M2 respectively. So, the overall makespan is 58.

Assume that, the machine M1 is failed due to some unavoidable circumstance. So,

the task T2 is not computed successfully. The overall makespan is 58.
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In our proposed heuristic, if the machine M1 is failed due to some unavoidable

circumstance, then the task T2 is assigned to machine M2. The overall makespan is

128.

64



Chapter 5
Fault Tolerance Scheduling Heuristics for Independent Tasks in Computational

Grids

5.8 Fault Tolerant - Min-Min Heuristic

5.8.1 Heuristic Description

The heuristic is divided into two phases: matching and scheduling. The matching

phase is similar to the existing min-min heuristic. Lines 1 to 9 in Algorithm 6 show

the matching phase. But, in scheduling phase, the GRB gets the current status of

the machine from GRS. If the machine is faulty, it finds the next least completion

time task. Then, it again checks the status of the machine. If the machine is not

faulty, it assigns the task to the machine. Line 10 to 14 in Algorithm 6 show the

scheduling phase.

5.8.2 Heuristic

Algorithm 6 shows the fault tolerant - min-min heuristic.

65



Chapter 5
Fault Tolerance Scheduling Heuristics for Independent Tasks in Computational

Grids

Algorithm 6 - Fault Tolerant - Min-Min Heuristic

1: for all tasks Ti in TQ

2: for all machines Mj

3: Ci,j = Ei,j +Rj

4: end for

5: end for

6: for all tasks Ti in TQ

7: Find minimum Ci,j and machine Mj that holds it.

8: end for

9: Find the task Th with the minimum Ci,j and machine Mj that holds it.

10: Find the status of Mj from GRS.

11: if (Mj == Faulty)

12: Go to Step 9.

13: else Assign task Th to machine Mj that gives minimum Ci,j

14: end if

15: Delete the task Th from TQ and Update Rj.

5.8.3 Illustration

Let us consider a problem consisting three machines M1, M2 and M3 and four tasks

T1, T2, T3 and T4. Table 5.1 shows the EET matrix for 4 tasks and 3 machines.

For task T1, the least completion time machine is M3. Like task T1, the least

completion time for task T2, task T3 and task T4 is machine M1, machine M2,

machine M1 respectively. But, the least completion time among all the tasks are

task T4. So, task T4 is assigned to the machine M1. Then, task T3, task T1 and task

T2 are assigned to machine M2, machine M3 and machine M1 respectively. So, the

overall makespan is 63.
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Assume that, the machine M1 is failed due to some unavoidable circumstance. So,

the task T4 and the task T2 are not computed successfully. The overall makespan is

32.

In our proposed heuristic, if the machine M1 is failed due to some unavoidable

circumstance, then the task T4 and the task T2 are assigned to the machine M2 and

machine M3 respectively. The overall makespan is 125.
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5.9 Fault Tolerant - Max-Min Heuristic

5.9.1 Heuristic Description

The heuristic is divided into two phases: matching and scheduling. The matching

phase is similar to the existing max-min heuristic. Lines 1 to 9 in Algorithm 7 show

the matching phase. But, in scheduling phase, the GRB gets the current status of

the machine from GRS. If the machine is faulty, it finds the next least completion

time task. Then, it again checks the status of the machine. If the machine is not

faulty, it assigns the task to the machine. Line 10 to 14 in Algorithm 7 show the

scheduling phase.

5.9.2 Heuristic

Algorithm 7 shows the fault tolerant - max-min heuristic.
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Algorithm 7 - Fault Tolerant - Max-Min Heuristic

1: for all tasks Ti in TQ

2: for all machines Mj

3: Ci,j = Ei,j +Rj

4: end for

5: end for

6: for all tasks Ti in TQ

7: Find minimum Ci,j and machine Mj that holds it.

8: end for

9: Find the task Th with the maximum Ci,j and machine Mj that holds it.

10: Find the status of Mj from GRS.

11: if (Mj == Faulty)

12: Go to Step 9.

13: else Assign task Th to machine Mj that gives minimum Ci,j

14: end if

15: Delete the task Th from TQ and Update Rj.

5.9.3 Illustration

Let us consider a problem consisting three machines M1, M2 and M3 and four tasks

T1, T2, T3 and T4. Table 5.1 shows the EET matrix for 4 tasks and 3 machines.

For task T1, the least completion time machine is M3. Like task T1, the least

completion time for task T2, task T3 and task T4 is machine M1, machine M2,

machine M1 respectively. But, the utmost completion time among all the tasks are

task T2. So, task T2 is assigned to the machine M1. Then, task T4, task T3 and task

T1 are assigned to machine M2, machine M3 and machine M3 respectively. So, the

overall makespan is 81.
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Assume that, the machine M1 is failed due to some unavoidable circumstance. So,

the task T1 is not computed successfully. The overall makespan is 81.

In our proposed heuristic, if the machine M1 is failed due to some unavoidable

circumstance, then the task T2 is assigned to the machine M3. The overall makespan

is 133.

