
Validation of UML Models for

Interactive Systems with

CPN and SPIN

Parne Balu Laxman

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, Odisha, India

Validation of UML Models for Interactive
Systems with CPN and SPIN

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Technology

in

Computer Science and Engineering
(Specialization: Software Engineering)

by

Parne Balu Laxman

(Roll No.: 211CS3070)

under the supervision of

PROF. S. K. Rath

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela, Odisha, 769 008, India

June 2013

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Odisha, India.

Certificate

This is to certify that the work in the thesis entitled Validation of UML models

for Interactive Systems with CPN and SPIN by Parne Balu Laxman

is a record of an original research work carried out by him under my supervision

and guidance in partial fulfillment of the requirements for the award of the degree

of Master of Technology with the specialization of Software Engineering in the de-

partment of Computer Science and Engineering, National Institute of Technology

Rourkela. Neither this thesis nor any part of it has been submitted for any degree

or academic award elsewhere.

Place: NIT Rourkela Prof. S. K. Rath
Date: June 3, 2013 Professor, CSE Department

NIT Rourkela, Odisha

Acknowledgment

I am grateful to numerous local and global peers who have contributed towards

shaping this thesis. At the outset, I would like to express my sincere thanks to

Prof. S. K. Rath for his advice during my thesis work. As my supervisor, he has

constantly encouraged me to remain focused on achieving my goal. His observa-

tions and comments helped me to establish the overall direction of the research

and to move forward with investigation in depth. He has helped me greatly and

been a source of knowledge.

I extend my thanks to our HOD, Prof. A. K. Turuk for his valuable advices

and encouragement.

I am really thankful to my all friends. My sincere thanks to everyone who has

provided me with kind words, a welcome ear, new ideas, useful criticism, or their

invaluable time, I am truly indebted.

I must acknowledge the academic resources that I have got from NIT Rourkela.

I would like to thank administrative and technical staff members of the Depart-

ment who have been kind enough to advise and help in their respective roles.

Last, but not the least, I would like to dedicate this thesis to my family, for

their love, patience, and understanding.

Parne Balu Laxman

Roll: 211CS3070

Abstract

Unified Modelling Language (UML) is considered to be the standard language

for object-oriented modeling and analysis. However, UML cannot be used for

automatic analysis and simulation. The system model developed on the basis

of UML tool is not executable in nature. So, behavior of the model cannot be

validated until it is implemented. In this thesis, an approach for transforming

UML Interaction Overview Diagram (IOD) to Colored Petri Net (CPN) models is

proposed. This transformation is used to bridge the gap between informal notation

(UML diagrams) and more formal notation (CPN models) for analysis purpose.

CPN model is validated by CPN tool. CPN tool is executable, and it is possible

to inspect the behavior of the system by simulating CPN model. An interaction

overview diagram has been designed for the different operation of an Automatic

Teller Machine (ATM) using Magic Draw. Later, this diagram is transformed

to CPN model. The specification of the proposed system has been analyzed by

simulating the CPN model on CPN tool.

Model checking is an important technique for ensuring the correctness of any

system. This thesis presents a case study for model checking through an example

of verifying ATM with Simple PROMELA Interpreter (SPIN). The ATM system

was modeled in Process or Protocol Meta Language (PROMELA) for business

flow of an ATM system. It is then checked for deadlock and unreachable code

with SPIN model checker. Here the SPIN model checker is used to apply Linear

Temporal Logic (LTL) formula on the ATM system and check for liveness and

safety properties. The results showed that the ATM model did not have deadlock

and unreachable code, and also satisfied the liveness and safety properties.

Keywords: Automatic Teller Machine; Colored Petri Net; Formal Specifica-

tion; Linear Temporal Logic; Model Checking; PROMELA; SPIN

Contents

Certificate i

Acknowledgment ii

Abstract iii

List of Figures vi

List of Tables vii

1 Introduction 2

1.1 Introduction . 2

1.2 Motivation of Our Work . 4

1.3 Objective of Our Work . 4

1.4 Problem Statement . 5

1.5 Thesis Organization . 6

2 Literature Review 8

3 Related Concepts 12

3.1 Unified Modeling Language . 12

3.1.1 Aims of Modeling . 12

3.1.2 Necessity of Building Model 13

3.1.3 Advantages of UML . 13

3.1.4 Roles of Interaction Overview Diagram in UML 13

3.2 Petri Net and Colored Petri Net . 14

3.2.1 CPN Tool : . 15

3.2.2 State Space Analysis : . 15

3.3 Model Checking . 16

iv

3.3.1 PROMELA . 16

3.3.2 Linear Temporal Logic . 16

3.3.3 SPIN . 17

4 Specification and Verification of Interaction Overview Diagram
using Colored Petri Net 19

4.1 Introduction . 19

4.2 Interaction Overview Diagram Of ATM Withdraw Operation 20

4.3 Rules for Transformation of IOD to CPN Model 21

4.4 CPN Model of an Interaction Overview Diagram 24

4.5 Summary . 29

5 Model Checking using PROMELA and SPIN 31

5.1 Introduction . 31

5.1.1 PROMELA . 32

5.1.2 SPIN . 32

5.1.3 Objective . 32

5.2 Model Checking . 33

5.2.1 Formal Model of an ATM System 33

5.2.2 Linear Temporal Logic Properties Definition 34

5.2.3 Verification of Model using jSPIN 36

5.3 Summary . 40

6 Conclusion and Future Work 42

6.1 Conclusion . 42

6.2 Future Work . 43

Bibliography 44

List of Figures

4.1 Interaction Overview Diagram . 22

4.2 Sequence Diagram of Successful Transaction 23

4.3 Sequence Diagram for Unauthorized User 23

4.4 Sequence Diagram of Card and PIN Validation 23

4.5 Sequence Diagram for Amount Validation 23

4.6 CPN Model for Interaction Overview Diagram 25

4.7 CPN Model for Interaction Overview Diagram after simulation . . . 26

4.8 Subpage showing Unauthorized User 27

4.9 Subpage to check enter amount is multiple of 100 or not 27

4.10 Subpage to check whether Balance after withdraw is greater than

500 or not . 27

4.11 Subpage Showing Successful Transaction 27

4.12 State Space Analysis of CPN Model 28

5.1 State Model of Automated Teller Machine 35

5.2 Check Option Showing No Error in PROMELA Code 37

5.3 LTL Formula translated to PROMELA Format 37

5.4 Channels and Message types for ATM system 38

5.5 Random Interaction between channels of ATM system 38

5.6 Verification of Safety Property Using SPIN 39

5.7 Automata Generated using SPIN 39

vi

List of Tables

3.1 Linear Temporal Logic Operators 17

vii

Introduction

Chapter 1

Introduction

1.1 Introduction

Software system model specification plays a critical role in software development

