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ABSTRACT 

Free vibration and buckling responses of laminated composite plate in the framework of first 

order shear deformation theory is analysed. The model has been developed in ANSYS using 

ANSYS parametric design language code. The model has been developed in ANSYS using 

ANSYS parametric design language code. In this study two shell elements 

(SHELL181/SHELL281) have been chosen from the ANSYS element library to discretise 

and obtain the elemental equations. The governing differential eigenvalue equations have 

been solved using Block-Lanczos algorithm. The solution predicts fundamental natural 

frequencies and critical buckling load of laminated composite plate. To establish the 

correctness of the proposed model, a convergence study has been done and the results 

obtained by using the model are compared with the available published literature. Effect of 

different parameters such as the thickness ratios, the aspect ratios, the modular ratios and the 

boundary conditions on the free vibration and buckling behavior of laminated composite plate 

is discussed. 
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1. Introduction 

A structural composite is consisting of two or more phases on a microscopic scale and 

their mechanical performance/properties are designed to be superior to those of the 

constituent materials acting independently. Out of the two phases one is said 

fibre/reinforcement usually discontinuous, stiffer and stronger. The second one is less stiff 

weaker and continuous phase namely, matrix phase. The properties of a composite depend on 

the properties of the constituents, their geometry and the distribution of the phase. Composite 

system includes concrete reinforced with steel and epoxy reinforced with graphite fibres, etc. 

The high performance structural composite is normally continuous fibre reinforcement and it 

also determines the mechanical properties like stiffness and strength in the fibre direction. 

The matrix phase provides protection to fibre, bonding, support and local stress transfer from 

one fibre to another. Laminated composite structures are being increasingly used in many 

industries such as aerospace, marine, and automobile due to their high strength to weight 

ratio, high stiffness to weight ratio, low weight and resistances to electrochemical corrosion, 

good electrical and thermal conductivity and aesthetics. 

The most popular numerical technique to solve governing differential equations today 

is the finite element method (FEM) and to reduce the computational cost many finite element 

software are also available in market for modelling and analysis of composite and advanced 

material structures.  

Analyses of composite plate have been based on the following approaches: 

(1) Equivalent single layer theories (2-D) 

(a) Classical laminated plate theory 

(b) Shear deformation laminated plate theories 

(2) three dimensional elastic theories (3-D) 

(a) Traditional 3-D elasticity formulation  

(b) Layerwise theories 

(3) Multiple model methods ( 2-D and 3-D) 

The equivalent single layer (ESL) plate theories are derived from the 3-D elasticity 

theory by making suitable assumption concerning the kinematics of deformation or the stress 

state through the thickness of laminate. In the three-dimensional elasticity theory, each layer 
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is modelled as a 3-D solid. The simplest ESL laminated plate theory is the classical laminated 

plate theory (CLPT), which is an extension of the Kirchhoff theory. To overcome the 

shortcomings of the classical theory, first order shear deformation theory (FSDT) has been 

developed. The FSDT extends the kinematics of the CLPT by including a gross transverse 

shear deformation in its kinematics assumption. 

 The objective of present work to developed a finite element model to analyse the free 

vibration and buckling behaviour of laminated composite plate. The present model has been 

developed in ANSYS and solved using ANSYS parametric design language (APDL) code. 

Effect of different parameters such as thickness ratios, aspect ratios, modular ratios and 

boundary conditions on the laminated composite plate has been discussed. 
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2. Literature Review 

In recent years, many researchers have been studied the free vibration and buckling 

behaviour of laminated plate to meet new challenges in the real world. Here, a short 

discussion on the different behaviour and analysis steps of composite plate has been 

discussed to connect the purpose of the work as discussed in aforementioned chapter.  

