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ABSTRACT 

 

 Carbon nanotubes (CNTs) were first brought to the attention of greater 

scientific community by S. Ljima of Japan in 1991. CNTs are members of 

the fullerene (C60) structural family. Their name is derived from their long and 

hollow structures with the walls formed by one atom thick sheets of carbon, 

called graphene. This graphene is a two-dimensional (2D) material exhibits 

exceptionally high crystal and electronic quality. Despite its short history it has 

already revealed a cornucopia of new physics and potential applications due to 

high charge carrier mobility, exceptional mechanical and electrical properties. 

However the low cost, good quality graphene synthesis is a big challenge to the 

science society. In this report I will describe the fabrication of graphene 

nanoribbons from carbon nanotubes (CNT) treated with potassium permanganate 

in a concentrated sulphuric acid solution reported by Dmitry V. Kosynkin and 

Amanda L. Higginboth in nature paper Vol. 458| 16 April 2009| 

doi:10.1038/nature07872. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Graphene family and Carbon Nano Tube (CNT): 

 

 One major breakthrough in the field of nanotechnology happened with the discovery of 

the third allotropic form of carbon, next to ‘diamond’ and ‘graphite’; the ‘fullerenes’. [1] 

Fullerenes are the hollow molecules entirely composed of carbon. Carbon nanotubes (CNT) are 

members of the fullerene structural family. Their name is derived from their long and hollow 

structures with the walls formed by one atom thick sheets of carbon, called graphene. CNT’s are 

fullerenes carbon cages, in which sp
2 

carbons are directly bonded to three neighbors in an 

arrangement of five-six membered rings. [2] 

 

Fig. 1.1 – Graphene, Fullerenes & CNT 

http://en.wikipedia.org/wiki/Fullerene
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1.2 Types of CNT 

 The structure of CNT consists of enrolled graphitic sheet, in a word; it can be classified 

into two ways depending on its structure, single walled carbon nanotubes (SWCNT) and 

multiwalled carbon nanotubes (MWCNT). The two forms of CNTs show different electrical and 

mechanical characteristics. [3] 

 CNTs were first discovered in 1991 by the scientist Sumio Iijima (Japan). The outer 

diameters of MWCNT have range from 1 to 50 nm while the inner diameter is usually of several 

nanometers. (3 & 2.2 nm by Sumio Lijima; 1991) [4] 

 

 

 

Fig. 1.2 – (a) Graphene, (b) SWCNT, (c) MWCNT 

 

 These graphene sheets are rolled at specific and discrete (chiral) angles, and these 

combination of the rolling angles and radius decides the nanotube properties. They can be 

semiconducting or metallic depending on their structure. [5] The way the graphene sheet wraps 

can be represented by a pair of indices (n, m) called the chiral vector. The relationship between n 

and m defines three categories of CNT.  
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(i) Arm chair (n = m and chiral angle equal to 30°) 

(ii) Zigzag (n = 0 or m = 0 and chiral angle equal to 0°)  

(iii) Chiral (other values of n and m and chiral angles lie between 0 and 30°) [4]. 

 

Fig. 1.3 – Three types of CNTs 

(Armchair, Zig-zag, Chiral) 

 

1.3  Carbon bonds in CNT 

 Graphene can be considered to be made of benzene rings joined together and stripped of 

their hydrogen atoms. Isolated single carbon atom has four valence electrons. In graphene three 

atomic orbital are hybridized into a trigonal planar structure. So it forms three covalent σ bonds 

(sp
2
-hybridization) with other three carbon atoms. Those strong bonds are responsible for the 

robustness of graphene. The remaining fourth valence electrons form covalent π- bond with 

neighboring carbon atoms and those are responsible for the electronic properties. [6] 
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Fig. 1.4 - Schematic image of the sp2-hybridization [6] 

 (3 sp
2
-orbitals and 1 pz-orbital) 

 

1.4  Dominances of Graphene: 

1. Carbon-carbon bonds are one of the strongest bonds in nature. Graphenes  are 

composed of perfect arrangement of these bonds. So it shows extremely high 

Young’s modulus 1000 GPa (steel – 200Gpa). It may replace steel in the future and 

can be use in construction purposes like using nanocomposites bridges and dams [7]. 

2. Its light and low mass property helping aerospace industries to build aircrafts and 

satellites.  