5.10 Summary

In this chapter, we have proposed four fault tolerant batch mode heuristics:

FT-MET, FT-MCT, FT-Min-Min and FT-Max-Min. We have added the concepts

of fault tolerance in these heuristics to evaluate the performance of the methods

when fault arises in the machine. Each heuristic is discussed with an illustration to

show the fault tolerant scheme.
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Implementation and Results

6.1 Introduction

In this section, we present some performance evaluation strategies (or performance

measures) which are used to compare the performance of existing works and

our heuristics. The performance evaluation strategies include makespan, machine

utilisation, completion time and idle time. But, we have considered two performance

measures: makespan and machine utilisation. The implementation and results

are compared based on the performance evaluation strategies. We simulated the

proposed heuristics using MATLAB R2010b version 7.11.0.584.

6.2 Chapter Organisation

The organisation of the rest of the chapter and a brief outline of the sections is as

follows.

The implementation details are discussed in Section 6.2. In Section 6.3, we have

discussed various performance measures use to evaluate the heuristics. The results

are shown in Section 6.4.
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6.3 Implementation Details

6.3.1 Data Set

We have taken Braun et al. data sets (or instances) to evaluate the proposed

heuristics [17]. The general form of the data sets is u t mmnn. Here, u indicates the

uniform distribution, t indicates the types of matrices: consistent, inconsistent and

semi-consistent, mm indicates the task heterogeneity and nn indicates the machine

heterogeneity. The value of mm or nn is either hi or lo. So, each type of matrix

contains four data sets such as hihi, hilo, lohi and lolo. Finally, we have 12 data

sets. The data sets are u c hihi, u c hilo, u c lohi, u c lolo, u i hihi, u i hilo, u i lohi,

u i lolo, u s hihi, u s hilo, u s lohi and u s lolo. The size of the data sets is 512 ×

16, 1024 × 32 and 2048 × 64. Here, the first value indicates the number of tasks

and the second value indicates the number of machines.

Apart from the above data sets, we have taken our own data sets to evaluate the

performance of some heuristics. These data sets are generated using the MATLAB

random function. The data sets are 50 × 5, 50 × 10, 50 × 15, 100 × 5, 100 × 10,

100 × 15, 1000 × 5, 1000 × 10, 1000 × 15, 10000 × 5, 10000 × 10 and 10000 × 15.

Here, the first value indicates the number of tasks and the second value indicates

the number of machines.

6.4 Performance Evaluation Strategies

6.4.1 Makespan

The makespan is the maximum completion time taken to assign all tasks to the

machine. It is used to measure the throughput of the grid. It can be mathematically

expressed as follows:

The makespan of the first machine using scheduling strategy S is:
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M(SM1) = (E1,1 × F1,1) + (E2,1 × F2,1) + (E3,1 × F3,1) + ...+ (Em,1 × Fm,1)

The makespan of the second machine using scheduling strategy S is:

M(SM2) = (E1,2 × F1,2) + (E2,2 × F2,2) + (E3,2 × F3,2) + ...+ (Em,2 × Fm,2)

The makespan of the third machine using scheduling strategy S is:

M(SM3) = (E1,3 × F1,3) + (E2,3 × F2,3) + (E3,3 × F3,3) + ...+ (Em,3 × Fm,3)

..............................................................................................

The makespan of the nth machine using scheduling strategy S is:

M(SMn) = (E1,n × F1,n) + (E2,n × F2,n) + (E3,n × F3,n) + ...+ (Em,n × Fm,n)

where Fi,j =
{

1 if Ti−→Mj

0 Otherwise

}
The overall makespan is:

M(S) = max(M(SM1),M(SM2),M(SM3), ...,M(SMn))

(or)

M(S) = max(
∑m

i=1 Ei,1 × Fi,1,
∑m

i=1 Ei,2 × Fi,2,
∑m

i=1Ei,3 × Fi,3, ...,
∑m

i=1Ei,n × Fi,n)

6.4.2 Completion Time

The completion time is the sum of the completion times of the tasks. It can be

mathematically expressed as follows:

The completion time of the first task using scheduling strategy S is:

F (ST1) = (E1,1 × F1,1) + (E1,2 × F1,2) + (E1,3 × F1,3) + ...+ (E1,n × F1,n)

The completion time of the second task using scheduling strategy S is:

F (ST2) = (E2,1 × F2,1) + (E2,2 × F2,2) + (E2,3 × F2,3) + ...+ (E2,n × F2,n)
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The completion time of the third task using scheduling strategy S is:

F (ST3) = (E3,1 × F3,1) + (E3,2 × F3,2) + (E3,3 × F3,3) + ...+ (E3,n × F3,n)

..............................................................................................

The completion time of the mth task using scheduling strategy S is:

F (STm) = (Em,1 × Fm,1) + (Em,2 × Fm,2) + (Em,3 × Fm,3) + ...+ (Em,n × Fm,n)

where Fi,j =
{

1 if Ti−→Mj

0 Otherwise

}
The sum of completion times is:

F (S) = (F (ST1) + F (ST2) + F (ST3) + ...+ F (STm))

(or)

F (S) =
∑m

i=1

∑n
j=1Ei,j × Fi,j

6.4.3 Machine Utilisation

The machine utilisation is the time that the machine is busy. It can be

mathematically expressed as follows:

The machine utilisation of the first machine using scheduling strategy S is:

MU(SM1) =
M(SM1

)

M(S)

The machine utilisation of the second machine using scheduling strategy S is:

MU(SM2) =
M(SM2

)

M(S)

The machine utilisation of the third machine using scheduling strategy S is:

MU(SM3) =
M(SM3

)

M(S)

..............................................................................................