Aydogdu [1] investigated laminated composite plates and using an inverse method based on a 

new shear deformation theory. Zhen et al. [2] solved free vibration analysis of laminated 

composite and sandwich plates using Navier’s technique and the model has been developed 

based on higher order theory. Wang et al. [3] examined rectangular laminated composite 

plates via mesh less method using the FSDT plate model. Kant and Swaminathan [4] reported 

analytical solutions of free vibration behaviour of laminated composite and sandwich plates 

based on a higher order refined theory. Subramanian [5] analysed dynamic behaviour of 

laminated composite beams using higher order theories and finite element steps. Lee [6] 

studied the free vibration analysis of delaminated composite beams by using a layerwise 

theory and equation of motion are derived using Hamilton’s principles. Chen et al. [7] studied 

free vibration of generally laminated beams via state space based differential quadrature 

using the technique of matrix theory. Ferreira et al. [8] examined free vibration cases of 

symmetric laminated composite plates by radial basis functions and the plate kinematics is 

considered as the FSDT. Leung et al. [9] analysed free vibration of laminated composite 

plates subjected to in-plane stresses. Thai and Kim [10] studied free vibration of laminated 

composite plates using two variable refined plate theories. Khdeir and Reddy [11] examined 

the free vibrations of laminated composite plates in the framework of second order shear 

deformation theory. Tseng et al. [12] studied the in-plane vibration of laminated curved 

beams with variable curvature based on the Timoshenko type curved theory. Xiang and Kang 

[13] examined the free vibration analysis of laminated composite plates using the meshless 

local collocation method. Zhang et al. [14] studied recent developments in finite element 

analysis for laminated composite plates. Koutsawa and Daya [15] investigate the static and 

free vibration analysis of laminated glass beam on viscoelastic supports. Dong et al. [16] 

examined the vibration analysis of a stepped laminated composite Timoshenko beam. 

Aydogdu et al. [17] studied vibration behaviour of cross ply laminated square plates with 

general boundary conditions by using the two dimensional shear deformation theories. Lanhe 

et al. [18] studied vibration responses of generally laminated composite plates by the moving 

least squares differential quadrature method. Hu et al. [19] examined the vibration of twisted 

laminated composite conical shells.  
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Buckling is one of the major modes of failure of laminated structures and it is 

necessary to predict the critical load of the structural component for the easy replacement 

with good load bearing capacity. Wu et al. [20] studied the thermo-mechanical buckling of 

laminated composite and sandwich plates based on the global–local higher order theory. Guo 

et al. [21] studied buckling behaviour by taking the effect of elastic and geometric stiffness 

matrices of stiffened laminated plates using layerwise finite element formulation. Topal and 

Uzman [22] reported optimization of thermal buckling load of laminated composite plates 

based on the FSDT and a modified feasible direction (MFD) method. Matsunaga [23] 

examined thermal buckling of cross-ply laminated composite and sandwich plates based on 

the global higher order deformation theory. Shufrin et al. [24] studied the buckling of 

symmetrically laminated rectangular plates with general boundary conditions using a semi-

analytical approach. Ovesy and Assaee [25] examined effects of bend–twist coupling on 

postbuckling characteristics of composite plate using the finite strip approach. Shukla and 

Nath [26] studied thermo-mechanical postbuckling of cross ply laminated rectangular plates 

in the framework of the FSDT by taking von-Korman type nonlinearity in the formulation. 

Shukla and Nath [27] presented analytical solution of buckling and postbuckling of angle ply 

laminated plate under thermo-mechanical loading based on the FSDT and von-Karman type 

geometric nonlinearity. Shariyat [28] studied nonlinear dynamic and thermo-mechanical 

buckling behaviour of the imperfect laminated and sandwich cylindrical shells based on 

zigzag layer wise shell theory. 

