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ABSTRACT 

 

The present work aims to improve the mechanical properties of Zr- alloy (Fe-30-Ni-20-

Mo-4 TiO2-2-Zr-44) (all are in wt. %) synthesized by mechanical alloying and consolidated by 

conventional sintering. A uniform dispersion of TiO2 tends to improve the mechanical properties 

of the present alloys. The current alloys show improvement of hardness value which is 1-1.5 

times higher than that of the conventional zircaloy. For this purpose, pure elemental powders of 

Zr, Ni, Fe, Mo and TiO2 were blended and milled in a planetary ball mill for 20 h and sintered at 

1400°C for 2 h in argon atmosphere. Phase evolution of milled powders at different stages of 

milling (0h, 1h, 5h, 10h, 15h and 20h) and after sintering of the current alloy were analyzed by 

X- ray diffraction techniques.  The grain morphology or crystallite size of various stages of 

milled powders was characterized by scanning electron microscope. The crystallite size, lattice 

strain and lattice parameters were analyzed by Williamson-Hall method. The crystallite size 

decreases rapidly up to 5hours of milling and becomes almost constant with further milling. 

Addition of TiO2 (2 wt %) in the matrix improves the hardness. This is due to the high modulus 

of elasticity of TiO2. 
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1.1.1.1. Introduction:Introduction:Introduction:Introduction:    

In order to acquire amorphous phase the alloys have been treated by different non 

equilibrium processing techniques such as solid state quenching, rapid solidification, mechanical 

cold work, irradiation/ion implantation, condensation from vapor and the amorphous powders 

can be formed by the  high energy deformation processing via mechanical alloying[1]. A new 

generation of Zr based alloys shows amorphorization at much lower cooling rates and high glass 

forming ability [2].  The excellent chemical, thermal and mechanical properties like high 

corrosion resistance, less linear coefficient of thermal expansion and high yield strength of 

zirconium alloy are of great importance since they have high technological impacts in industry 

[4]. Recently, zirconium based alloys have been huge technological interests for high 

temperature applications in nuclear reactors or thermal power plants due to its superior thermal 

stability, excellent high temperature corrosion resistant and stability under radiation or swelling 

in nuclear environment [5].Zirconium alloys are currently employed in pressurized-water 

reactors (PWRs) and for the hotter, more highly irradiated structures. 

Mechanical alloying is a unique process for fabrication of several alloys and advanced 

materials at room temperature. MA is a technique for processing of powder in a high-energy ball 

mill. Originally it was developed to produce oxide-dispersion strengthened Ni- and Fe-based 

super alloys for application in aerospace industry [1]. MA has capable of synthesizing a variety 

of equilibrium and non-equilibrium phases starting from blended elemental or pre alloyed 

powders. Mechanical alloying techniques involved the formation of the non-equilibrium phases, 

supersaturated solid solutions, metastable crystalline and quasi crystalline phases, nano structures 

and amorphous alloys [6]. 

 

Zirconium alloys are used in the nuclear industry for cladding fuel elements since it has a 

low absorption cross section of thermal neutrons, high hardness, ductility and corrosion 

resistance. The oxide in Zirconium is used for laboratory crucibles that will withstand heat 

shock. The previous experiments tell the elevated temperature yield strength of Zircaloy-2 was 

increased by dispersion of Y2O3 and the absence of tin in M5 (<100 ppm) contributes greatly to 

its low corrosion rate. This problem was limited by Nano TiO2 dispersion in zirconium alloys. In 
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this section we will develop zirconium based alloys by Mechanical alloying with different 

milling time by dispersion of TiO2 for Ultra high strength [7]. 

 

1.11.11.11.1 Objectives Objectives Objectives Objectives of theof theof theof the    Present PPresent PPresent PPresent Piece of iece of iece of iece of IIIInvestigation:nvestigation:nvestigation:nvestigation:    

� Synthesis of zirconium based alloy (Fe-30-Ni-20-Mo-4-TiO2-2-Zr-44) (all are in wt. %), 

by high energy ball milling at different milling time. 

� Determine optimum synthesis conditions- [Type of mills (e.g., high-energy mills and 

low-energy mills), The materials of milling tool (e.g., ceramics, stainless steel, and 

tungsten carbide), Types of milling media (e.g., balls or rods), Milling atmosphere (e.g., 

air, nitrogen, and an inert gas), Milling environment (e.g., dry milling or wet milling),  

Milling media-to-powder weight ratio, Milling temperature, Milling time]. 

� To study the phase evolution of the mechanically alloyed powders at different stages of 

milling (0h, 1h, 5h, 10h, 15h and 20h)as well as consolidated alloys using XRD. 

� To or apparent study grain morphology crystallite size of the microstructure mechanically 

alloyed powders at different stages of milling (0h, 1h, 5h, 10h, 15h and 20h) by using 

SEM. 

� To calculate and compare the grain size, lattice strain of milled powders. 