process. In a software development life cycle, after completing requirements anal-

ysis and getting a requirements specification document, the model for the software

system need to be designed. Modeling and design activities play a significant role

in bridging a gap between a requirements specification and an implementation of

the system. If a designer adopts the system model that is not appropriate for the

requirements then the system with proper functionality (quality) would not be

produced and it would lead to wasting huge amount of cost and development time

because he or she has to re-develop the system of a certain quality. To avoid this,

describing an architectural design formally and validating its appropriateness at

the architectural design step, before starting the implementation of the system, is

very helpful [1] [2].

As software specification and behavioral analysis play a critical role in software

development process, this thesis addresses a technique for describing behavioral

aspects of software architecture. In this thesis, a process for deriving system

specification combining the UML [3] as object-oriented method and Colored Petri

Net [4] (CPN) as a formal method has been proposed. CPN is an extended

version of Petri Net [5] and has several powerful analysis and simulation techniques

associated with tools such as Design/CPN are being used. At the beginning of

the process; Interaction Overview Diagram (IOD) of UML 2.x is developed using

2

1.1 Introduction

magic draw and later the diagram is transformed to CPN model by applying the

proposed mapping rules [6] and considering states as places and user interactions

as guard conditions of transitions. The use of CPN tools may allow for verification

and simulation of the resulting specifications. Simulation tools can detect which

parts of the design would be the inappropriate ones i.e. not designed according

to the given requirement. So, by simulating the particular architectural CPN

model on CPN tool [7], the fault with the system can be identified before the

implementation of the model.

The objective of this thesis is to employ model checking technique to validate

important properties of Automated Teller Machine (ATM). The book Object-

Oriented Modeling and Design by James R Rumbaugh [3] provides a good de-

scription of ATM system. Based on the requirements given in the book, the

PROMELA (Process Meta Language) model is develop to validate the proper-

ties of an ATM. The ATM state diagram from Object-Oriented Modeling and

Design [8] is used as the primary source for modeling the ATM with PROMELA

language [9] [10]. The closed system of the ATM model consists of three active en-

tities: Card-holder, ATM, and Bank-server. From the state diagram, It is possible

to extract various actions of the three active entities [11]. The state diagram also

helps to identify the different system properties which need to be validate. Once

the ATM has been modeled, SPIN (Simple PROMELA Interpreter) [10] model

checker is used to validate the ATM model against deadlock, un-executed code

and properties that are define according to state diagram of an ATM system. For

efficiency, used jSPIN , a graphical user interface for SPIN model checker. To

validate against deadlock and un-executed code, need to set the verification mode

to safety according to the manual [12] if the validation is successful, the output

should report no errors and zero unreachable state.

3

1.3 Objective of Our Work

1.2 Motivation of Our Work

The client and developer has different point of views towards the requirement of

any software system. Hence, the design and implementation of the system is not so

easy. To design an error free system, various constraints need to be considered and

these constraints should be validated to meet the customer requirement. Several

reasons exists to specify and to validate the UML diagrams using CPN. UML

diagram lacks support for strong simulation and analysis techniques. CPN’s are

graphical formalisms, which can validate, verify and simulate the UML in order

to check the correctness of the model. CPN’s have sound mathematical properties

and are suitable for visualization and provides executable model which helps in

analyzing different properties through state space analysis of CPN model. The

Model checking methodology with the help of SPIN and PROMELA has been

done to validate the safety and liveness property of the system model.

1.3 Objective of Our Work

The objective of our research work is to analyze, evaluate, design an error free

model; at the design level to avoid wasting huge amount of cost and development

time require for the re-development of the system of a certain quality. The research

work carried out is based upon following objectives:

� Identified the major functionalities of the application system and modeled

the system using interaction overview diagram.

� Later the diagram is converted to a CPN model and simulated with the help

of CPN tool. The use of CPN tools allow for verification and simulation of

the resulting specifications.

� Simulation tools can detect which parts of the model would be the inap-

propriate ones i.e. not designed according to the given requirement. So, by

simulating the particular architectural CPN model on CPN tool [7], the fault

with the system can be identified before the implementation of the model.

4

1.4 Problem Statement

� Later the verification of the different system properties and linear temporal

logic formula’s is done with the help of PROMELA and SPIN.

1.4 Problem Statement

The system developer must analyze the different views of the system to build

complex systems. Models should be built by using precise notations, should be

verified to satisfy the requirements of the system, and then adding detail gradually

to transform the models using validation tool. The main aim of this thesis is to

analyze and design the models which should be unambiguous, precise and verifiable

using CPN and SPIN. In this thesis, the UML models are built by using an

analytical tool i.e., Magic Draw, to give a precise meaning to the UML model

and CPN has been used to remove the ambiguity present in the model. After

precise development of the model, CPN is used to check the model and make

it executable as the UML model is not directly executable. When the model is

developed successfully, CPN state space diagram should be analyzed to generate

the different properties of the model.

SPIN is a generic verification system that supports the design and verification

of asynchronous process systems. SPIN accepts the design specification written in

the verification language PROMELA and it accepts the correctness claims specified

in the syntax of standard Linear Temporal Logic (LTL). To illustrate the process

of model checking, example of different operation of an Automatic Teller Machine

(ATM) System is considered.

5

1.5 Thesis Organization

1.5 Thesis Organization

The thesis is organized as follows: Chapter 2 describes the literature review

done for this thesis. Chapter 3 discusses the related concepts used in this the-

sis. Chapter 4 proposed work of Validating Interaction Overview Diagram using

CPN through the case study of Automatic Teller Machine. Chapter 5 explains

the model checking with SPIN and PROMELA through the case study of ATM.

Finally, conclude with summary of contributions and discuss the future work in

Chapter 6.