74



Chapter 6 Implementation and Results

The machine utilisation of the nth machine using scheduling strategy S is:

MU(SMn) =
M(SMn )

M(S)

The average machine utilisation is:

MU(S) =
MU(SM1

)+MU(SM2
)+MU(SM3

)+...+MU(SMn )

n

The average machine utilisation (in percentage) is:

%MU(S) =
MU(SM1

)+MU(SM2
)+MU(SM3

)+...+MU(SMn )

n
× 100

6.4.4 Idle Time

The idle time is the time that the machine is idle. It can be mathematically

expressed as follows:

The idle time of the first machine using scheduling strategy S is:

I(SM1) =
M(S)−M(SM1

)

M(S)

The idle time of the second machine using scheduling strategy S is:

I(SM2) =
M(S)−M(SM2

)

M(S)

The idle time of the third machine using scheduling strategy S is:

I(SM3) =
M(S)−M(SM3

)

M(S)

..............................................................................................

The idle time of the nth machine using scheduling strategy S is:

I(SMn) =
M(S)−M(SMn )

M(S)

In general, the idle time of the machine i using scheduling strategy S is:

I(SMi
) =

{
M(S)−M(SMi

)

M(S)
if M(S)6=M(SMi )

1 Otherwise

}
The average idle time is:

I(S) =
I(SM1

)+I(SM2
)+I(SM3

)+...+I(SMn )

n

The average idle time (in percentage) is:

%I(S) =
I(SM1

)+I(SM2
)+I(SM3

)+...+I(SMn )

n
× 100
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6.5 Results

6.5.1 Results of SIM2 heuristic

The comparison of makespan and machine utilisation for min-min, max-min and

the proposed SIM2 heuristic are shown in Table 6.1 and Table 6.2 respectively. The

graphical representation of makespan and machine utilisation are shown in Figure 6.1

and Figure 6.2 respectively. The results show that the SIM2 heuristic is performing

best amongst all. The makespan of max-min and SIM2 heuristic are same for 50

and 100 tasks, but the overall performance of the SIM2 heuristic is better. The

machine utilisation is almost same for max-min and SIM2 heuristic, but the overall

performance of the max-min heuristic is better.

Let us consider a task processing system. We have two tasks: Ti and Tj. The tasks

are processed in a heterogeneous environment. Let task Ti completes its execution

before the task Tj. Obviously, the task Ti has better makespan in comparison to

the task Tj. It may not indicate that the machine utilisation of the task Ti is better

than the task Tj. Because, the machine utilisation is calculated from the respective

makespan.

Table 6.1: Makespan Values for Min-Min, Max-Min and SIM2 Heuristic
Instances Min-Min Max-Min SIM2

50 × 5 10918 9191 9191

50 × 10 9964 9190 9190

50 × 15 9762 9190 9190

100 × 5 12849 9190 9190

100 × 10 10915 9190 9190

100 × 15 10331 9190 9190

1000 × 5 47301 41523 40199

1000 × 10 28068 20860 20025

1000 × 15 21750 13918 13333

10000 × 5 391736 398941 384634

10000 × 10 199589 200235 191539

10000 × 15 135925 133733 127505
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Table 6.2: Machine Utilisation Values for Min-Min, Max-Min and SIM2 Heuristic

Instances Min-Min Max-Min SIM2

50 × 5 0.3399 0.4100 0.4050

50 × 10 0.1862 0.2041 0.2027

50 × 15 0.1265 0.1356 0.1346

100 × 5 0.4386 0.6252 0.6135

100 × 10 0.2572 0.3114 0.3057

100 × 15 0.1809 0.2068 0.2044

1000 × 5 0.8474 0.9978 0.9972

1000 × 10 0.7111 0.9953 0.9970

1000 × 15 0.6109 0.9941 0.9970

10000 × 5 0.9816 0.9998 0.9997

10000 × 10 0.9594 0.9995 0.9997

10000 × 15 0.9377 0.9993 0.9997

Figure 6.1: Makespan for Min-Min vs Makespan for Max-Min vs Makespan for SIM2
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Figure 6.2: Machine Utilisation for Min-Min vs Makespan for Max-Min vs Makespan

for SIM2
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6.5.2 Results of TSA heuristic

The comparison of makespan and machine utilisation for min-min, max-min and

the proposed TSA heuristic are shown in Table 6.3 and Table 6.4 respectively. The

graphical representation of makespan and machine utilisation are shown in Figure 6.3

and Figure 6.4 respectively. The results show that the TSA heuristic is performing

best amongst all. The makespan of max-min and TSA heuristic are same for 50, 100

and 10000 tasks, but the overall performance of the TSA heuristic is better. The

machine utilisation is almost same for max-min and TSA heuristic, but the overall

performance of the max-min heuristic is better.
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Table 6.3: Makespan Values for Min-Min, Max-Min and TSA Heuristic
Instances Min-Min Max-Min TSA

50 × 5 12023 9831 9765

50 × 10 10510 9301 9301

50 × 15 10201 9300 9300

100 × 5 19045 14085 14032

100 × 10 12021 9303 9303

100 × 15 1356 1329 1252

1000 × 5 78848 81964 78573

1000 × 10 41502 40530 38435

1000 × 15 29294 26468 24999

10000 × 5 715161 702185 665857

10000 × 10 406324 365003 341162

10000 × 15 756937 555303 555303

Table 6.4: Machine Utilisation Values for Min-Min, Max-Min and TSA Heuristic
Instances Min-Min Max-Min TSA