� To study hardness property of current alloy. 
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2.2.2.2. Literature Survey:Literature Survey:Literature Survey:Literature Survey:    

2.12.12.12.1 Zircaloy:Zircaloy:Zircaloy:Zircaloy:    

Zirconium based alloy is a high temperature refractory alloy with excellent corrosion 

resistance, good mechanical properties, less exposure to neutron flux, and can be manufactured 

using standard fabrication techniques. Zirconium alloys are good to improve corrosion resistance 

and high compressive stresses due to the oxide dispersion. Zirconium has a hexagonal packing 

structure (α-phase) which transforms into a body centered cubic structure (β phase) above this 

temperature. It is impossible to obtain this β-phase at room temperature with any type of heat 

treatment [7]. In this situation the solid state powder processing techniques are of favorable 

consideration. In this situation mechanical alloying has proven as the preferable process for to 

produce oxide-dispersion strengthened zirconium alloys [6]. Zirconium is a unique material 

whose specific weight lies between that of titanium and stainless steel. No metal or alloy is 

resistant to corrosive attack in all chemical environments. Zirconium is no exception, but it does 

have excellent resistance to a wide variety of chemicals. Zirconium shows excellent corrosion 

resistance to all concentrations of hydrochloric acid even at temperatures exceeding the normal 

boiling point [8]. Zirconium alloys have superior thermal properties compared to other 

traditional materials in consideration for spent nuclear fuel containers. Zirconium alloys have a 

thermal conductivity more than 30% higher than stainless steel alloys. The linear coefficient of 

thermal expansion for Zirconium alloys is nearly one-third the value for stainless steel giving 

zirconium alloys superior dimensional stability at elevated temperatures [9]. 

2.1.12.1.12.1.12.1.1 Disadvantages of Zircaloy:Disadvantages of Zircaloy:Disadvantages of Zircaloy:Disadvantages of Zircaloy:    

One disadvantage of metallic zirconium is that zirconium cladding rapidly reacts with 

water steam at high temperature. Oxidation of zirconium by water is accompanied by release of 

hydrogen gas. This oxidation is accelerated at high temperature [10].  

    Zr + 2 H2O → ZrO2 + 2 H2 

 5–20% of hydrogen diffuses into the zirconium alloy cladding forming zirconium 

hydrides.  The hydrogen production process also mechanically weakens the rods cladding 



15 | P a g e  

 

because the hydrides have lower hardness, ductility and density than zirconium or its alloys, and 

thus blisters and cracks form upon hydrogen accumulation. This process is also known as 

hydrogen embrittlement [15, 16]. 

 The low temperature hexagonal (α) zirconium phase has a very low solubility of 

hydrogen, resulting in any excess hydrogen getting precipitated as zirconium hydride. This leads 

to embrittlement, delayed hydride cracking (DHC) and hydride blistering. 

2.1.22.1.22.1.22.1.2 Addition of Alloying EAddition of Alloying EAddition of Alloying EAddition of Alloying Elements:lements:lements:lements:    

 Alloying elements are able to promote the formation of the α-phase or the β-phase with 

Zirconium is also known as α- or β-stabilizers. Elements that promote the α-phase include 

aluminum, antimony, tin, beryllium, hafnium, nitrogen, oxygen and cadmium. Stabilizers that 

promote the β-phase include iron, chromium, nickel, molybdenum, copper, niobium, tantalum, 

vanadium, uranium, titanium, manganese, cobalt and silver. Due to the hexagonal structure, 

values such as the expansion coefficient, tensile strength, elasticity and bending strength vary 

depending on the orientation of the crystal lattice [20-22]. 

2.1.32.1.32.1.32.1.3 Advantage of Amorphous SAdvantage of Amorphous SAdvantage of Amorphous SAdvantage of Amorphous Structure:tructure:tructure:tructure:    

The atomic structure is the most striking characteristic of the amorphous alloy as it 

fundamentally differentiates amorphous alloy from ordinary metals. Amorphous metallic alloys 

are metals and metal alloys with no long range atomic order. They have also been called glassy 

alloys or non-crystalline alloys. Structure and constitution of advanced material can be better 

controlled by processing them under non-equilibrium conditions. The theme of the mechanical 

alloying process is to synthesize materials in non-equilibrium state by energizing and quenching 

[13]. 

2.1.42.1.42.1.42.1.4 Applications of Zircaloy:Applications of Zircaloy:Applications of Zircaloy:Applications of Zircaloy:    

Zirconium alloys are corrosion resistant and biocompatible, and therefore can be used for 

body implants. In one particular application, a Zr-2.5Nb alloy is formed into a knee or hip 

implant and then oxidized to produce a hard ceramic surface for use in bearing against a 

polyethylene component. This oxidized zirconium alloy material provides the beneficial surface 
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properties of a ceramic (reduced friction and increased abrasion resistance), while retaining the 

beneficial bulk properties of the underlying metal (manufacturability, fracture toughness, and 

ductility), providing a good solution for these medical implant applications [19, 20]. 

2.22.22.22.2 Mechanical AMechanical AMechanical AMechanical Alloying:lloying:lloying:lloying:    

Mechanical alloying is a materials-processing method that involves the repeated welding, 

fracturing, and rewelding of a mixture of powder particles, generally in a high-energy ball mill, 

to produce a controlled, extremely fine microstructure. The mechanical alloying technique 

allows alloying of elements that are difficult or impossible to combine by conventional melting 

methods [1]. It is a fundamentally different approach to alloy manufacture than traditional 

techniques which use heat treatments and chemical reactions to combine alloy components as it 

mainly relies on deformation processes to mix materials. So, deformation taking place is an 

integral part of the MA process. MA has now been shown to be capable of synthesizing a variety 

of equilibrium and non-equilibrium alloy phases starting from blended elemental or prealloyed 

powders [6]. The non-equilibrium phases synthesized include supersaturated solid solutions, 

metastable crystalline and quasicrystalline phases, nanostructures, and amorphous alloys. MA 

started as an industrial necessity in 1966 to produce oxide dispersion strengthened (ODS) nickel- 

and iron-based superalloys for applications in the aerospace industry. MA is a completely solid-

state processing technique and therefore limitations imposed by phase diagrams do not apply 

here[6]. 