6

Chapter 2

Literature Review

In spite of informal semantics and some of the ambiguities, UML is a widespread

modeling language used in both academic and industry. On the other hand, Petri

nets are mathematical modeling language with a formal semantics [5]. Petri Nets

are well suited for formal verification. However, although there is a growing inter-

est in model checking techniques from industry, the software engineers continue to

be unfamiliar with such a formalism. It is convenient to supply formal verification

techniques of UML diagrams that are completely automatic and transparent to

the designer.

In [13] Bowles and Dulani have defined a formal strongly consistent transfor-

mation from UML 2 sequence diagrams to colored petri net. They define the

language of sequence diagram and show how this is mapped onto an equivalent

language of CPNs through formal transformation rules. Researches on UML 2

activity diagrams are carried out by Storrle [14] who analyzed the semantics of

these diagrams and proposed an approach to their formalization.

Staines [15] proposed a suitable formalism to achieve the transformation from

UML2 activity diagrams to Petri nets. The transformation of UML 2 activity

diagrams into petri net semantics have been researched by various reasons. Trans-

lating UML activities into petri net creates new problems. The petri net diagrams

are

� More complex

� Contain more node and edges.

8

� Unsuitable for visualization by stakeholders.

A solution to this problem is to translate the UML activity diagram into a fun-

damental modeling concepts petri net diagram compact notation. This can be

converted to CPN for execution and validation. The petri net semantics are rep-

resented using reduced FMC-PND which are easier to comprehend than a complete

petri net. The FMC-PND is converted into CPN for more detail verification and

simulation.

In [16] Ribeiro and Fernandes presents a set of rules that allows software en-

gineers to transform the behavior described by UML 2.0 sequence diagram into

colored petri net. The main purpose of the transformation is to allow the develop-

ment team to construct animations based on the CPN that can be shown to the

users or the client in order to reproduced the expected scenario and thus validate

them. Thus, nontechnical stakeholders are able to discuss and validate the cap-

tured requirement. They shows a set of rules to transform sequence diagram into

equivalent CPN’s for animation proposes.

Elkoutbi and Rodulf [17] have given the procedure for transformation of the

simple use case structure to colored petri nets and Kamandi et al. [18] have trans-

formed the use case to Object Stochastic Activity Network (OSAN). There are

different approaches developed for the transformation of different UML diagrams

to Petri nets. Bernardi et al. [19] define transformation of sequence diagram to a

Generalized Stochastic Petri Nets, the transformations are based on mapping mes-

sages as well as conveying them and in Ourdani approach [20] the transformation

is based on message sender and receiver component.

There have been several proposals for semantics of UML2 activity diagrams so

far, but very little for the Interaction Overview Diagram (IOD)and anyway none

using Hierarchical Colored Petri Net (HCPN). This thesis proposes a formalization

of IOD’s using HCPN’s, for this purpose, an adequate mapping between the IOD

and HCPN structure is presented.

9

Model checking is an important method for formal verification of state tran-

sition systems because it allows the automatic analysis of the designed system.

The model checking of an system model consists of several steps. The first step is

modeling investigated system, i.e., convert the system to a formalism which can be

accepted by a model checking tool. In the second step it is important to state the

properties that the system must satisfy. The temporal logic formula are used for

the specifications of system properties. The third step is the verification. In the

verification the system is model in PROMELA and validated using SPIN model

checker. So this way system model is specified and verified using SPIN model

checker.

In [21], the Dynamic Host Configuration Protocol (DHCP) is studied accord-

ing to the concept of modeling and verification. In [22], the paper proposed a

formal method for the verification of ebXML based e-commerce system. And the

approach allowed to highlight some weakness of the protocol mainly due to the

lack of a clear and complete set of specifications. In [23], the paper shows how fi-

nite model-checking based approach can be applied to analyze properties of ad-hoc

sensor networks. It proves that SPIN and finite model checking are appropriate

for studying properties of ad-hoc sensor networks specifications. In [24], the paper

gives an approach to verify the object model of rCOS using model checker Spin.

10

Chapter 3

Related Concepts

3.1 Unified Modeling Language

Modeling is the central part of all activities performed in the system which leads

up to the development of a good software. UML is a well-defined, expressive and

powerful to a wide spectrum of problem domains [25]. It describes the software

system both structurally and behaviorally. It describes the static as well as dy-

namic behavior of the software system. The UML is used to specify, visualize,

modify, and document the artifacts of an object-oriented software-intensive sys-

tem under development. It does not provide a process for developing software

but it gives a syntactic representation, to describe all parts of a system i.e. data,

function and behavior through a number of diagrams. Here in this thesis UML is

used to design the interaction overview diagram for different operation of an ATM

systems [3].

3.1.1 Aims of Modeling

� Models help in visualizing the system.

� Models specify the structure or behavior of the system.

� Models gives the template which helps in constructing the system.

� Models document the decisions that has been made by the developer.

12

3.1 Unified Modeling Language

3.1.2 Necessity of Building Model

� Communicating with the desired structure and behavior of the system.

� Visualizing and controlling the system’s architecture.

� Better understanding of the system which is building and exposing oppor-

tunities for re-usability and simplification.

� Managing risk.

3.1.3 Advantages of UML

� UML is process independent but it should be used in a process which is use

case driven, incremental, architecture-centric and iterative.

� UML is a standard language used for writing software blueprints.

� UML provides a visual expression of the software system which is achieved

by using various UML notations and diagrams.

� UML omits the irrelevant details but allows concise expression of the essen-

tial aspects of the software system being developed.

3.1.4 Roles of Interaction Overview Diagram in UML

Interaction Overview Diagram (IOD) is one of the fourteen types of diagrams of the

Unified Modeling Language (UML), which can picture a control flow with nodes

that can contain interaction diagram. IOD is found in version 2.0 due to the need

to overcome the faults and disadvantages of activity and sequence diagrams. The

nature of the IOD is to show the interaction of the different system components

within the system at the higher level of abstraction. The stronger side of the

IOD is the fact that it can show dependence between the important sequences

of a business system, which can be presented by a flow chart or by an activity

diagram. A single sequence within the IOD can be sequence diagram or use case

diagram connected with if then else structure which enables decomposition to

lower levels of abstraction.