50 × 5 0.7999 0.9838 0.9877

50 × 10 0.4382 0.4977 0.4965

50 × 15 0.2855 0.2593 0.2589

100 × 5 0.7263 0.9910 0.9905

100 × 10 0.4916 0.6416 0.6383

100 × 15 0.7435 0.9818 0.9200

1000 × 5 0.9596 0.9983 0.9984

1000 × 10 0.8826 0.9976 0.9952

1000 × 15 0.8121 0.9953 0.9936

10000 × 5 0.8891 0.9998 0.9999

10000 × 10 0.7993 0.9996 0.9997

10000 × 15 0.3310 0.5014 0.4709
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Figure 6.3: Makespan for Min-Min vs Makespan for Max-Min vs Makespan for TSA

Figure 6.4: Machine Utilisation for Min-Min vs Makespan for Max-Min vs Makespan

for TSA

81



Chapter 6 Implementation and Results

6.5.3 Results of RRTS heuristic

The comparison of makespan for min-min, max-min and the proposed RRTS

heuristic are shown in Table 6.5. The graphical representation of makespan is

shown in Figure 6.5. The results show that the RRTS heuristic is performing best

amongst all. The makespan of RRTS heuristic is better than other heuristics.

Table 6.5: Makespan Values for Min-Min, Max-Min and RRTS Heuristic

Instances Min-Min Max-Min RRTS

50 × 5 1.2023E+04 9.8310E+03 9.7308E+03

50 × 10 1.0510E+04 9.3010E+03 4.6805E+03

50 × 15 1.0201E+04 9.3000E+03 2.5203E+03

100 × 5 1.9045E+04 1.4085E+04 1.3956E+04

100 × 10 1.2021E+04 9.3030E+03 6.0347E+03

100 × 15 1.0331E+04 9.1900E+03 1.9815E+03

1000 × 5 8.3626E+04 8.5492E+04 8.2265E+04

1000 × 10 4.1502E+04 4.0530E+04 3.8647E+04

1000 × 15 2.9294E+04 2.6468E+04 2.5214E+04

10000 × 5 7.1516E+05 7.0218E+05 6.6879E+05

10000 × 10 4.0632E+05 3.6500E+05 3.4500E+05

10000 × 15 7.5693E+05 5.5530E+05 2.6508E+05

82



Chapter 6 Implementation and Results

Figure 6.5: Makespan for Min-Min vs Makespan for Max-Min vs Makespan for RRTS

6.5.4 Results of MET, MCT, Min-Min and Max-Min

Heuristics Without Fault Tolerance

The comparison of makespan and machine utilisation for MET, MCT, min-min

and max-min heuristics using 512 × 16 data sets are shown in Table 6.6 and Table

6.7 respectively. The comparison of makespan and machine utilisation for MET,

MCT, min-min and max-min heuristics using 1024 × 32 data sets are shown in

Table 6.8 and Table 6.9 respectively. The comparison of makespan and machine

utilisation for MET, MCT, min-min and max-min heuristics using 2048 × 64 data

sets are shown in Table 6.10 and Table 6.11 respectively.
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Table 6.6: Makespan Values for MET, MCT, Min-Min and Max-Min Heuristic

Without Fault Tolerance (512 × 16 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 2.2159E+07 1.1423E+07 8.1189E+06 1.2382E+07

u c hilo 5.3951E+05 1.8589E+05 1.6181E+05 2.0405E+05

u c lohi 6.6846E+05 3.7830E+05 2.6700E+05 3.9247E+05

u c lolo 1.8065E+04 6.3601E+03 5.4255E+03 6.9443E+03

u i hihi 3.7073E+06 4.4136E+06 3.5139E+06 8.0184E+06

u i hilo 9.4796E+04 9.4856E+04 8.0756E+04 1.5191E+05

u i lohi 1.4232E+05 1.4382E+05 1.0897E+05 2.5153E+05

u i lolo 3.3993E+03 3.1374E+03 2.6401E+03 5.1766E+03

u s hihi 1.1077E+07 6.4227E+06 4.8348E+06 9.1951E+06

u s hilo 2.7135E+05 1.1837E+05 1.0327E+05 1.7262E+05

u s lohi 3.0255E+05 1.8409E+05 1.3738E+05 2.8205E+05

u s hilo 8.6922E+03 4.4361E+03 3.8068E+03 6.2318E+03

Table 6.7: Machine Utilisation Values for MET, MCT, Min-Min and Max-Min

Heuristic Without Fault Tolerance (512 × 16 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 1 0.7020 0.5234 0.8769

u c hilo 1 0.7090 0.5909 0.8519

u c lohi 1 0.7054 0.5347 0.8547

u c lolo 1 0.6980 0.5895 0.8536

u i hihi 0.5741 0.7077 0.4745 0.8842

u i hilo 0.5711 0.7016 0.5728 0.8522

u i lohi 0.5002 0.6961 0.5262 0.8760

u i lolo 0.5587 0.7202 0.5939 0.8539

u s hihi 0.2420 0.7119 0.4726 0.8740

u s hilo 0.2660 0.7339 0.5653 0.8602

u s lohi 0.2863 0.7103 0.5030 0.8844

u s hilo 0.3109 0.7093 0.5753 0.8576

84



Chapter 6 Implementation and Results

Table 6.8: Makespan Values for MET, MCT, Min-Min and Max-Min Heuristic

Without Fault Tolerance (1024 × 32 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 3.8431E+07 3.1749E+07 2.0735E+07 3.2007E+07