Important milestones in the development of mechanical alloying  

• 1966 Development of ODS nickel-base alloys 

• 1981 Amorphization of  intermetallic 

• 1982 Disordering of ordered compounds 

• 1983 Amorphization of blended elemental powder mixtures 

• 1987/88 Synthesis of nanocrystalline phases 

• 1989 Occurrence of displacement reactions 

• 1989 Synthesis of quasicrystalline phases  
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2.2.12.2.12.2.12.2.1 Ability of Mechanical Alloying in the Production ofAbility of Mechanical Alloying in the Production ofAbility of Mechanical Alloying in the Production ofAbility of Mechanical Alloying in the Production of    NanoNanoNanoNano    SSSSturctured turctured turctured turctured 

MMMMaterials:aterials:aterials:aterials:    

 

 The ability of the different processing techniques to synthesize metastable structures can 

be evaluated by measuring the departure from equilibrium, i.e., the maximum energy that can be 

stored in excess of that of the equilibrium/stable structure. Departure from equilibrium achieved 

in different non-equilibrium processing techniques [6]. Those are given below 

 

Table 2.1: Different non-equilbrium processing technique 

 

Sl.no Technique Technique Effective 

quencing rate (K/s) 

Maximum departure from 

equilibrium (Kj/mol) 

1. Solid state quench 10
3 

16 

2. Rapid solidification 10
5
-10

8 
24 

3. Mechanical alloying - 30 

4. Mechanical cold work - 1 

5. Irradiation/ion implantation 10
12 

30 

6. Condenssation from vapour 10
12 

160 
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2.2.22.2.22.2.22.2.2 Attributes of Mechanical AAttributes of Mechanical AAttributes of Mechanical AAttributes of Mechanical Alloying:lloying:lloying:lloying: 

 

� Production of fine dispersion of second phase (usually oxides like Y2O3, TIO2) particles 

� Extension of solid solubility limits 

� Refinement of grain sizes down to nanometer range 

� Synthesis of novel crystalline and quasicrystalline phases 

� Development of amorphous (glassy) phases 

� Disordering of ordered intermetallics 

� Possibility of alloying of difficult to alloy elements 

� Inducement of chemical (displacement) reactions at low temperatures 

 

 

2.32.32.32.3 Components of MAComponents of MAComponents of MAComponents of MA: 

� Raw Materials 

� Mill variables 

� Process variables 

 

2.3.12.3.12.3.12.3.1 Raw MRaw MRaw MRaw Materials:aterials:aterials:aterials:    

 Generally raw materials with particle sizes in the range of 1-200µm are used for MA. 

Ductile-ductile, ductile-brittle and brittle-brittle powder mixtures are milled to produce novel 

alloys.  

 The powder particle size decreases exponentially with time and reaches a small value of a 

few microns only after a few minutes of milling. So, powder particle size is not very critical, 

except that it should be smaller than the grinding ball size. The raw powders fall into the broad 

categories of pure metals, master alloys, pre-alloyed powders and refractory compounds. 

Dispersion strengthened materials usually contain additions of carbides, nitrides, and oxides. 
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Oxides are the most common and these alloys are known as oxide-dispersion strengthened 

(ODS) materials.  Oxide dispersion improves mechanical properties [1, 6]. 

 

2.3.22.3.22.3.22.3.2 Mill Variables:Mill Variables:Mill Variables:Mill Variables:    

 Mechanical alloying is a complex process and hence involves optimization of a number 

of variables to achieve the desired product phase. Some of the important parameters that have an 

effect on the final constitution of the powder are: 

 

� Type of mill 

� Milling container 

� Milling speed and time 

� Type, size, and size distribution of the grinding medium 

� Ball-to-powder weight ratio 

� Milling atmosphere 

� Temperature  

�  

But, all the process variables mentioned above are not completely independent. For 

example, the optimum milling time depends on the type of mill, size of the grinding medium, 

temperature of milling, ball-to-powder ratio, etc [1, 6]. 

 

2.3.2.12.3.2.12.3.2.12.3.2.1 Types of Mill:Types of Mill:Types of Mill:Types of Mill:    

 Different types of high-energy milling equipment are used to produce mechanically 

alloyed powders. They differ in their capacity, efficiency of milling and additional arrangements 

for cooling, heating [1]. Those are as follows  

 

� SPEX shaker mills 

� Planetary ball mills 

� Attrition mills 

� Commercial mills 
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SPEX shaker mills- Which mill about 10±20 g of the powder at a time are most commonly used 

for laboratory investigations and for alloy screening purposes. 

Planetary ball mills- In which a few hundred grams of the powder can be milled at a time. 

Sample weight is up to 4x250 g. 

Attritor mills- Attritors are the mills in which large quantities of powder (0.5 to 40kg) can be 

milled at a time. 