13

3.2 Petri Net and Colored Petri Net

3.2 Petri Net and Colored Petri Net

A Petri net is one of several mathematical modeling languages for the description

of distributed system [5]. It is a formal, graphical, executable technique for the

specification and analysis of concurrent and dynamic systems. There has been

considerable research on petri net to support model properties such as synchro-

nization, communication and concurrency. It has two serious drawbacks i.e. there

are no concepts of data; therefore the models often became excessively large and

also there are no hierarchy concepts; therefore this was not possible to build a

large model having a set of sub models with well-defined interfaces.

An extension of Petri Net, known as Colored Petri Net (CPN) [4] was intro-

duced by K. Jensen in 1987. In addition to existing concepts like places, tokens

and transitions, CPN includes the concept of colors, expressions and guards [26].

Colored Petri Nets are one of the most well-known high-level Petri nets. CP-nets

include both data structuring and hierarchical decomposition. The graphical rep-

resentation makes it easy to see the basic structure of a complex CPN model i.e.,

to understand how the individual processes interact with each other [26].

Definition: A Colored Petri Net is a nine tuple CPN = (Σ, P, T, A, N, C,

G, E,I) satisfying the following requirements:

1. Σ is a finite set of non-empty types, called color sets.

2. P is a finite set of places.

3. T is a finite set of transitions.

4. A is a finite set of arcs such that:

� P ∩ T = P ∩ A = T ∩ A = φ

5. N is a node function. It is defined from A into P X T ∪ T X P.

6. C is a color function. It is defined from P into Σ.

7. G is a guard function. It is defined from T into expressions such that:

14

3.2 Petri Net and Colored Petri Net

� ∀tεT : [Type(G(t)) = Bool ∧ Type(var(G(t))) v Σ]

8. E is an arc expression function. It is defined from A into expressions such

that:

� ∀aεT : [Type(E(a)) = C(p(a))MS ∧ Type(var(E(a))) v Σ]

9. I is an initialization function. It is defined from P into closed expressions

such that:

� ∀pεP : [Type(I(p)) = C(p)MS]

3.2.1 CPN Tool :

In practice, a CPN model can be created using CPN tool [7] developed by Univer-

sity of Aarhus, Denmark. It is a graphical tool that allows one to create a visual

representation of a CPN model. It is based on state machine theory and is an

extension of place-transition petri net [27].

3.2.2 State Space Analysis :

All the states of a system model constitute its state space. The state spaces are

calculated fully automatically by the CPN state space tool using a state space con-

struction algorithm [26]. The CPN tool supports a number of stop and branching

options that makes it possible for the user to control the state space generation [27].

The state space is a tuple < S0,S,T > such that:

� S0 ε S is the initial state which is composed of all the initial markings in the

CPN.

� S is the set of all states in state spaces. All the elements of S will be reached

by the transition fire sequence from S0.

� T is the set of transitions. All the elements of T will be enabled if the

associated arc expressions of all incoming arcs can be evaluated to a multi-

set, compatible with the current tokens in their respective input places, and

its guard is satisfied.

15

3.3 Model Checking

3.3 Model Checking

Model checking is an important method for formally verifying state transition

systems because it allows the fully automatic analysis of investigated system.

There are many model checking tools, have been developed to this aim.

3.3.1 PROMELA

PROMELA is a language for building verification models that represent an ab-

stract model of a system, which contains only an important aspects that are

relevant to the properties which users wants to verify. The SPIN is used to verify

the behavior of processes which interact with each other in the system model [11].

The relevant behavior of a system is modeled in PROMELA and verified. In

PROMELA program consist of process, message channels, and variables. Pro-

cesses are global objects. Message channels and variables can be declared either

globally or locally inside a process. Processes specify behavior, channels and global

variables define the environment in which the processes run [12].

3.3.2 Linear Temporal Logic

Temporal logic is a formal system for specifying and reasoning about concurrent

programs. It provides a uniform framework for describing system at any level of

abstraction, thereby supporting hierarchical specification and verification. Due

to it’s temporal quantifiers temporal logic is convenient and appropriate means to

reason with time related proposition. It mainly used to express the time dependent

correctness property “the program never deadlocks” or “an interrupt is eventu-

ally handled” uses temporal logic. Temporal logic is well suited for the formal

specification, verification and requirements description of the system. Different

operators which are used for the declaration of linear temporal logic formula are

listed in Table- 3.1.

16

3.3 Model Checking

Table 3.1: Linear Temporal Logic Operators

Temporal Operator Pictorial Notation Textual Notation

Next Operator # X

Eventually Operator 3 F

Globally or Alaways Operator 2 G

Until Operator ∪ U

3.3.3 SPIN

SPIN (Simple Promela Interpreter) is a generic verification system that sup-

ports the design and verification of asynchronous process systems [10]. This

model checker accepts design specifications written in the verification language

PROMELA [28] (Process Meta Language) and it accepts correctness claims spec-

ified in the syntax of standard Linear Temporal Logic (LTL) [9]. SPIN helps in

finding unreachable codes or deadlocks also verifies LTL properties. SPIN can be

used as a full LTL model checking system, supporting all correctness requirements

expressible in linear time temporal logic, but it can also be used as an efficient

verifier for more basic safety and liveness properties [29].

17

Chapter 4

Specification and Verification of
Interaction Overview Diagram
using Colored Petri Net

4.1 Introduction

To build complex systems, the developer must abstract different views of the sys-

tem, build models using precise notations, verify models which satisfy the require-

ments of the system, and gradually add detail to transform the models into an

implementation level. Analysis of software requirements using UML-based system

model are not executable in nature; so the behavior of the model cannot be vali-

dated until it is implemented. In this thesis, a technique for describing behavioral

aspects of software architecture formally based on Colored Petri Nets (CPNs) has

been used. In this thesis the behavioral model of an ATM withdraw operation

has been developed as an interaction overview diagram of UML and it is proposed

to transform the diagram to a CPN model. CPN tool is used for validation pur-

pose because it not only shows the CPN model’s behavior but also checks several

properties such as boundedness, home, liveliness and fairness properties. The vali-

dation using CPN tool and ultimately depicting the validation through state space

diagram justifies the choice of the particular software behavioral model. CPN tool

is used for editing, simulating and analyzing CPN model.