It is true from the above literature that many attempts have been made in past to 

exploit the vibration and buckling strength of laminated structures using different theory and 

commercial tool. The present work aims to develop an ANSYS model of laminated structure 

using ANSYS parametric design language (APDL) code as discussed in earlier chapter to 

obtain the eigenvalue solutions of vibration and buckling cases. 
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3. ANSYS and its application 

In modern world design process is too close to precision so, the finite element method 

(FEM) has got worldwide appreciation due to its trustworthiness in design and analysis. It 

helps to predict the responses of various products, parts, subassemblies and assemblies by 

simulating the real life cases as par to the experimental results. Modelling and simulation step 

helps to reduce time of prototyping and moderates the physical verification expenses. It also 

increases the innovation at a faster rate. The optimization step in FEM tool adds a new 

paradigm to achieve the designer quest. ANSYS is now being used in a number of different 

engineering fields such as power generation, transportation, medical components, electronic 

devices, and household appliances for its easy applicability.  

The first ANSYS concept was discussed in a public forum during 1976. The 

designing was improved slowly from 2D-3D modeling. Initially, the modeling was confined 

to beam to shell and then it is extended to volume elements. In addition to that, graphics were 

introduced for better modeling and prediction. It is well known that, the FEM was initially 

involved to discretize the structure into nodes and joining them by specific rule elements are 

obtained and the respective responses are calculated. Today ANSYS can be used many fields 

such as fatigue analysis, nuclear power plant, medical applications, and to find the 

eigenvalues of magnetic field, etc. ANSYS is also very useful in electro-thermal analysis of 

switching elements of a super conductor, ion projection lithography, detuning of an HF 

oscillator by the mechanical vibration of an acoustic sounder. It is used to analyze the vehicle 

simulation and in aerospace industries as well. 

Based on the above discussion on the capability of ANSYS the present work has been 

modeled in ANSYS by choosing two different shell elements namely SHELL181 and 

SHELL281 from ANSYS library. SHELL181 element is used for the vibration and 

SHELL281 is used in the buckling analysis of laminated structures. In the following steps 

property and applicability of those two elements are discussed to have more clear idea.For 

present work the analysis is done by choosing two different shell elements from ANSYS 

library.  

SHELL181 is a four noded shell element and six degrees of freedom per node (three 

translations in x, y, z direction and rotation about x, y, z axis). It can model plastic behaviour, 

so the laminated composites are preferred to model because the matrix phase is not purely 

elastic in nature. Thin to moderately thick structures can be analyzed using the same element. 

The analysis of shells is easy whose thickness changes under nonlinear analysis of plates. 
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This shell element can also be used for analyzing layered shell structures. A pictorial 

presentation of SHELL181 is given in Fig. 1 [32] 

 

 

xo = Element x-axis if ESYS is not provided. 

x = Element x-axis if ESYS is provided. 

 

One more element SHELL281 is employed for the buckling analysis. This is an eight-

node linear shell element with six degrees of freedom at each node. Those are translation in x, 

y, z direction and rotation about x, y, z axis. It is well-suited for linear, large rotation, and/or 

large strain nonlinear applications. It uses the same theory and analyses all the elements that 

uses SHELL181. The element formulation is based on logarithmic strain and true stress 

measures. Fig. 2 shows the idea regarding the SHELL281 element. The details of the element 

can be seen in reference [32]. 

 

xo = Element x-axis if element orientation is not provided. 

x = Element x-axis if element orientation is provided. 

 

Fig. 2 SHELL281 geometry 

Fig. 1 SHELL181 geometry 
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4. Mathematical formulation 

It is well known that midplane kinematics of laminated composite has been 

considered as the FSDT using the inbuilt steps in ANSYS and conceded as follows: 

     

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

x

y

z

u x y z u x y z x y

v x y z v x y z x y

w x y z w x y z x y







 

 

 
           (1) 

where, u, v and w represents the displacements of any point along the (x, y, z) coordinates. u0, 

v0 are the in-plane and w0 is the transverse displacements of the mid-plane and θx, θy are the 

rotations of the normal to the mid plane about y and x axes respectively and θz is the higher 

order terms in Taylor’s series expansion. The geometry of two-dimensional laminated 

composite plates with positive set of coordinate axis is shown in Fig. 3 

 