Commercial mills- Commercial mills for MA are much larger in size than the mills described 

above and can process several hundred pounds at a time. Mechanical alloying for commercial 

production is carried out in ball mills of up to about 1250 kg capacity. 

 

Table 2.2: Typical capacities of the different types of mills 

 

Sl.no. Mill type Sample weight 

1. Mixer mills Upto 2×20g 

2. Planetary mills Upto 4×250g 

3. Attritors 0.5-100g 

4. Uni-ball mill Upto 4×2000g 

 

 

2.3.2.22.3.2.22.3.2.22.3.2.2 Milling Container:Milling Container:Milling Container:Milling Container:    

 It is also known as grinding vessel, vial, jar or bowl. During the process of grinding the 

grinding medium constantly strike on the inner walls of the container and thus can dislodge some 

material which may join the powder phase. This may contaminate the powder and alter the 

chemistry of the powder.  Some of the common materials used for the grinding vessels are 

Hardened steel, tool steel, hardened Chromium steel, tempered steel, stainless steel, WC Co, 

WC-lined steel  and bearing steel. It has been found that alloying occur at a significant higher 

rates in the flat-ended vial than in the round-ended container [1].  
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2.3.2.32.3.2.32.3.2.32.3.2.3 Milling Speed and Time:Milling Speed and Time:Milling Speed and Time:Milling Speed and Time:    

 The Faster the mill rotates the higher would be the energy input into the powder. There 

are certain limitations on the maximum speed. For example, in a conventional ball mill 

increasing the speed of rotation will increase the speed with which the balls move. Above a 

critical speed, the balls will be pinned to the inner walls of the vial and do not fall down to exert 

any impact force. Therefore, the maximum speed should be just below this critical value so that 

the balls fall down from the maximum height to produce the maximum collision. Another 

limitation to the maximum speed is that at high speeds, the temperature of the vial may increase. 

This may be advantageous in some cases where diffusion is required to promote homogenization 

and alloying in the powders. But, in some cases, this elevated temperature may be a disadvantage 

because it accelerates the transformation process and results in the decomposition of 

supersaturated solid solutions or other metastable phases formed during milling. Additionally, 

the high temperatures generated may also contaminate the powders [1].  

 The time is so chosen as to achieve a steady state between the fracturing and cold 

welding of the powder particles. The times required vary depending on the type of mill used, the 

speed of milling, the ball-to-powder ratio, and the temperature of milling. Contamination in 

powder increases with increase in time of milling. 

2.3.2.42.3.2.42.3.2.42.3.2.4 Grinding Medium:Grinding Medium:Grinding Medium:Grinding Medium:    

 Grinding medium are hardened chromium steel, tempered steel, stainless steel, WC Co 

and bearing steel. The density of the grinding medium should be high enough so that the balls 

create enough impact force on the powder. 

2.3.2.52.3.2.52.3.2.52.3.2.5 Ball to Powder Ratio:Ball to Powder Ratio:Ball to Powder Ratio:Ball to Powder Ratio:    

 The ratio of the weight of the balls to the powder (BPR), sometimes referred to as charge 

ratio (CR), is an important variable in the milling process. The BPR has a significant effect on 

the time required to achieve a particular phase in the powder being milled. The higher the BPR, 

the shorter is the time required. At a high BPR, because of an increase in the weight proportion 

of the balls, the number of collisions per unit time increases and consequently more energy is 
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transferred to the powder. A ratio of 10:1 BPR is most commonly used while milling the powder 

in a small capacity mill.  

2.3.2.62.3.2.62.3.2.62.3.2.6 Milling Atmosphere:Milling Atmosphere:Milling Atmosphere:Milling Atmosphere:    

 The major effect of the milling atmosphere is on the contamination of the powder. 

Therefore, the powders are milled in containers that have been either evacuated or filled with an 

inert gas such as argon or helium.  

2.3.2.72.3.2.72.3.2.72.3.2.7 Temperature:Temperature:Temperature:Temperature:    

 The temperature of milling is another important parameter in deciding the constitution of 

the milled powder. Since diffusion processes are involved in the formation of alloy phases 

irrespective of whether the final product phase is a solid solution, intermetallic, nanostructure, or 

an amorphous phase.   

2.42.42.42.4 Production of Production of Production of Production of Alloy PowderAlloy PowderAlloy PowderAlloy Powder::::    

 The actual process of MA starts with mixing of the powders in the right proportion and 

loading the powder mix into the mill along with the grinding medium. This mix is then milled for 

the desired length of time until a steady state is reached when the composition of every powder 

particle is the same as the proportion of the elements in the starting powder mix. 

2.52.52.52.5 Mechanism of Mechanism of Mechanism of Mechanism of MMMMilling:illing:illing:illing:    

 During high-energy milling the powder particles are repeatedly flattened, cold welded, 

fractured and rewelded. Whenever two balls collide, some amount of powder is trapped in 

between them. The force of the impact plastically deforms the powder particles leading to work 

hardening and fracture [6]. The new surfaces created enable the particles to weld together and 

this leads to an increase in particle size. A broad range of particle sizes develops, with some as 

large as three times bigger than the starting particles. The composite particles at this stage have a 

characteristic layered structure consisting of various combinations of the starting constituents. 