u c hilo 3.6308E+06 3.1614E+06 2.1880E+06 3.2199E+06

u c lohi 3.2742E+03 2.8765E+03 2.0370E+03 3.1182E+03

u c lolo 3.7785E+02 3.2576E+02 2.2587E+02 3.2910E+02

u i hihi 6.7612E+06 7.4194E+06 5.9639E+06 1.3223E+07

u i hilo 6.7070E+05 6.7008E+05 5.5055E+05 1.2517E+06

u i lohi 8.5439E+02 7.5134E+02 6.2358E+02 1.3313E+03

u i lolo 9.1120E+01 6.9460E+01 6.3720E+01 1.2753E+02

u s hihi 2.4737E+07 1.7347E+07 1.3558E+07 2.3282E+07

u s hilo 2.2116E+06 1.7473E+06 1.3175E+06 2.2329E+06

u s lohi 2.1260E+03 1.6444E+03 1.3546E+03 2.2049E+03

u s hilo 1.7873E+02 1.8050E+02 1.2871E+02 2.2347E+02

Table 6.9: Machine Utilisation Values for MET, MCT, Min-Min and Max-Min

Heuristic Without Fault Tolerance (1024 × 32 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 1 0.6475 0.4745 0.8060

u c hilo 1 0.6495 0.4578 0.8007

u c lohi 1 0.6480 0.4540 0.8046

u c lolo 1 0.6448 0.4502 0.8049

u i hihi 0.4994 0.6176 0.4317 0.8095

u i hilo 0.4495 0.6428 0.4560 0.8195

u i lohi 0.3730 0.6058 0.4288 0.8025

u i lolo 0.3546 0.6419 0.4182 0.8172

u s hihi 0.0928 0.6704 0.3854 0.8380

u s hilo 0.1116 0.6471 0.3767 0.8284

u s lohi 0.1137 0.6696 0.3877 0.8376

u s hilo 0.1184 0.6317 0.3788 0.8232
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Table 6.10: Makespan Values for MET, MCT, Min-Min and Max-Min Heuristic

Without Fault Tolerance (2048 × 64 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 1.6736E+07 2.7362E+07 1.8372E+07 2.7648E+07

u c hilo 1.6641E+06 2.6695E+06 1.8731E+06 2.7135E+06

u c lohi 1.7626E+03 2.7639E+03 1.8400E+03 2.7380E+03

u c lolo 1.7265E+02 2.7196E+02 1.8169E+02 2.6773E+02

u i hihi 4.1277E+06 3.6175E+06 3.2489E+06 6.5511E+06

u i hilo 4.6574E+05 4.0982E+05 3.2768E+05 7.1039E+05

u i lohi 4.2063E+02 3.8518E+02 3.2094E+02 6.9389E+02

u i lolo 3.4820E+01 4.0810E+01 3.1040E+01 6.7940E+01

u s hihi 9.8003E+06 1.5599E+07 1.0826E+07 1.6694E+07

u s hilo 8.2527E+05 1.3726E+06 9.9935E+05 1.6607E+06

u s lohi 8.7390E+02 1.3767E+03 1.0135E+03 1.6190E+03

u s hilo 8.5660E+01 1.4440E+02 1.0283E+02 1.7043E+02

Table 6.11: Machine Utilisation Values for MET, MCT, Min-Min and Max-Min

Heuristic Without Fault Tolerance (2048 × 64 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 1 0.6167 0.4435 0.7590

u c hilo 1 0.6168 0.4290 0.7624

u c lohi 1 0.6111 0.4371 0.7585

u c lolo 1 0.6196 0.4448 0.7592

u i hihi 0.3781 0.5816 0.3892 0.7698

u i hilo 0.3522 0.5679 0.4219 0.7797

u i lohi 0.3855 0.5897 0.4209 0.7731

u i lolo 0.4494 0.5687 0.4347 0.7696

u s hihi 0.0953 0.5808 0.3031 0.8297

u s hilo 0.1208 0.6029 0.3270 0.8206

u s lohi 0.1094 0.6145 0.3562 0.8257

u s hilo 0.1083 0.6087 0.3470 0.8312

In this simulation, the 8 number of machines is failed. The machine numbers are

10, 3, 4, 15, 1, 8, 16 and 6. The machines are failing after 165, 176, 182, 188, 234,

314, 338 and 370 task respectively. Table 6.12, Table 6.13, Table 6.14 and 6.15 show

the total number of task failed in MET, MCT, min-min and max-min heuristic.
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Table 6.12: Total Number of Tasks Failed in MET Heuristic (512 × 16 Instances)

Instances / Machine Number u c hihi u c hilo u c lohi u c lolo u i hihi u i hilo u i lohi u i lolo u s hihi u s hilo u s lohi u s lolo