Fig. 3 Geometry of laminated composite plate with positive set of coordinate axis 

 

where,  0 0 0              
i i i i i i

T

i x y zu v w       . The shape functions for four noded shell element (j=4) 

and eight noded shell element (j=8) are represented in Eqn. (1) and (2), respectively in natural 

(ξ-η) coordinates, and details of the element are given as 
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Strains are obtained by derivation of displacements as:  

              
   , , , , , , , , ,

T

x y z y x z y x zu v w u v v w w u                    (4)           

where,    
T

x y z xy yz xz      
, 

is the normal and shear strain components of 

in plane and out of plane direction. 

The strain components are now rearranged in the following steps by in plane and out 

of plane sets. 

The in-plane strain vector: 

  

0

0

0

xx x

y y y

xy xyxy

z

 
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 

    
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                                         (5) 

The transverse strain vector: 

                        

0

0

0
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yz yz yz

xz xzxz

z
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(6) 

where, the deformation components are described as:  
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(8) 

The strain vector expressed in terms of nodal displacement vector:  

                                       {ε} = [B]{δ}             (9) 

where, [B] indicates the strain displacement matrix containing interpolation functions and 

their derivatives and {δ} is the nodal displacement vector. 

 The generalized stress strain relation with respect to the reference plane is expressed 

as: 

                                                       {σ} = [D]{ε}                                                                   (10) 

where, {σ} and {ε} is the stress and strain vectors, respectively and [D] is the rigidity matrix. 

The element stiffness matrix [K] and mass matrix [M] can be easily derived with the help of 

virtual work method which may be expressed as: 

                           
      

1 1

1 1

T
K B D B J d d 

 

 
                                      (11)

 

                           
      

1 1

1 1

T
M N m N J d d 

 

 
                                                  

(12) 

where, J   Is the determinant of the Jacobian matrix, [N] is the shape function matrix and [m] 

is the inertia matrix. The integration has been carried out using the Gaussian quadrature 

method. 
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The free vibration analysis is used to determined natural frequencies by given 

equation: 

                                       
    2 0nK M 

                                                           
(13) 

The eigenvalue type of buckling equation can be expressed as in the following steps 

by dropping force terms and conceded to 

                                                         0cr GK K                                                        (14) 

where,  GK is the geometric stiffness matrix and cr is the critical mechanical load at which 

the structure buckles. 
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5. Results and Discussion 

In the present study, the free vibration and buckling behaviour of laminated composite 

panels has been investigated using APDL code developed in ANSYS environment. Two 

elements are used for the analysis as discussed earlier, a four nodded six degrees of freedom 

structural shell element, SHELL181 and eight-nodded six degrees of freedom element 

SHELL281. The numerical values for the fundamental natural frequency and buckling load 

are calculated using Block-Lanczos method. The non-dimensional frequency and buckling 

load parameters are as follows:     
1

22 2

2/  b E h     and 
  2

3

2
xx

aN
E h

  

The material properties for vibration and buckling behaviour are presented in Table 1 

and 2 respectively. 

Table 1                   Table 2 

E1 = 40E2 G12 =  0.6E2 ν12 =0.25 

E2 = E3 G23 = 0.5E2 ν23 =0.25 

E2=1 G13=  0.6E2 ν13 =0.25 

 

The boundary conditions are used for the computation purpose are expressed as follows: 

Simply supported (SSSS):    v=w=θy=0       at    x=0, and a;                

                                   u=w=θx=0        at    y=0 and b;      

Clamped (CCCC):      u= v =w=θx= θy=0        at    x=0 and a   and    y=0 and b;      

Convergence and validation study 

In this numerical analysis two different problem of square (a/b = 1) laminated 

composite angle ply (±45
0
)2 and symmetric cross-ply (0

0
/90

0
/0

0
) plates have been analyzed 

for the validation of free vibration and buckling behavior, respectively. As a first step, the 

developed ANSYS model is validated by comparing the results with references [11] for non-

dimensional fundamental natural frequency with different mesh sizes and is shown in Fig. 4. 