With continued deformation, the particles get work hardened and fracture by a fatigue failure 

mechanism and/or by the fragmentation of fragile flakes. Fragments generated by this 

mechanism may continue to reduce in size in the absence of strong agglomerating forces. At this 
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stage, the tendency to fracture predominates over cold welding. Due to the continued impact of 

grinding balls, the structure of the particles is steadily refined, but the particle size continues to 

be the same. Consequently, the inter-layer spacing decreases and the number of layers in a 

particle increase [6]. 

 After milling for a certain length of time, steady-state equilibrium is attained when a 

balance is achieved between the rate of welding, which tends to increase the average particle 

size, and the rate of fracturing, which tend to decrease the average composite particle size. 

Smaller particles are able to withstand deformation without fracturing and tend to be welded into 

larger pieces, with an overall tendency to drive both very fine and very large particles towards an 

intermediate size [6]. At this stage each particle contains substantially all of the starting 

ingredients, in the proportion they were mixed together and the particles reach saturation 

hardness due to the accumulation of strain energy. The particle size distribution at this stage is 

narrow, because particles larger than average are reduced in size at the same rate that fragments 

smaller than average grow through agglomeration of smaller particles. During MA, heavy 

deformation is introduced into the particles. This is manifested by the presence of a variety of 

crystal defects such as dislocations, vacancies, stacking faults, and increased number of grain 

boundaries. The efficiency of particle size reduction is very low, about 0.1% in a conventional 

ball mill. The efficiency may be somewhat higher in high-energy ball milling processes, but is 

still less than 1%. The remaining energy is lost mostly in the form of heat, but a small amount is 

also utilized in the elastic and plastic deformation of the powder particles [6]. 

 

2.62.62.62.6 Advantages of Advantages of Advantages of Advantages of MMMMechechechechanical Alloyinganical Alloyinganical Alloyinganical Alloying::::    

 

� The most significant applications seem to be about 350t of ODS materials, 200t of solder 

alloy, and 5t of PVD target (Cr–V) alloys per year. 

� The use of mechano chemical reactions in producing pure metals, alloys and compounds, 

dental filling alloys, catalyst materials, inorganic pigments and fertilizers.  

 



24 | P a g e  

 

2.72.72.72.7 DisadvantagesDisadvantagesDisadvantagesDisadvantages    of Mechanical Alloyingof Mechanical Alloyingof Mechanical Alloyingof Mechanical Alloying::::    

 

� The industrial applications of MA have been few. 

� Powder contamination appears to be a serious problem during MA. 

 

 

2.82.82.82.8 Definition of the Definition of the Definition of the Definition of the PPPProblem:roblem:roblem:roblem:    

 

 The problems like delayed hydride cracking (DHC) and high temperature creep (decrease 

the life time of the cladding material) were not solved completely. These can be limited by 

dispersion of some second phase nanoparticles for developing ultrahigh strength zirconium 

alloys by choosing the correct correlation between the different materials [14].  

 A major concern in the processing of nanoparticles by MA is the nature and amount of 

impurities that contaminate the milled powder. Contamination can arise from several sources, 

including 

 

� Impurities in starting powders, 

� Vials and grinding media, 

� milling atmosphere, and 

� Control agents added to the powders. 

 

 During MA the powder particles become trapped between the grinding medium and 

undergo severe plastic deformation; fresh surfaces are created because of the fracture of the 

powder particles. Collisions occur between the grinding medium and the vial and among the 

grinding balls. All of these effects can cause deterioration of the grinding medium and vial, 

resulting in the incorporation of these impurities into the powder. The extent of contamination 

increases with increasing milling energy and milling time .Various attempts have been made to 

minimize powder contamination during MA [15]. 
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CHAPTER 3 

EXPERIMENTAL DETAILS 
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3.3.3.3. Experimental Details:Experimental Details:Experimental Details:Experimental Details:    

This chapter contents a brief description of sample history.  Zr-based alloy sample (Fe-

30-Ni-20-Mo-4 TiO2-2-Zr-44) (all are in wt. %) were synthesized by mechanical alloying and 

have been used for the present study. After the description of sample history, mechanical 

alloying, compaction and sintering, equipment and techniques utilized for characterization of the 

alloys have been systematically narrated. 

3.13.13.13.1 Sample History:Sample History:Sample History:Sample History: 

The amounts (wt.%) of Zr, Fe, Ni, Mo and TiO2 above 99% purity with particle size 

about 50- 150 μm are shown in Table 1, were subjected to milling under inert atmosphere using a 

planetary ball mill. Preparation ball mill vial was filled with 11g of zirconium powder, 7.5g of 

Iron powder, 5g of Nickel powder, 1g of molybdenum powder, 0.5g of TiO2in the weight 

percentages of 44, 30, 20 , 4  and 2 respectively. The all elemental powders were mixed and wet 

milled for 20 h with toluene as liquid medium because it helps in reducing the agglomeration of 

powders during milling and preventing oxidation on milled powders. Actually, toluene gets 

adsorbed on the surface of the powder particles and minimizes cold welding between powder 

particles and thereby inhibits agglomeration.  