10 0 0 0 0 23 23 30 23 26 13 17 21

3 0 0 0 0 22 19 22 19 0 0 0 0

4 0 0 0 0 20 15 16 22 27 24 14 12

15 0 0 0 0 24 16 27 24 0 0 0 0

1 279 279 279 279 14 9 15 14 144 153 145 149

8 0 0 0 0 6 14 11 15 18 17 13 11

16 0 0 0 0 9 13 13 4 7 5 15 13

6 0 0 0 0 15 16 8 8 7 11 6 7

Table 6.13: Total Number of Tasks Failed in MCT Heuristic (512 × 16 Instances)

Instances / Machine Number u c hihi u c hilo u c lohi u c lolo u i hihi u i hilo u i lohi u i lolo u s hihi u s hilo u s lohi u s lolo

10 18 17 13 19 26 21 20 21 16 23 24 26

3 26 25 30 25 23 19 24 18 22 18 20 21

4 18 22 23 19 15 22 16 23 28 22 24 18

15 16 21 15 24 19 21 25 17 19 27 18 22

1 57 30 43 29 12 18 22 12 20 20 23 21

8 11 9 8 9 9 12 11 13 18 13 15 14

16 10 12 10 14 9 11 15 10 13 8 18 12

6 6 9 8 6 13 10 10 11 10 11 12 6

Table 6.14: Total Number of Tasks Failed in Min-Min Heuristic (512 × 16 Instances)

Instances / Machine Number u c hihi u c hilo u c lohi u c lolo u i hihi u i hilo u i lohi u i lolo u s hihi u s hilo u s lohi u s lolo

10 10 14 10 14 22 21 21 22 29 24 22 28

3 32 36 34 34 22 21 22 22 29 27 28 24

4 22 28 25 29 18 20 21 20 25 27 23 22

15 6 9 5 9 20 18 22 21 4 7 4 7

1 86 49 85 50 19 17 17 18 53 33 54 32

8 8 10 7 10 11 13 11 13 16 16 16 14

16 4 5 3 5 14 10 11 11 12 12 14 15

6 4 5 3 5 11 9 8 8 7 10 8 9

Table 6.15: Total Number of Tasks Failed in Max-Min Heuristic (512 × 16 Instances)

Instances / Machine Number u c hihi u c hilo u c lohi u c lolo u i hihi u i hilo u i lohi u i lolo u s hihi u s hilo u s lohi u s lolo

10 12 16 13 17 21 24 22 24 25 23 26 25

3 29 35 32 33 19 22 20 22 27 28 30 26

4 23 26 23 28 22 21 17 23 23 19 21 22

15 7 11 7 11 25 21 27 24 7 9 5 9

1 93 44 90 44 14 20 18 18 53 31 53 30

8 8 11 8 10 13 10 12 9 15 13 12 13

16 3 6 3 6 14 13 10 10 10 13 13 13

6 8 8 6 8 11 8 14 9 13 9 10 10
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6.5.5 Results of MET, MCT, Min-Min and Max-Min

Heuristic With Fault Tolerance

The comparison of makespan and machine utilisation for MET, MCT, min-min

and max-min heuristics using 512 × 16 data sets are shown in Table 6.16 and Table

6.17 respectively. The graphical representation of makespan and machine utilisation

for MET, MCT, min-min and max-min (without fault tolerance and with fault

tolerance) is shown in Figure 6.6, Figure 6.10, Figure 6.7, Figure 6.11, Figure 6.8,

Figure 6.12, Figure 6.9 and Figure 6.13 respectively. The comparison of makespan

and machine utilisation for MET, MCT, min-min and max-min heuristics using 1024

× 32 data sets are shown in Table 6.18 and Table 6.19 respectively. The graphical

representation of makespan and machine utilisation for MET, MCT, min-min and

max-min (without fault tolerance and with fault tolerance) is shown in Figure 6.14,

Figure 6.18, Figure 6.15, Figure 6.19, Figure 6.16, Figure 6.20, Figure 6.17 and

Figure 6.21 respectively. The comparison of makespan and machine utilisation

for MET, MCT, min-min and max-min heuristics using 2048 × 64 data sets are

shown in Table 6.20 and Table 6.21 respectively. The graphical representation of

makespan and machine utilisation for MET, MCT, min-min and max-min (without

fault tolerance and with fault tolerance) is shown in Figure 6.22, Figure 6.26, Figure

6.23, Figure 6.27, Figure 6.24, Figure 6.28, Figure 6.25 and Figure 6.29 respectively.

88



Chapter 6 Implementation and Results

Table 6.16: Makespan Values for MET, MCT, Min-Min and Max-Min Heuristic

With Fault Tolerance (512 × 16 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 5.3052E+07 2.1794E+07 2.1407E+07 1.9058E+07

u c hilo 8.7844E+05 3.1088E+05 3.2471E+05 2.8025E+05

u c lohi 1.6256E+06 7.3675E+05 6.7661E+05 6.2904E+05

u c lolo 2.8962E+04 1.0175E+04 1.0801E+04 9.1983E+03

u i hihi 8.5274E+06 9.2631E+06 8.7481E+06 1.2108E+07

u i hilo 1.6403E+05 1.6698E+05 1.5813E+05 2.1763E+05

u i lohi 2.7597E+05 3.0498E+05 2.9737E+05 3.9092E+05

u i lolo 5.6228E+03 5.2437E+03 5.6108E+03 7.3042E+03

u s hihi 3.0105E+07 1.5219E+07 1.6121E+07 1.6855E+07

u s hilo 3.1881E+05 2.3047E+05 2.3919E+05 2.4758E+05

u s lohi 8.6459E+05 4.4428E+05 4.4101E+05 4.8025E+05

u s hilo 1.2084E+04 8.1171E+03 8.1789E+03 9.0163E+03

Table 6.17: Machine Utilisation Values for MET, MCT, Min-Min and Max-Min

Heuristic With Fault Tolerance (512 × 16 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 0.7088 0.6424 0.5228 0.7969