19

4.2 Interaction Overview Diagram Of ATM Withdraw Operation

4.2 Interaction Overview Diagram Of ATM With-

draw Operation

Interaction Overview Diagram (IOD) is useful design tool since it provide a dy-

namic view of the system behavior, which can be difficult to extract from static

diagrams or specification [2]. IOD combines the power of sequence diagram and

activity diagram together. It can be used to describe an overview of a complex sys-

tem by embedding the objects of activity diagram, inline interaction or interaction

occurrences inside a control flow structure. IOD provides high level structuring

mechanism for sequence diagrams. IOD illustrates dependence between the im-

portant sequences of a system, which can be presented by an activity diagram.

The notations used in IOD incorporate constructs from sequence diagrams with

fork, join, decision and merge nodes from activity diagrams [30]. Even though

UML 2.x brings more accuracy and precision than UML 1.x, it remains informal

and lacks tools for automatic analysis and validation [6].

In this thesis the specification and validation of IOD is done with the help

of CPN. For this the transformation of the IOD into CPN model is done based

on some mapping rules. The CPN model is simulated for the validation purpose.

The Following Figure-4.1 shows a UML interaction overview diagram which models

the behavior of the different operation of an ATM system. To Perform a normal

ATM withdrawal, Card-holder must acquire an authorization for their pin number

and ensure that the amount requested must be in some proper format and also

withdrawn amount should be equal to or less than the balance amount. Customers

can successfully withdraw money only after both of the conditions are satisfied. For

their validation, here manually transform the interaction overview diagram shown

in Figure- 4.1 into a CPN model by applying the proposed mapping rules and

then shows the behavioral correctness of the a normal withdrawal and abnormal

withdrawals due to an invalid PIN number and the request of an excessive amount.

To prove the behavioral correctness of the CPN model the simulation function

provided by CPN tool is used. The IOD shows the interaction of the different

sequences diagrams, Figure-4.2, Figure-4.3, Figure-4.4 and Figure-4.5 shows some

20

4.3 Rules for Transformation of IOD to CPN Model

of the sequence diagram which are refereed in the IOD of an ATM system.

4.3 Rules for Transformation of IOD to CPN

Model

1. Rules for a control node:

� An initial node is mapped into the place in the CPN.

� A final node is mapped into the place in the CPN.

� A fork node is mapped into the transition in the CPN.

� A join node is mapped into the transition in the CPN.

� A merge node is mapped into the place in the CPN.

� A decision node is mapped into the place in the CPN.

2. Rules for an executable node:

� An action is mapped into the transition in the CPN.

� Each action of the conditional node is mapped into the transition that

finally merges into a single input place in the CPN, and each condition

of the conditional node is mapped into the guard condition of the arc

derived from a single output place.

� Each action of the setup, body, and test section of the loop node is

mapped into the transition in the CPN, and each condition of the test

section is mapped into the guard condition of the arc in the CPN.

� Each action of the sequence node is mapped into the transition con-

nected to the place through arc in the CPN.

3. Rules for an interaction edge:

� A control flow is mapped into the arc in the CPN.

� An object flow is mapped into the arc in the CPN.

4. Exceptional Rules for a connection between two Transitions:

21

4.3 Rules for Transformation of IOD to CPN Model

Figure 4.1: Interaction Overview Diagram

22

4.3 Rules for Transformation of IOD to CPN Model

Figure 4.2: Sequence Diagram of Suc-
cessful Transaction

Figure 4.3: Sequence Diagram for Unau-
thorized User

Figure 4.4: Sequence Diagram of Card
and PIN Validation

Figure 4.5: Sequence Diagram for
Amount Validation

23

4.4 CPN Model of an Interaction Overview Diagram

� The connection (arc) between two transitions is not possible in the

CPN. So place with incoming and outgoing arcs is used to connect two

transitions.

5. Exception rules for a connection between two places:

� The connection (arc) between two places is not possible in the CPN.

So transition with incoming and outgoing arcs is used to connect two

places.

4.4 CPN Model of an Interaction Overview Di-

agram

The interaction overview diagram depicted in Figure-4.1 is transformed into the

CPN model as shown in Figure-4.6 by applying the proposed transformation rules.

As mentioned earlier, for proving the behavior correctness of the CPN model, the

simulation function can be used. Prior to utilization of the simulation function,

it is necessary to define some information, such as color sets, functions, constant

values, and so on, in the declaration, if needed. CPN ML language supports the

net inscriptions and declaration of color sets, functions, constant values, and so

on.

In the validation process, all the interaction used for the ATM banking system

are validated whether the Personal Identification Number (PIN) is valid or not.

If it is valid then the execution will flow towards “authorization” otherwise it will

give a message “Invalid PIN”. The transition enter authorization and match the

password with the database. If it matches then the execution will flow towards

“Entering the amount” otherwise it will give a comment as “Invalid PIN. The tran-

sition “Enter the amount will again check whether the amount to be withdrawn is

less than any specified limit (hundred) or not. If it is less than the specified limit

then a STRING type statement “INVALID AMOUNT is displayed. In the next

transition, it will check for total balance after withdrawal should be greater than

the pre-specified limit (500). If it is not true then the transaction will come to end

24

4.4 CPN Model of an Interaction Overview Diagram

Figure 4.6: CPN Model for Interaction Overview Diagram

and display a STRING type statement “NOT SUFFICIENT AMOUNT. Now it

will check for whether entered amount is multiple of pre-specified limit (100) or

not. If it is multiple of pre-specified limit then a withdraw operation is executed

successfully. After successfully completing all these transactions a STRING type

statement “collect Cash and Receipt is displayed and lastly the time delay with

25

4.4 CPN Model of an Interaction Overview Diagram

output value is displayed.

Hierarchical Colored Petri Net is used to describe the large complex compli-

cated systems (larger nets) into a set of smaller ones using sub-pages. In Figure-

4.7, the hierarchical CPN model of the same interaction overview diagram has

been shown that is similar to normal CPN model as shown in Figure-4.6. Sepa-

rate sub-pages are developed for each referred sequence diagram in the interaction

overview diagram.

Figure 4.7: CPN Model for Interaction Overview Diagram after simulation

26

4.4 CPN Model of an Interaction Overview Diagram

Figure 4.8: Subpage showing Unautho-
rized User

Figure 4.9: Subpage to check enter
amount is multiple of 100 or not

Figure 4.10: Subpage to check whether
Balance after withdraw is greater than
500 or not

Figure 4.11: Subpage Showing Successful
Transaction

27

4.4 CPN Model of an Interaction Overview Diagram

The transformed CPN model of each class is analyzed using CPN tool. The

state space analysis tool [31] provided by CPN tools produces a result showing

properties such as Bounded-ness, Home, Liveness and Fairness etc are shown in

Figure-4.12. In this state space analysis, the presence of dead transition instance

signifies that there exists some transition which is never activated throughout the

system run. This means the presence of such transition is not desirable. But the

transformed model in CPN has well defined tool for analysis which covers every

path of execution.