 

Table 3.1: Composition of powder blend 

Zr (wt %) Fe (wt %) Ni (wt %) Mo (wt %) TiO2 (wt %) 

44 30 20 4 2 

 

3.23.23.23.2 Mechanical Alloying and PMechanical Alloying and PMechanical Alloying and PMechanical Alloying and Process rocess rocess rocess Parameters:Parameters:Parameters:Parameters:    

 In a planetary ball mill, the elemental powders were subjected to milling which is 

operated at 300 rpm using harden steel container (500 ml) and harden steel balls (10 mm 

diameter) to produce Zr-base alloy milled powder. The weight ratio of balls to mixed powder 

was 10:1. The milling was performed in manual mode with 30 minutes interval.  For  property 

analysis (XRD and SEM) of the Zr based alloy of given systems we had taken the samples with 
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the time stages like 0 h, 1 h, 5 h, 10 h, 15 h and 20 h. the details of milling parameters are listed 

at Table 2. 

 

 

Fig 3.0 Planetary ball mil 

Table 3.2: Milling process parameters 

Parameters Operating condition 

Type of mill Planetary  mill 

Milling container High strength Chrome steel 

Milling speed 300rpm 

Grinding medium Toluene 

Ball diameter 10 mm 

Balls to powder wt. ratio 10:1 

Milling time 20hr 

Weight of powder 25g 
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3.33.33.33.3 Compaction and Compaction and Compaction and Compaction and Sintering:Sintering:Sintering:Sintering:    

 The consolidation of the milled powder at 20 h was cold compacted using a hydraulic 

compressor with a load of 10 tones to form round disk specimens of 2.7 mm thickness and 13 

mm in diameter and followed by conventional sintering carried out at 1400°C in argon 

atmosphere for 2 hours.  

3.43.43.43.4 Characterization of Characterization of Characterization of Characterization of MMMMechanically echanically echanically echanically AAAAlloyed lloyed lloyed lloyed PPPPowders and owders and owders and owders and 

SSSSintered intered intered intered PPPProducts:roducts:roducts:roducts:    

 

Milled powders of different stages like 0 h, 1 h, 5 h, 10 h, 15 h and 20 h and sample 

sintered at 1400°C were characterized by X-Ray Diffraction (XRD), scanning electron 

microscope (SEM) to understand the evolution of different phase during each stage of milling 

and sintered product. The shape, size and morphology during each stage of milling are optimized 

by scanning electron microscope (SEM) techniques.  

3.4.13.4.13.4.13.4.1 XXXX----    RayRayRayRay    DiffractionDiffractionDiffractionDiffraction    AAAAnalysis:nalysis:nalysis:nalysis:    

 The  purpose  of  X-ray  diffraction  (XRD)  studies to  identity and phase evolution at 

different hours of milling sample and also after sintering by using a standard diffractometer 

(Philips X’Pert MPD) was shown in Fig. 3.1 with Ni-filtered Cu Kα radiation (λ = 0.154051 nm).  

The X-ray source was operated at a voltage of 40 kV and current of 35 mA. The diffraction angle 

was varied in the range of 20-100 degrees and the scanning rate was 0.05degree/s. Phillip’s 

X’pert software is used for analyzed of XRD data diffraction patterns. By using Williamson- 

Hall plot the crystallite size and lattice strain were estimated by measuring the broadening of the 

X-ray peaks by using Williamson- Hall plot. 
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Fig. 3.1: X-ray diffractometer 

3.4.23.4.23.4.23.4.2 Scanning Electron MicroscopyScanning Electron MicroscopyScanning Electron MicroscopyScanning Electron Microscopy::::    

 A JEOL JSM-6480 LV scanning electron microscope (shown in Fig. 3.2) is utilized for 

microstructure characterization, morphology and particle size determination. Both the secondary 

electron (SE) mode and back scattered electron mode (BSE) were used as per the requirement. 

 

Fig. 3.2: Scanning electron microscope. 
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3.4.33.4.33.4.33.4.3 Hardness Hardness Hardness Hardness MMMMeasurement:easurement:easurement:easurement:    

 The mechanical properties of the alloy micro-hardness measurement were carried out in a 

micro-hardness tester. Vickers micro hardness tester (shown in Fig. 3.3) is used for hardness 

study of compact and sinter samples. The sample preparation was done primarily by using 1/0, 

2/0, 3/0 and 4/0 emery papers there after cloth polishing was done. Hardness was measured on 

all the samples using Vickers hardness tester.  10 kg loads for dwell time of 10 seconds and a 

square base diamond pyramid indenter with an included angle of 360° between the faces were 

used during hardness measurement. The indenter’s shape results in square shape on the surface 

of the specimen. Then, length of the diagonals of the square was measured through a microscope 

fitted with an ocular micrometer. Machine itself displays the hardness value in Vickers Pyramid 

Number (HV). At least 4 readings were taken sintered sample each sample. 

 

 

Fig 3.3: Micro hardness tester 
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CHAPTER 4 

RESULTS AND DISCUSSIONS         
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4444 Results and Discussion:Results and Discussion:Results and Discussion:Results and Discussion:    

4.14.14.14.1 XXXX----ray diffraction study:ray diffraction study:ray diffraction study:ray diffraction study:    

 Fig. 4.0 shows the series of XRD patterns of (Fe-30-Ni-20-Mo-4 TiO2-2-Zr-44) (all are in 

wt. %) alloy subjected to milling at various milling time 0h, 1h, 5h, 10h, 15h and 20h. After 5 h 

of milling, it shows the alloying elements are making complete solid solution with Zr matrix. It 

reveals that the nanocrystalline phases were formed at 5 h of milling which the same trends were 

found at 10 h, 15 h and 20 h respectively. After 15 h of milling, all peaks are disappeared except 

the present of three broaden peaks of Zr matrix and further 20 h of milling it shows complete 

solid solution with Zr matrix. The originally sharp diffraction lines of Zr, Fe, Ni and Mo 

gradually become broader and their intensity decreases with increasing milling time.  This is due 

to all elements goes into the solid solution in Zr matrix. Therefore, a gradual refinement and 

alloying of the elements is observed with increasing the milling time as revealed by the 

appearance of broad peaks and by a decrease of intensity of the diffraction peaks related to the 

elemental powders. 