u c hilo 0.8071 0.6489 0.5610 0.7898

u c lohi 0.7056 0.6320 0.5295 0.7793

u c lolo 0.8119 0.6568 0.5698 0.7941

u i hihi 0.4901 0.6285 0.4971 0.7865

u i hilo 0.5080 0.6339 0.5523 0.8001

u i lohi 0.5091 0.6256 0.4991 0.8167

u i lolo 0.4949 0.6471 0.5296 0.7992

u s hihi 0.3032 0.6210 0.4965 0.7831

u s hilo 0.4960 0.6264 0.5398 0.7891

u s lohi 0.3105 0.6060 0.5112 0.7913

u s hilo 0.4637 0.6227 0.5504 0.7809
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Table 6.18: Makespan Values for MET, MCT, Min-Min and Max-Min Heuristic

With Fault Tolerance (1024 × 32 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 7.1204E+07 9.0368E+07 9.2542E+07 7.7707E+07

u c hilo 7.3878E+06 9.3558E+06 9.2014E+06 7.5687E+06

u c lohi 6.8098E+03 9.1600E+03 9.2120E+03 7.4429E+03

u c lolo 7.8480E+02 9.2257E+02 9.4887E+02 7.7871E+02

u i hihi 1.3968E+07 1.5616E+07 1.3936E+07 2.0882E+07

u i hilo 1.4525E+06 1.5199E+06 1.2984E+06 2.0121E+06

u i lohi 1.6435E+03 1.5039E+03 1.3579E+03 2.2663E+03

u i lolo 1.4735E+02 1.5151E+02 1.4079E+02 2.2828E+02

u s hihi 4.0502E+07 5.5970E+07 6.1872E+07 4.6608E+07

u s hilo 3.7105E+06 5.4920E+06 5.9335E+06 4.4402E+06

u s lohi 3.6559E+03 5.4971E+03 5.7314E+03 4.1854E+03

u s hilo 4.0626E+02 5.7442E+02 6.0615E+02 4.3121E+02

Table 6.19: Machine Utilisation Values for MET, MCT, Min-Min and Max-Min

Heuristic With Fault Tolerance (1024 × 32 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 0.6000 0.5794 0.5032 0.6889

u c hilo 0.5580 0.5668 0.5046 0.6879

u c lohi 0.5729 0.5714 0.5013 0.6886

u c lolo 0.5558 0.5758 0.5003 0.6861

u i hihi 0.4437 0.5609 0.4630 0.7399

u i hilo 0.4117 0.5570 0.4639 0.7451

u i lohi 0.3956 0.5855 0.4731 0.7368

u i lolo 0.4196 0.5785 0.4445 0.7504

u s hihi 0.1337 0.5671 0.4695 0.7552

u s hilo 0.1447 0.5591 0.4797 0.7195

u s lohi 0.1361 0.5439 0.4796 0.7393

u s hilo 0.1226 0.5527 0.4776 0.7542
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Table 6.20: Makespan Values for MET, MCT, Min-Min and Max-Min Heuristic

With Fault Tolerance (2048 × 64 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 3.5770E+07 7.2217E+07 6.7673E+07 6.8052E+07

u c hilo 3.5821E+06 7.1534E+06 6.6778E+06 6.5929E+06

u c lohi 3.7223E+03 7.3549E+03 6.7535E+03 6.8577E+03

u c lolo 3.7123E+02 7.2791E+02 6.6689E+02 6.6836E+02

u i hihi 5.2893E+06 5.6261E+06 4.7571E+06 1.1040E+07

u i hilo 5.7573E+05 5.7434E+05 4.8487E+05 1.2574E+06

u i lohi 5.2275E+02 5.6427E+02 4.8307E+02 9.4297E+02

u i lolo 6.1960E+01 5.7580E+01 4.6520E+01 9.6640E+01

u s hihi 2.2545E+07 4.0392E+07 3.9095E+07 3.1368E+07

u s hilo 1.7650E+06 3.7840E+06 3.7126E+06 3.0262E+06

u s lohi 1.7365E+03 3.9021E+03 3.7054E+03 3.0513E+03

u s hilo 2.1785E+02 4.0979E+02 3.8993E+02 3.1886E+02

Table 6.21: Machine Utilisation Values for MET, MCT, Min-Min and Max-Min

Heuristic With Fault Tolerance (2048 × 64 Instances)