3. Graphene has high conductivity (resistance is 10
-6 

Ω/cm at room temperature) and 

dissipates heat quickly. Hence can be applied in fabrication of electrical devices as 

interconnects transistors, CMOS industry, and nanaowires [5, 7]. 

4.  Their unique properties of graphene could possibly be used to make faster and 

smaller computers and tiny sensors that powerful enough to detect a single molecule. 
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1.5  Methods of preparation of Graphene  

There are various methods to prepare mwcnt; such as 

a. Chemical vapour deposition (CVD) [15] 

b. Laser abalation 

c. Arc discharge  

d. Electrochemical method 

e. Pulsed laser vaporization (PLV) 

f. Plasma enhanced chemical vapour deposition (PECVD) 

g. Aerosol method  

h. Solution methods 

i. Solvothermal method etc. [8] 

1.6  Why unzipping: 

 However, graphene have not yet made inroads into the electronics or other sectors, 

because they are difficult to make defined pure structures in large quantities. At present, they are 

produced in batches, with only a handful of graphenes in each batch possessing the desired 

characteristics. This approach works well for laboratory research, but is too inefficient for 

commercial applications. Unzipping MWCNT is an efficient way to produce graphene.  

 Graphene show promising applications in science and technology due to its exotic 

properties. Hence focus is on to prepare good quality of graphene by adopting various methods. 

Graphene produced by all above methods are irregular in size.  Future nanoelectronic 

applications of  graphene s are hampered by irregular size that is due to its edge scattering . This 

mechanism changes the physical properties of graphene. 

 The regular size 2D graphene nanosheets would be better  in order to avoid the edge 

effect and  could be  used in its full potential. 

 The the regular size graphene sheets could be obtained by unzipping the CNTs. 
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1.7  The unzipping process: 

 Multiwalled nanotubes (MWVNT) consist of multiple rolled layers (concentric tubes) of 

graphene. Unzipping is a technique that cut multiwalled carbon nanotubes (MWCNT) crossway 

to form graphene. (Fig. 1.4) [9] 

 

Fig. 1.5 - The Unzipping Process 

 

 

1.8  Different types of unzipping: 

1. “Fabrication methods” for Graphene based on longitudinally cutting CNTs have also 

been reported recently. Jiao et al.2 obtained narrower semiconductor ribbons by 

embedding multiwalled carbon nanotubes in a polymer matrix and then attacking the 

surface with argon plasma etching. Cano- Marquez et al.,3 on the other hand, obtained 

GNR by treating multiwalled carbon nanotubes with lithium and ammonia. Oxidative 

cutting was used by Liu et al.4 to transversally cut long nanotubes into smaller tubes and 

Li et al.5 provided insight into the atomic-level mechanisms of oxidation in carbon . Due 

unavailability of argon gas & plasma etching system I will not follow this method. [10] 

 

 



 

Page | 7  

 

7      Unzipping of Multiwalled Carbon Nanotubes 

 

2. “Intercalated method” is used to separate each graphene plane from 3D graphite. Here 

graphene planes became separated by layers of intervening atoms or molecules. The major 

disadvantages of this method is;  large molecules could be inserted between atomic planes, 

providing greater separation, resulting compounds having isolated graphene layers 

embedded in a 3D matrix. [11] 

 

 

3. There has been report of preparation of regular size graphene sheet through “chemical 

method” to unzip MWCNT. It’s the most economy & efficient way. So I will follow the 

chemical method discussed by et al.; Nature paper; Vol. 458 16 April 2009; 

doi:10.1038/nature07872 [12]. 
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CHAPTER 2 

PROCEDURE 

2.1  Steps followed for Unzipping via chemical method: 

A) Pre-oxidation 

B) Oxidation 

2.1.1  Pre-oxidation  

 In pre-oxidation method the MWCNT was treated with concentrated sulphuric acid 

(H2SO4) and Nitric acid (HNO3) to enhance oxygen. MWCNT was suspended in a mixture of 50 

ml of H2SO4 and 25 ml of HNO3 for more than 12 hours. 50 ml of H2O was added to accelerate 

the reaction. Next day stirring was done for 10 min. After 24 hours MWCNT was collected in 

the bottom of beaker and washed with H2O for several times to remove acids. By help of a ph 

paper acidic nature was tested. Then solution was dried to collect CNT power. 

 

 

Fig 2.1  PREOXYDATION FLOW CHART 
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2.1.2  Oxidation  

 
Fig 2.1 – Representation of the gradual unzipping of one wall of CNT. 