 

Fig. 4.0 XRD patterns of mechanical alloyed powders of Zr44Fe30 Ni20 Mo5 at different milling 

time (0 h, 1 h, 5 h, 10 h, 15 h and 20 h) 
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Fig. 4.1: XRD patterns of sintered product and mechanical alloyed powder at 20 h 

  

Fig. 4.1 shows the formation of different phases like Fe7Mo3, Mo2Zr, Ni10Zr7, Zr2Ni7, Fe2Zr, 

ZrFe2, FeNi and Ni3Feafter the sintering at 1400°C. Destabilization of the crystalline phase is 

thought to occur by the accumulation of structural defects such as vacancies, dislocations, grain 

boundaries, and anti-phase boundaries. The continuous decrease in grain size (and consequent 

increase in grain boundary area) and a lattice expansion would also contribute to the increase in 

free energy of the system. This leads to formation of amorphous and intermetallic phase [12, 13]. 

4.24.24.24.2 Crystallite SCrystallite SCrystallite SCrystallite Size and ize and ize and ize and LLLLattice attice attice attice SSSStrain train train train CCCCalculationalculationalculationalculation    during during during during 

Mechanical Alloyed PowdersMechanical Alloyed PowdersMechanical Alloyed PowdersMechanical Alloyed Powders::::    

The measurement of crystallite size and lattice strain of milled powders (0 h, 1 h, 5 h, 10 

h, 15 h and 20 h) were calculated by using William –Hall equation. Various factors like 

instrumental error, crystallite size and microstrain are the reason for the peak broadening of Zr.   
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Scherer’s formula: (the line broadening due to the crystallite size) 

�� =
�.��

�	
��
   

Where 

             ‘D’ - Crystallite size, 

‘λ’ -  wave length of X-Ray (0.1541 nm), 

‘βt’ - FWHM (full width at half maximum due to crystallite size)  

‘θ’ -  the diffraction angle. 

 

Wilson formula: (the line broadening due to microstrain) 

�� = 4�����   

Where  

 ‘�′ - the root mean square value of microstrain,  

‘ ��′  -FWHM (full width at half maximum due to  

microstrain)  

  ‘θ’ - the diffraction angle. 

 

 In determining the crystallite size and lattice strain, it is considered that the line 

broadening due to the crystallite size and microstrain are independent of each other and both 

have a Cauchy like profile i.e. the observed line breadth is equal to the linear sum ‘βt’ and ��′. 

 

�. �.  � = �� + �� 

�. �.  ����� =
0.9�

�
+ 4����� 

 

 The above equation is called Williamson-Hall equation. ′�����′  is plotted against ‘4����′ 

for determining the crystallite size and the lattice strain . On plotting, the slope of the straight 

line obtained will give the lattice strain and the crystallite size can be determined from the 

intercept. 

 

 



35 | P a g e  

 

 

Table 4.1:  Calculated average crystallite size and lattice strain by using William –Hall equation   

 of the current alloy at different stage of milling (0 h, 1 h, 5 h, 10 h, 15 h and 20 h) 

Milling Time 2Ө βCos Ө 4Sin Ө Average. 

Crystallite  

Size (nm) 

Lattice 

Strain (%) 

0 h 34.74 0.091 1.194 1.27 0.18 

44.55 0.154 1.516 

47.89 0.109 1.623 

1 h 34.74 0.274 1.194 0.63 0.31 

44.55 0.177 1.516 

47.89 0.263 1.623 

5 h 34.74 0.549 1.194 0.46 0.33 

44.55 0.442 1.516 

47.89 0.178 1.623 

10 h 34.74 1.099 1.194 0.39 

 

1.2 

44.55 0.708 1.516 

47.89 0.170 1.623 

15 h 34.74 0.248 1.194 0.43 1.6 

44.55 0.768 1.516 

47.89 0.311 1.623 

20 h 34.74 0.261 1.194 0.35 2.1 

44.55 0.960 1.516 

47.89 0.09 1.623 

 

 

 Fig 4.2 shows that the crystallite size of current alloy decreases gradually with increase in 

milling time from 0 h to 20 h. Again, from Fig. 4.3 shows that lattice strain increase gradually 

with increase in milling time.  This is because there is a tendency of the particle size to reach an 

equilibrium value as milling time increases. Actually steady state equilibrium is reached when 

there is a balance between the rate of welding, which tends to increase the particle size, and the 

rate of fracturing, which tends to decrease the average composite particle size. Crystal 

refinement due to mechanical milling increases the strain in the lattice. Similar kinds of results 

were established by several researchers [1, 6]. 
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Fig.4.2: Crystallite size is the function of milling time. 
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Fig.4.3: Lattice strain is the function of milling time 
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4.34.34.34.3 SEM AnalysisSEM AnalysisSEM AnalysisSEM Analysis    of Mechanical Alloyed of Mechanical Alloyed of Mechanical Alloyed of Mechanical Alloyed Powders:Powders:Powders:Powders:    