Figure 4.12: State Space Analysis of CPN Model

28

4.5 Summary

4.5 Summary

In this chapter, an approach for transforming UML interaction overview diagram

to Colored Petri Net models is proposed. This transformation is used to bridge the

gap between informal notation (UML diagrams) and more formal notation (CPN

models) for analysis purpose. CPN model is validated by CPN tool. The state

space method of CP-nets makes it possible to validate and verify the functional

correctness of systems.

29

Chapter 5

Model Checking using
PROMELA and SPIN

5.1 Introduction

Testing is an important step to ensure the correctness of a system. However,

testing can never completely identify all the defects within an investigated system.

Model checking is a method for formally verifying finite-state concurrent systems.

In model checking, properties about the system under verification are usually

expressed as temporal logic formulas, and efficient algorithms are used to traverse

the system model to check whether the properties hold or not. Model checking is

attractive for the system in which problems of concurrency and distribution make

traditional testing challenging. In recent years, there have been many papers which

report the successful instances of using model checking to provide the validate

system verifications. Model checking is a promising approach for ensuring the

correctness of ATM banking system. However, the model checking tools subject

to the state space explosion problem, which is an ignored hurdle to the practical

application of the technique.

This chapter presents a case study of model checking through an example of

verifying automatic teller machine (ATM) with SPIN. In the case study, it has

been present the specific approach to effectively verify the related part of ATM

system. Here the objective is to employ model checking technique to validate

important properties of ATM System.

31

5.1 Introduction

5.1.1 PROMELA

PROMELA is a language for building verification models that represent an ab-

stract model of a system, which contains only an important aspects that are

relevant to the properties which users wants to verify. The SPIN is used to verify

the behavior of processes which interact with each other in the system model [11].

The relevant behavior of a system is modeled in PROMELA and verified. In

PROMELA program consist of process, message channels, and variables. Pro-

cesses are global objects. Message channels and variables can be declared either

globally or locally inside a process. Processes specify behavior, channels and global

variables define the environment in which the processes run [12].

5.1.2 SPIN

SPIN(Simple PROMELA Interpreter) [11, 12, 32] is a generic verification system

that supports the design and verification of asynchronous process systems. This

model checker accepts design specifications written in the verification language

PROMELA (a Process Meta Language) [28] and it accepts correctness claims

specified in the syntax of standard Linear Temporal Logic (LTL) [9, 33]. The in-

put language of the model checker SPIN allows us to build high-level models of

distributed systems from three basic components: asynchronous processes, mes-

sage channels, and data objects.

5.1.3 Objective

The objective of this chapter is to employ model checking technique to validate

important properties of Automated Teller Machine (ATM). The book Object-

Oriented Modeling and Design by James R Rumbaugh, [3] provides a good de-

scription of ATM system. Based on the requirements from the book, the state

model of an ATM system is designed, later the PROMELA code is constructed to

validate the properties of an ATM on the basis of system model.

32

5.2 Model Checking

5.2 Model Checking

For the model checking of an ATM need to design the ATM state diagrams on the

basis of Object-Oriented Modeling and Design method [34]. The state diagrams

are the primary source for modeling the ATM with PROMELA language. The

closed system of the ATM model consists of three active entities: Card-holder,

ATM, Bank Server. From the state diagram, it is possible to extract various

possible actions of the three active entities. The state diagram also helps us to

identify properties that want to validate [11]. Once the ATM has been modeled,

SPIN Model Checker is used to validate the ATM model against deadlock, un-

executed code and the different properties of the system model. Here the objective

is to employ model checking technique to validate important properties of ATM

System. The application of model checking follows following steps:

1. The system to be verified is converted to a formal model.

2. After that it is necessary to state the properties that the system must satisfy.

3. Finally the model is verified using SPIN tool.

5.2.1 Formal Model of an ATM System

ATM can be used to login with a card and a pin, after authentication it perform

certain operation according to the user requirement. There are usual restriction

on amount to be withdraw and format of amount and also on number of trans-

action. In ATM system in actual three parties communicate with each other i.e.

the card-holder, the terminal and the bank server. Card-holder interacts with

the banking system through a terminal, for withdrawals, transfer and inquiries.

Terminal receives a request from the card-holder to handle all the action from

the terminal, and forwards the request to bank server, while waiting for the bank

server’s response, and forward the response to the terminal. Bank server receives

a request from the terminal to make the approval or rejection of the response and

make the appropriate accounting treatment. Here the model for the ATM system

is designed which shows the main business flow of the ATM system. The model

33

5.2 Model Checking

has been simplified in order to obtain a minor number of states to manage in the

formal verification.

Here SPIN model checker is used to check the ATM system. So there is a need

to describe the specification of the system using PROMELA language. Before

describing the specification in PROMELA, there is a need to model system spec-

ification in Extended Finite State Machine (EFSM). This EFSM model is easy

to express in PROMELA. The EFSM model with six states is developed for the

ATM system which is shown in Figure-5.1.

In EFSM model six states are there at the beginning the system is in idle state,

after that if user gives the proper authentication detail it moves to authorization

state. If user not gives the proper authentication details it moves to the error state.

After authentication it is possible to move in any operation state i.e. Withdraw,

Deposit and Balance Inquiry according to card-holder response. If there is any

problem with any state or not satisfy the requirement require for the state to move

to the next then it moves to an error state. If the operation is perform successfully

then it again moves in an idle state.

5.2.2 Linear Temporal Logic Properties Definition

SPIN model checker is used to find the unreachable codes or deadlocks in the

system model. In addition SPIN also verifies Linear Temporal Logical (LTL)

properties with the help of PROMELA models. LTL allows expressing temporal

properties which express the system behavior.