 

 
 MWCNT will be suspended in concentrated 50 ml of sulphuric acid (H2SO4) for a period 

of 1–12 h. Then solution was treated with 500 wt% potassium permanganate (KMnO4). The 

H2SO4 conditions aid in exfoliating the nanotube and the subsequent graphene structures. The 

reaction mixture was stirred at room temperature for 1 h and then heat for 50–70
0
C for an 

additional 1 h. Now quenches the reaction mixture by pouring over ice containing a small 

amount of hydrogen peroxide (H2O2). The solution was filter over a poly tetra fluoro-ethylene 

(PTFE) membrane, and the remaining solid to wash with de-ionized water. Then dried CNT was 

collected. [12] 
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Fig 2.1  OXIDATION FLOW CHART 

2.2  Formation of manganate ester or attacks of KMnO4  

(5,5)CNT, MnO4 

Structures (fig 2.3) 

Energy 

(hartree) 

Binding energy 

(kcal/mol) 

C–C distance 

(Å) 

CNT -3808.165,69   

MnO4
−1 

-1451.669,16   

MnO4-
1 

on b1 -5259.87561 -25.6 1.62 

MnO4
−1

 on b2 -5259.87013 -22.1 1.62 

MnO4
−1

 on b3 -5259.85924 -15.3 1.62 

MnO4
−1

 on b4 -5259.86786 -20.7 1.71 

MnO4
−1

 on b5 -5260.08458 -156.7 1.42 

Nonbonded -5259.85624 -13.4 1.22 

Table 2.2 Energies and binding energies for the CNT [9] 
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Fig 2.3 - Optimized geometries ((a)–(e)) of the structures obtained when approaching the opener 

anion MnO4
−1

 to the CNT connecting initially two of the oxygen atoms from the permanganate 

to the b1–b5  bonds, respectively. 

  

 The total binding energies, are shown in Table 2.2 for the (5, 5) CNT, the permanganate 

anion (MnO4
−1

), and the anion bonded to the b1–b5 bonds along with the unbounded MnO4
−1

 

interacting in the neighborhood of the (5, 5) CNT. Also shown in Table 2.2 is the distance of the 

carbon atoms participating in the ester formation. 

 The energies shown in Table 2.2 suggest that MnO4
−1

, the anion, attacks the CNTs bonds 

because the energy of the overall system for the bound anion (onto b1–b5) is lower than the 

energy for the unbound one. The binding energy of the unbound one, (13.4 kcal/mol, is 2 

kcal/mol higher than the weakest binding energy of a bound anion to the CNT (onto b3), (15.3 

kcal/mol. Even though the lowest total energy (singlet multiplicity) is attained when the 

permanganate anion binds to the edge bond B5, the attack leaves the bond unbroken, the C-C 

distance in b5 goes from 1.24Å to 1.42 Å. Whereas when the anion binds to the CNT on b1–b4, 

the C–C distance in the bonds increases 0.2 Å to 0.3 Å, leading to their rupture and thus to the 

partial unzipping of the nanotube. 
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CHAPTER 3 

CHARACTERIZATION AND RESULT DISSCUTION  

3.1 Characterization Techniques  

 The following characterization techniques were used to study the structural, 

morphological properties of CNT. 

3.1.1 X-ray diffraction (XRD) 

 The physical properties of CNTs greatly depend on how sheets have been rolled up, the 

tube and length diameter, aspect ratio (ratio between diameter and length of CNT) and the 

nanotube morphology. X-ray methods offer structural information at different length scales from 

the single nanotube to the nanotube bundle. Semi-crystalline polymers, composites and in 

particular SWCNT polymer nanocomposites are hierarchically organized materials. The 

understanding of the macroscopic properties in terms of microscopic models requires an analysis 

of the characteristic order appearing at different length scales.  

 

 

Fig. 3.1 – X-Ray phenomena  
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 X Rays are electromagnetic radiation, used for phase identification of a crystalline 

material & can provide information on a unit cell dimension. XRD is based on constructive 

interference of the monochromatic x-ray & crystalline sample when the condition satisfies 

Bragg’s law. ( n  = 2d sin θ)                                                     

 The diffracted x-rays are then detected, processed & counted. By scanning the sample 

through a range of 2θ angle all possible diffraction direction of the lattice should be attained due 

to random orientation of powder crystal. Conversion of diffraction peak to d-spacing allows 

identification of a mineral because mineral has a set of unique d – spacing. 