 Figs. 4.4 (a-e) show the Scanning electron micrographs of milled powders at (a) 0 h, (b) 

1h, (c) 5h, (d) 15 h and (e) 20 h, respectively.  It reveals that as milling time increase the particle 

size of the alloy gradually decreases to the range of 20 µm to 1.0 µm. It can be seen that the 

structure is relatively finer and homogeneous with increasing milling time. It can be found that 

coarse grains milling time from 0-1 h, with visible polyhedron profile in Fig. 4.4(b), and the 

grain size of which changes from 1to 15µm. from Fig. 4.4 (c) to 4.4(e), the grain size is relatively 

small and distributes more uniformly. 

 

 

Fig. 4.4: Scanning electron micrographs of milled powders at (a) 0 h, (b) 1h, (c) 5h, (d) 15 h and 

(e) 20 h respectively. 

4.44.44.44.4 Hardness Study:Hardness Study:Hardness Study:Hardness Study:    

 The hardness of sintered sample is summarized in Table 4.2.  It is predict that the 

hardness of current alloy is extremely high (710 HV) which is 1-1.2 times higher than that of 

literature value [27].  The enhancement of hardness is due to the uniform dispersion of TiO2 in 

the Zr matrix.  It follows the dispersion hardening strengthening mechanism.  Densification of 
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the green compact by sintering leads to the distortion of component. This may be the cause of 

increasing the strength of the sintered sample. Strength of the alloy increased due to uniform 

dispersion of oxide particles. The  mechanical  strength  of  the present  alloys  can  be  

interpreted  by various strengthening  mechanisms such as dispersion  hardening,  solid  solution  

hardening  and  grain  refinement  (Hall–Petch effect).  

 

Table 4.2 : Hardness values of sintered alloy and literature 

 

Sample Avg. Hardness 

( HV) 

Sintered sample 710 

Literature value [27] 550 

  

0 1 2 3
0

100

200

300

400

500

600

700

800

900

1000

H
a

rd
n

e
s
s
 (

H
V

)

Material

 Hardness

 

Fig 4.5: Comparison of hardness value in both literature and current alloy 
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4.54.54.54.5 Discussions:Discussions:Discussions:Discussions:    

 After 20 h of milling, the elementals go to complete solid solution in the Zr matrix was 

observed Fig. 4.0.  It shows the peaks are broadening with increasing milling time which mainly 

the increase of lattice strains. With increase in milling time particle size decreases in general and 

is confirmed by SEM. Particle size was decreased with increasing milling time up to 15 h of 

milling and then again it increases size at 20 h of milling; this is due to re-welding of the powder 

particles. Ultra high strength is obtained because of dispersion of nano-TiO2 phase in Zr matrix. 

The  mechanical  strength mainly hardness  of  the present  alloy  can  be  interpreted  by various 

strengthening  mechanisms such as dispersion  hardening,  solid  solution  hardening  and  grain  

refinement  (Hall–Petch effect).  There is chance of grain coarsening during sintering which 

can’t be neglected.  In spite of that strengthening effect on the alloy due to uniform dispersion of 

nano-TiO2 in Zr matrix and solid solution effects would dominate over grain refinement. 

Mechanically alloyed materials are strong both at room and elevated temperatures. The elevated 

temperature strength is derived from more than one mechanism. First, the uniform dispersion 

(with a spacing of ∼100nm) of very fine (5–50nm) oxide particles ofTiO2 which are stable at 

high temperatures, inhibit dislocation motion in the metal matrix, and increase the resistance of 

the alloy to creep deformation. Another function of the dispersoid particles is to inhibit the 

recovery and recrystallization processes, which allow a very stable grain size to be obtained. 

These large grains resist grain rotation during high-temperature deformation. The very 

homogeneous distribution of alloying elements during MA gives both the solid solution 

strengthened and precipitation-hardened alloys more stability at elevated temperatures and 

overall improvement in properties. 
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5555 Summary Summary Summary Summary and Conclusion:and Conclusion:and Conclusion:and Conclusion:    

  

The carefully analysis of experiments and results the following conclusions can be drawn: 

� It is possible to synthesis of Zr- alloy (Fe-30-Ni-20-Mo-4- TiO2-2-Zr-44) (all are in 

wt. %) dispersed TiO2 (2 wt %) by mechanical alloying. 

� Particle size was decreased with increasing milling time during 1h to 15 h of milling 

and then increased at 20 h of milling; this was due to re-welding of the powder 

particles. 

� It is found that the particle size of alloy powder synthesized by mechanical alloying 

goes to the nanometric range which is confirmed by XRD and SEM analysis. 

� Crystallite size decreases and the lattice strain increases with increase in the extent of 

milling. 

� The Zr- alloy (Fe-30-Ni-20-Mo-4 TiO2-2-Zr-44) (all are in wt. %) shows the 

improvement of hardness value (710 HV) which is 1-1.5 times higher than that of the 

conventional Zircaloy (∼500 HV). 

� Enhancement of the hardness of the current alloy is due to the uniform dispersion of 

nano-TiO2 in Zr matrix. 
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