1. Safety Property: In all path globally at any point of time both the process

do not enter in the critical section. Some examples of safety property are

� Deposits and withdrawals are mutually exclusive operations forever. It

can be expressed in LTL formula as follows:

!(� (withdrawing && depositing))

� If user enters incorrect password then the ATM will never dispense

cash. It can be expressed in LTL formula as follows:

� (! Authorization → ! withdraw)

34

5.2 Model Checking

¬ Authorization

¬ Deposit

¬ Withdraw

¬ Balance Inquiry

¬ Error

¬ Authorization

¬ Withdraw

¬ Deposit

¬ Balance Inquiry

Error

Authorization

Withdraw

¬ Deposit

¬ Balance Inquiry

¬ Error

Authorization

¬ Withdraw

¬ Deposit

¬ Balance Inquiry

¬ Error

Authorization

¬ Withdraw

¬ Deposit

Balance Inquiry

¬ Error

Authorization

¬ Withdraw

Deposit

¬ Balance Inquiry
¬ Error

Authorized User

[Amt is multiple of 100]

andalso [Amt is > 100]

andalso [Bal-amt >500]

[Bal=amt+Bal]

Error

Unauthorized user

Idle State

Error

Success

ErrorPrint Slip

Success

Error

Success

S1

S2

S3

S4

S5

S6

Figure 5.1: State Model of Automated Teller Machine
35

5.2 Model Checking

2. Liveness Property: If any process wants to enter into the critical section

that process eventually must get the chance to enter into the critical section.

Some of the examples of liveness property are

� If user chooses withdrawal and transaction is successful then ATM will

eventually dispense cash.

�(withdraw selected && transaction success → � cash dispensed)

� If the ATM dispense cash, it will eventually print receipt.

�(cash dispense → � receipt printed)

5.2.3 Verification of Model using jSPIN

To verify the system model using jSPIN, PROMELA based model is designed

according to system specification. Later this model is verified using jSPIN version

5.0 for verification of the important properties of a system and different LTL

formula’s which are defined for the specification of the system. Different option

are there in jSPIN which are used while verifying system properties and LTL

formulae.

1. check: It is possible to check the error in the PROMELA code using this

option of the jSPIN tool. Figure-5.2 shows that there is no error in the code

written for the ATM system in PROMELA language.

2. Translator option is used to translate the LTL formula into the PROMELA

format. Here the LTL formula for the liveness property of an ATM system

has been defined. This formula shows that the withdrawing and depositing

is not possible at the same time in system. By using the translator option

that formula is converted to PROMELA format as shown in Figure-5.3.

3. Random option gives the details about interaction of different channels

present in the system. Here four channels and different message types are

used for the specification of ATM system in PROMELA language which are

shown in Figure-5.4. This option shows the random interaction between the

mentioned channels and messages as shown in Figure-5.5.

36

5.2 Model Checking

Figure 5.2: Check Option Showing No Error in PROMELA Code

Figure 5.3: LTL Formula translated to PROMELA Format

37

5.2 Model Checking

Figure 5.4: Channels and Message types for ATM system

Figure 5.5: Random Interaction between channels of ATM system

4. Verify option is used to verify the LTL define for system. The liveness

property i.e withdrawal and deposit, mutually exclusive events is verified

jSPIN tool as shown in Figure-5.6.

38

5.2 Model Checking

Figure 5.6: Verification of Safety Property Using SPIN

5. Spin spider gives the automata for the system showing interaction between

different processes. The spin spider automata generated for the system while

verifying the above safety property is shown in the Figure-5.7. The node

represents the line number of the code and edges shows the condition that

are required to satisfy the move to the next state.

Figure 5.7: Automata Generated using SPIN

39

5.3 Summary

5.3 Summary

This chapter, presents a case study for model checking through an example of

verifying ATM with Simple PROMELA Interpreter (SPIN). The ATM system

was modeled in Process or Protocol Meta Language (PROMELA) for business

flow of an ATM system. It is then checked for deadlock and unreachable code with

SPIN model checker. It also shows how properties of an ATM can be expressed in

the form of linear temporal logic statements and then verified using SPIN model

checker.

40

Chapter 6

Conclusion and Future Work

6.1 Conclusion

� In this thesis an approach was explained to reduce the gap between informal

and formal methods of loosely coupled software specification, verification,

and validation methodologies.

� An approach for transforming UML interaction overview diagram to Colored

Petri Net models is proposed. This transformation is used to bridge the gap

between informal notation (UML diagrams) and more formal notation (CPN

models) for analysis purpose. CPN model is validated by CPN tool. The

state space method of CP-nets makes it possible to validate and verify the

functional correctness of systems.

� Model checking methodology through an example of verifying ATM with

Simple PROMELA Interpreter (SPIN) is explained. The ATM system was

modeled in Process or Protocol Meta Language (PROMELA) for business

flow of an ATM system. It is then checked for deadlock and unreachable

code with SPIN model checker. It also shows how properties of an ATM

can be expressed in the form of linear temporal logic statements and then

verified using SPIN model checker.

42

6.2 Future Work

6.2 Future Work

� Further, performance properties such as safety, liveness and fairness of the

system model can be analyzed on the basis of time delay calculated using

CPN and state space analysis.

� It is possible to use the CPN and SPIN model together to transform software

architecture ‘description diagrams’ into an executable model. The timed

concepts in petri net is used for performance analysis of software system.

SPIN model checker is used to evaluate the non-functional requirements of

system model.

43

Bibliography

[1] W. Wenxin and M. Saeki, “Specifying software architectures based on

coloured petri nets,” IEICE TRANSACTIONS on Information and Systems,

vol. 83, no. 4, pp. 701–712, 2000.

[2] S. Emadi and F. Shams, “A new executable model for software architecture

based on petri net,” Indian Journal of Science and Technology, vol. 2, no. 9,

pp. 15–25, 2009.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Refer-

ence Manual, The. Pearson Higher Education, 2004.

[4] K. Jensen, “A brief introduction to coloured petri nets,” in Tools and Algo-

rithms for the Construction and Analysis of Systems, pp. 203–208, Springer,

1997.

[5] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings

of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[6] H. T. Jung and S. H. Joo, “Transformation of an activity model into a colored

petri net model,” in Trendz in Information Sciences & Computing (TISC),

2010, pp. 32–37, IEEE, 2010.

[7] CPN Tools, “http://cpntools.org/.”

[8] J. D. Garćıa, J. Carretero, J. M. Pérez, F. Garcia, and R. Filgueira, “Specify-

ing use case behavior with interaction models,” Journal of Object Technology,

vol. 4, no. 9, pp. 143–159, 2005.