 

3.1.2  Scanning electron microscope (SEM) 

 A scanning electron microscope is a type of electron microscope that images a sample by 

scanning it with a beam of electron in a raster scan pattern .In SEM, a beam of highly energetic 

electrons strike the sample. The secondary electron, back scattered, are ejected from the sample. 

The electron interacts with the atoms that make up the sample producing signals that are 

collected at the detector. This signal contains information about the samples surface, 

composition, topography and electrical conductivity. 

 

Fig 3.2 – JEOL SEM Machine 
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3.1.3  Transmission electron microscopy (TEM) 

 Transmission electron microscopy (TEM) compatible chips have received increased 

attentions, as TEM allows detailed study of the structure of nanodevices. 

 The transmission electron microscope (TEM) operates on the same basic principles as the 

light microscope but uses electrons instead of visible light. A light source at the top of the 

microscope emits the electrons to travel through vacuum in the column of the microscope. 

Instead of using glass lenses to focus the light in the light microscope, the TEM uses 

electromagnetic lenses to focus the electrons into very thin beam. These electron beams then 

travels through the sample. Depending on the density of the sample, some of the electrons are 

scattered or disappear from the beam. At the bottom position of microscope the unscattered 

electrons hit a fluorescent screen, which gives rise to a shadow image of the specimen with its 

different parts displayed in varied darkness according to their density. The image then studied 

directly by the operator or photographed with a camera.  

 

 

Fig 3.3 - TEM Microscope ray diagram 
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3.2  XRD study 

 The crystal phases and structure information of the CNT products were obtained by 

XRD plotting. Due to the fact that in an isolated SWCNT only one graphitic layer is involved 

X-ray diffraction is absent because,  the diffraction condition requires the existence of several 

planes repeating periodically in real space. 
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         Fig – 3.4  XRD patterns of graphene samples showing graphite peaks G (002) & G (004) 

 From XRD plot we can see the wide peak, which is due to the splitting of the CNT 

(tube) into several graphene nanoribbons (GNR), resulting in the decrease of the crystalline 

domain. 

 By doing analysis of x-ray diffraction pattern of Graphene, we got high intensity peaks 

of carbon. The first peak is f C(002) at angle (2θ) 26.4
0 

having Interlayer spacing (d) is 0.337 

nm. 

shearer formula, 

D= 0.9 λ/(B cos θ) 

              Where, D= Average particle size  

                                          λ = wave length of XRD (1.54A
0
) 

              B= Full wave half maxima 
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 Average particle size was calculated from shearer formula and found to be 1.79 nm. 

Both values of interlayer spacing (d) and average particle size (D) is comparable with 

previously calculated data.   

 

3.3  SEM Image 

 

Fig – 3.5  SEM image of MWCNT 

 

Fig – 3.6  SEM image of MWCNT 

 Carbon nanotubes (CNT) were revealed under electron microscope in figure 3.5 and 

3.6. at different frame size.  
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Fig – 3.7  SEM image of MWCNT after unzip 

 

Fig – 3.8  SEM image of MWCNT after unzip 

 

 Fig. 3.7 and 3.8 shows some of the SEM images corresponding to nanotubes after being 

unzipped. 
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3.4  TEM 

 

 

Fig. 2.8 TEM micrographs CNT sample 

 

 The microstructure of the aligned CNTs was investigated using TEM in Fig 2.8. It 

confirms the well crystallized multi-layered graphitic tubular structure. The black spots in Fig 

2.8 are attributed to impurities like K, Mn metals and amorphous carbon on the surface and 

inside the core of the nanotubes. The images show that the average diameter of the CNTs is in 

the range of 30 - 50 nm.  
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CHAPTER - 4 

CONCLUSION 

 Unzipping of MWCNT was carried out via chemical method by the help of sulphuric 

acid (H2SO4) and potassium permanganate (KMnO4). This is the economical and efficient way 

to get graphene ribbons from CNT. 

 XRD analysis usually involves the identification of a phase in sample. By analyzing the 

data from x-ray diffraction, we found that the Interlayer spacing (d002) is 0.337 Ao and the 

average particle size is calculated by using shearer formula and is found to be 1.79 nm. Both 

the values of the interlayer spacing (d) and the average particle size (D) is comparable with 

previously mentioned data [15,16]. So graphene formation is confirmed. Unzipping of 

MWCNT was confirmed also from SEM images. TEM image shows impurity metal and 

amorphous carbon are present in spaceman. 
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