Instances MET MCT Min-Min Max-Min

u c hihi 0.5709 0.5957 0.5050 0.6972

u c hilo 0.5523 0.5871 0.5044 0.6988

u c lohi 0.5494 0.5826 0.5101 0.6976

u c lolo 0.5600 0.5799 0.5014 0.7003

u i hihi 0.4046 0.5313 0.4024 0.6126

u i hilo 0.3901 0.5662 0.4202 0.6237

u i lohi 0.4418 0.5793 0.4261 0.7409

u i lolo 0.3627 0.5607 0.4290 0.7594

u s hihi 0.0801 0.5746 0.4498 0.7932

u s hilo 0.0935 0.5848 0.4459 0.7846

u s lohi 0.0918 0.5607 0.4520 0.7908

u s hilo 0.0809 0.5610 0.4550 0.7906

91



Chapter 6 Implementation and Results

Figure 6.6: Makespan for MET Without Fault Tolerance vs Makespan for MET

With Fault Tolerance (512 × 16 Instances)

Figure 6.7: Makespan for MCT Without Fault Tolerance vs Makespan for MCT

With Fault Tolerance (512 × 16 Instances)
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Figure 6.8: Makespan for Min-Min Without Fault Tolerance vs Makespan for

Min-Min With Fault Tolerance (512 × 16 Instances)

Figure 6.9: Makespan for Max-Min Without Fault Tolerance vs Makespan for

Max-Min With Fault Tolerance (512 × 16 Instances)
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Figure 6.10: Machine Utilisation for MET Without Fault Tolerance vs Machine

Utilisation for MET With Fault Tolerance (512 × 16 Instances)

Figure 6.11: Machine Utilisation for MCT Without Fault Tolerance vs Machine

Utilisation for MCT With Fault Tolerance (512 × 16 Instances)
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Figure 6.12: Machine Utilisation for Min-Min Without Fault Tolerance vs Machine

Utilisation for Min-Min With Fault Tolerance (512 × 16 Instances)

Figure 6.13: Machine Utilisation for Max-Min Without Fault Tolerance vs Machine

Utilisation for Max-Min With Fault Tolerance (512 × 16 Instances)
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Figure 6.14: Makespan for MET Without Fault Tolerance vs Makespan for MET

With Fault Tolerance (1024 × 32 Instances)

Figure 6.15: Makespan for MCT Without Fault Tolerance vs Makespan for MCT

With Fault Tolerance (1024 × 32 Instances)
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Figure 6.16: Makespan for Min-Min Without Fault Tolerance vs Makespan for

Min-Min With Fault Tolerance (1024 × 32 Instances)

Figure 6.17: Makespan for Max-Min Without Fault Tolerance vs Makespan for

Max-Min With Fault Tolerance (1024 × 32 Instances)
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Figure 6.18: Machine Utilisation for MET Without Fault Tolerance vs Machine

Utilisation for MET With Fault Tolerance (1024 × 32 Instances)

Figure 6.19: Machine Utilisation for MCT Without Fault Tolerance vs Machine

Utilisation for MCT With Fault Tolerance (1024 × 32 Instances)
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Figure 6.20: Machine Utilisation for Min-Min Without Fault Tolerance vs Machine

Utilisation for Min-Min With Fault Tolerance (1024 × 32 Instances)

Figure 6.21: Machine Utilisation for Max-Min Without Fault Tolerance vs Machine

Utilisation for Max-Min With Fault Tolerance (1024 × 32 Instances)
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Figure 6.22: Makespan for MET Without Fault Tolerance vs Makespan for MET

With Fault Tolerance (2048 × 64 Instances)

Figure 6.23: Makespan for MCT Without Fault Tolerance vs Makespan for MCT

With Fault Tolerance (2048 × 64 Instances)
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Figure 6.24: Makespan for Min-Min Without Fault Tolerance vs Makespan for

Min-Min With Fault Tolerance (2048 × 64 Instances)

Figure 6.25: Makespan for Max-Min Without Fault Tolerance vs Makespan for

Max-Min With Fault Tolerance (2048 × 64 Instances)
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Figure 6.26: Machine Utilisation for MET Without Fault Tolerance vs Machine

Utilisation for MET With Fault Tolerance (2048 × 64 Instances)

Figure 6.27: Machine Utilisation for MCT Without Fault Tolerance vs Machine

Utilisation for MCT With Fault Tolerance (2048 × 64 Instances)
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Figure 6.28: Machine Utilisation for Min-Min Without Fault Tolerance vs Machine

Utilisation for Min-Min With Fault Tolerance (2048 × 64 Instances)

Figure 6.29: Machine Utilisation for Max-Min Without Fault Tolerance vs Machine

Utilisation for Max-Min With Fault Tolerance (2048 × 64 Instances)

6.6 Summary

In this chapter, we have implemented the proposed heuristics. The heuristics are

compared with the existing heuristics and results are briefly discussed.
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Conclusion and Future Work

Task scheduling and fault tolerance are two important issues in the recent grid

computing scenario. Efficient scheduling heuristics are needed to utilize the resource

effectively and reduce the overall completion time. The main goal of grid task

scheduling is to increase the throughput based on availability of resources. In this

thesis, three batch mode heuristics are proposed and compared with min-min and

max-min heuristic. Apart from that, four fault tolerant scheduling are proposed

based on the existing heuristics. The experimental results show that SIM2, TSA

and RRTS show better performance than the other existing heuristics. The proposed

fault tolerant heuristics are experimented and compared with the existing heuristics.

It shows better performance than the other existing heuristics.

In the future, we can extend our scheduling approach by using communication

cost between tasks, deadline of tasks, dynamic priority and security mechanisms.

We can extend our fault tolerant approach to implement some more real life aspects

like transient fault, intermittent fault and benign fault.
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