44

Bibliography

[9] S. Leue, Specifying real-time requirements for SDL specifications: a temporal

logic-based approach. Bibliothek der Universität Konstanz, 1995.

[10] G. J. Holzmann, “The model checker spin,” Software Engineering, IEEE

Transactions on, vol. 23, no. 5, pp. 279–295, 1997.

[11] H. Shi, W. Ma, M. Yang, and X. Zhang, “A case study of model checking retail

banking system with spin,” Journal of Computers, vol. 7, no. 10, pp. 2503–

2510, 2012.

[12] G. J. Holzmann, “Basic spin manual,” 1980.

[13] J. Bowles and D. Meedeniya, “Formal transformation from sequence diagrams

to coloured petri nets,” in Software Engineering Conference (APSEC), 2010

17th Asia Pacific, pp. 216–225, IEEE, 2010.

[14] H. Störrle and J. Hausmann, “semantics of uml 2.0 activities,” in Proceedings

of the IEEE Symposium on Visual Languages and Human-Centric Comput-

ing, 2004.

[15] T. S. Staines, “Intuitive mapping of uml 2 activity diagrams into fundamental

modeling concept petri net diagrams and colored petri nets,” in Engineering

of Computer Based Systems, 2008. ECBS 2008. 15th Annual IEEE Interna-

tional Conference and Workshop on the, pp. 191–200, IEEE, 2008.

[16] O. R. Ribeiro and J. M. Fernandes, “Some rules to transform sequence dia-

grams into coloured petri nets,” in 7th Workshop and Tutorial on Practical

Use of Coloured Petri Nets and the CPN Tools (CPN 2006), pp. 237–56,

Citeseer, 2006.

[17] M. Elkoutbi and R. K. Keller, “Modeling interactive systems with hierarchical

colored petri nets,” in Proc. of, pp. 432–437, Citeseer, 1998.

[18] A. Kamandi, M. Abdollahi Azgomi, and A. Movaghar, “Transformation of

uml models into analyzable osan models,” Electronic Notes in Theoretical

Computer Science, vol. 159, pp. 3–22, 2006.

45

Bibliography

[19] S. Bernardi, S. Donatelli, and J. Merseguer, “From uml sequence diagrams

and statecharts to analysable petri net models,” in Proceedings of the 3rd

international workshop on Software and performance, pp. 35–45, ACM, 2002.

[20] A. Ouardani, P. Esteban, M. Paludetto, and J.-C. Pascal, “A meta-modeling

approach for sequence diagrams to petri nets transformation within the re-

quirements validation process,” in Proceedings of the European Simulation

and Modeling Conference, pp. 345–349, 2006.

[21] S. M. Islam, M. H. Sqalli, and S. Khan, “Modeling and formal verification of

dhcp using spin,” International Journal of Computer Science & Applications,

vol. 6, no. 3, pp. 145–159, 2006.

[22] M. Mongiello, “Finite-state verification of the ebxml protocol,” Electronic

Commerce Research and Applications, vol. 5, no. 2, pp. 147–169, 2006.

[23] V. A. Oleshchuk, “Modeling, specification and verification of ad-hoc sen-

sor networks using spin,” Computer Standards & Interfaces, vol. 28, no. 2,

pp. 159–165, 2005.

[24] X. Yu, Z. Wang, G. Pu, D. Mao, and J. Liu, “The verification of rcos using

spin,” Electronic Notes in Theoretical Computer Science, vol. 207, pp. 49–67,

2008.

[25] C. Choppy, K. Klai, and H. Zidani, “Formal verification of uml state diagrams:

a petri net based approach,” ACM SIGSOFT Software Engineering Notes,

vol. 36, no. 1, pp. 1–8, 2011.

[26] K. Jensen and L. M. Kristensen, Coloured petri nets. Springer, 2009.

[27] L. Wells, “Performance analysis using coloured petri nets,” in Modeling,

Analysis and Simulation of Computer and Telecommunications Systems,

2002. MASCOTS 2002. Proceedings. 10th IEEE International Symposium on,

pp. 217–221, IEEE, 2002.

46

Bibliography

[28] E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann, “Implementing stat-

echarts in promela/spin,” in Industrial Strength Formal Specification Tech-

niques, 1998. Proceedings. 2nd IEEE Workshop on, pp. 90–101, IEEE, 1998.

[29] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi, “On the temporal analysis of

fairness,” in Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pp. 163–173, ACM, 1980.

[30] L. Dai and K. Cooper, “A survey of modeling and analysis approaches for

architecting secure software systems,” International Journal of Network Se-

curity, vol. 5, no. 2, pp. 187–198, 2007.

[31] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri nets and cpn tools

for modelling and validation of concurrent systems,” International Journal on

Software Tools for Technology Transfer, vol. 9, no. 3-4, pp. 213–254, 2007.

[32] A. K. Zaidi, “On temporal logic programming using petri nets,” Systems,

Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,

vol. 29, no. 3, pp. 245–254, 1999.

[33] J. S. Ostroff, Temporal logic for real-time systems, vol. 40. Cambridge Univ

Press, 1989.

[34] A. K. Shuja and J. Krebs, IBM Rational Unified Process Reference and Cer-

tification Guide: Solution Designer (RUP). IBM Press, 2007.

47

	Certificate
	Acknowledgment
	Abstract
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivation of Our Work
	Objective of Our Work
	Problem Statement
	Thesis Organization

	Literature Review
	Related Concepts
	Unified Modeling Language
	Aims of Modeling
	Necessity of Building Model
	Advantages of UML
	Roles of Interaction Overview Diagram in UML

	Petri Net and Colored Petri Net
	CPN Tool :
	State Space Analysis :

	Model Checking
	PROMELA
	Linear Temporal Logic
	SPIN

	Specification and Verification of Interaction Overview Diagram using Colored Petri Net
	Introduction
	Interaction Overview Diagram Of ATM Withdraw Operation
	Rules for Transformation of IOD to CPN Model
	CPN Model of an Interaction Overview Diagram
	Summary

	Model Checking using PROMELA and SPIN
	Introduction
	PROMELA
	SPIN
	Objective

	Model Checking
	Formal Model of an ATM System
	Linear Temporal Logic Properties Definition
	Verification of Model using jSPIN

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