It is seen from the Fig. 4 that the frequency values showing good results with the reference 

[11], a (18×18) mesh size is sufficient and it has been used further investigation of vibration 

behavior of laminated composite plate. The buckling analysis of laminated plate has been 

carried out under biaxial loading. The convergence of the present developed model has been 

obtained and tabulated in Table 3 and a (14×14) mesh is sufficient to give the result. It can be 

E1 = 20E2 G12 =  0.6E2 ν12 =0.25 

E2 = E3 G23 = 0.5E2 ν23 =0.49 

E2=1 G13=  0.6E2 ν13 =0.25 
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seen that the present results are showing good agreement in comparison to the HSDT model. 

 

Table 3. Convergence of buckling load for cross ply (0
0
/90

0
/0

0
) simply supported laminate 

Mesh size Non dimensional buckling load 

10×10 5.6231 

11×11 5.1125 

12×12 4.6868 

13×13 4.3266 

14×14 4.0178 

Wu and Chen [20] 4.963 

 

 

 

 

 

 

 

 

 

 

 

Some new results are obtained using SHELL181 and SHELL281 elements with 

various thickness ratios (a/h), aspect ratios (a/b), modular ratios (E1/E2) and different 

boundary conditions and five different modes of vibration are presented. Fig. 5 and 6 shows 

that the frequency values (different modes) of different mode increases as thickness ratio 

increases for both support conditions. It is clear from Fig. 7 that the increase in aspect ratio 

changes the shapes of the plate and increases the values of frequency. It can be seen from 

Fig.8 that the frequency values of laminated plate increases with the increasing modular ratio. 

The laminated composite plate structure shows higher value of non-dimensional frequency 

under clamped support condition for different modes. The non-dimensional buckling loads 
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Fig. 4 Variation of nondimensional fundamental frequency of a simply 

supported square plate under different mesh sizes 



 
 

13 
 

parameters for simply supported laminated plate for different thickness ratios (a/h) and the 

aspect ratios (a/b) under biaxial load have been computed and shown in Fig.10 and 11, 

respectively. It can easily be seen that the buckling load decreases with the increase in 

thickness ratios and increases with increase in aspect ratios.   
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Fig. 5 Variation of nondimensional frequency of a 

simply supported square plate under different modes and 

thickness ratio 

Fig. 6 Variation of nondimensional frequency of a clamped 

square plate under different modes and thickness ratio 
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simply supported plate under different modes and aspect 
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Fig. 8 Variation of nondimensional frequency of a simply 

supported square plate under different modes and modular 
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Fig. 9 Variation of nondimensional frequency of a square laminated 

plate under different modes and boundary conditions. 
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Fig.10  Buckling load  of  a square laminated plate 

under different thickness ratio 

Fig. 11 Buckling load of a square laminated plate under 

different aspect ratio 
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6. Conclusions 

In this present work, a finite element model is developed in ANSYS using APDL 

code and its comprehensive testing has been done. The ANSYS model is used to obtain the 

free vibration and buckling responses for laminated plates with different aspect ratios, 

thickness ratios and modular ratio under different support condition for different modes. The 

following points can be concluded from the present study are as follows: 

 The convergence study is clearly showing that the present developed model is capable 

to solve different vibration and buckling problems with good accuracy and less 

computational cost.  

 The non-dimensional frequency value increases with increase in the thickness ratios 

and aspect ratios. 

 Similarly, the frequency of laminated plate increases with increase in modular ratio 

i.e., because of the fact that the degree of orthotropicity increases as the modular ratio 

increases.  

 In addition to that the non-dimensional frequency of clamped plate is higher as 

compared to other. 

 The buckling load is decreasing with the increase in thickness ratio and the response 

shows a reverse response for aspect ratio. 
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