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Abstract

Anomaly detection refers to the process of finding outlying records from a given dataset.

This process is a subject of increasing interest among analysts. Anomaly detection

is a subject of interest in various knowledge domains.As the size of data is doubling

every three years there is a need to detect anomalies in large datasets as fast as possi-

ble.Another need is the availability of unsupervised methods for the same.

This thesis aims at implement and comparing few of the state of art unsupervised outlier

detection methods and propose a way to better them. This thesis goes in depth about

the implementation and analysis of outlier detection algorithms such as Local Out-

lier Factor(LOF),Connectivity-Based Outlier Factor(COF),Local Distance-Based Out-

lier Factor and Influenced Outlierness. The concepts of these methods are then combined

to propose a new method which better the previous mentioned ones in terms of speed

and accuracy.

Keywords: Outlier, Anomaly Detection, Data Mining.
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Chapter 1

Introduction

Outlier detection in datasets has been an object of interest throughout history. Outliers

can sometimes heavily distort the statistical data and sometimes the effect is hardly

noticeable. Some outliers can bring to attention a very important fact e.g. the discovery

of Argon resulted from unexpected differences in weight of Nitrogen.

Another example where outlier detection shows its vast importance is security, especially

air safety. One of the high jacked airplanes of 9/11 had a particular anomaly. It has

five passengers which (i) Were non-US citizens (ii) Had links to a particular country (iii)

Had purchased a one-way ticket (iv) Had paid in cash (v) Had no luggage. Of course one

or two such passengers in an airplane is a normal observation but 5 in a particular plane

is an anomaly. The task of outlier detection is often a safety critical task e.g. aircraft

engine rotation. An outlier can be an anomalous object in an image like a landmine or

a abandoned briefcase in security tapes. Outlier detection can also spot performance

degradation in machines of factories. This helps to identify faults in machines and avoid

machine failure or disaster.

1.1 Applications

A more succinct list of outlier detection applications are given below

Fraud detection

Refers to criminal activities involving banks, credit card companies, insurance compa-

nies, cell phone companies, stock market etc. Fraud occurs when resources of a company

are utilized in an unauthorized way. Companies want to detect these fraudulent trans-

actions before they incur heavy losses.

1
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Insider trading

Insider trading is also an area where outlier detection can be applied. Insider trading

refers to people making illegal profits using insider information of companies before it is

made public.

Medical health anomaly detection

Outlier detection can be applied to patient records which contains the results of various

tests performed on the patient. This can lead to discovery of complications of the patient.

Outlier detection also helps in detecting epidemics

Fault diagnosis

Faults in machinery like motors, generators, transformers etc. or instruments in space

shuttles. Structural faults like cracked beams or unstable foundations.

Image Processing

Usually in large sized things like images, a lot of unexpected outliers tend to creep in.

Anomalous data is very different from normal data and can be removed though outlier

detection to give a clear view of the image and its components.

1.2 Defining an Outlier

Definition of Hawkins [Hawkins 1980]: An outlier is an observation which deviates

so much from the other observations as to arouse suspicions that it was generated by a

different mechanism Abnormal objects deviate from this generating mechanism.

Figure 1.1
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1.3 Types of Outliers

Outliers often arise due to human carelessness, faults in systems, natural deviation in

dataset, fraud etc. However it is important to differentiate between the applications of

outlier detection e.g. if there is a clerical error in the data of a , the entry clerk should

be notified and the data should be corrected. However in industry when there are faults

in a machine and the machine is damaged or in a safety critical system like an intrusion

monitoring system or a fraud detection system, an alarm must be sounded to notify the

system administrators about the problem. There are three approaches to the problem

of outlier detection.

Type 1

In this type outliers are determined with no prior knowledge of dataset. This is a

learning process which treats the data as a static distribution which finds remote points

and flags them as potential outliers. The main cluster might be subdivided to improve

outlier detection. It also assumes that normal instances of data are much more frequent

than anomalous instances. A drawback of this methodology is that is needs data to be

dynamic and thus needs a very large database. We will mainly be concerned with this

type in this thesis.

Type 2

In this type it is assumed that the dataset only has labelled instances of ’normal’ class.

They do not require labels for anomalous class e.g. in case of safely critical systems

where an anomaly would mean an accident which would be hard to model. Typically a

model is built for normal behavior and then is used to identify anomalies.

Type 3

In this type there is availability of labeled instances of both normal and anomalous

class. In this type when a new instance of data is encountered it is compared to the

model to determine its class. One of the drawbacks of this class is obtaining labels for

anomaly classes is hard.

1.4 Output of Outlier Detection

Reporting of anomalies is important aspect, generally outputs are of two types

Labels
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In this the data instances are assigned a ’label’ which term it as normal or anomalous

to each instance. Thus it gives a binary output.

Score

In this data instances are assigned an anomaly score which basically indicates the out-

lierness of the object or the degree to which the object is an outlier. So the output is

basically points with their degree of outlierness. An analyst might analyze the top few

outliers or propose a ’cut off’ to select the anomalies. Thus it gives a continuous output.

Many anomaly detection techniques prefer using the ’top-n’ outlier process so they pre-

fer score. If binary labelled data is required ,a threshold(lower bound) can be applied

to the scores to give a binary output.

1.5 Anomaly detection using distance to kth Nearest Neigh-

bor

A very naive anomaly detection technique is the anomaly score of a data instance,it is

defined as its distance to its kth nearest neighbor in a given data set. Usually k is chosen

to be greater than 1.

Another way to computer the anomaly score is to fix the number of nearest neighbors

say n which are at a distance d apart. This is like computing the global density of a data

instance in a hypersphere of radius d. In 2 dimensional data density-(n/pie*dsquare) can

be used as the density. The inverse of density is then used as the score. In computing

this density some methods fix the neighbors and use 1/d as the score and some method

fix d and use 1/n as the score.

The problem with using such methods.

Test Case 1

Consider a 2 dimensional dataset as shown in figure 1.2. Let C1 and C2 be two major

clusters containing 100 and 400 data instances respectively. It can be seen in the figure

that C1 cluster is a lot more sparse than cluster C2.We have two additional points P1

and P2 which we will be focusing on. As we can see both are outliers and have been

formed by mechanisms other than normal. If we apply by k nearest neighbor technique

to P1 we will classify it as an outlier as its n nearest neighbors are very far. But in the

case of P2 its n nearest neighbors are not that far and are as sparse as data instance in
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Figure 1.2: Test Case 1

C1.So by using the simple k nearest neighbor method we will wrongly classify it as a

normal instance when it is not.

E.g. DB(ε, π)-outlier model Parameters ε and π cannot be chosen so that O2 is classified

as an outlier but none of the points in cluster C1 are classified as outliers.

In detection mechanism which are just based on KNN-distance like-

Taking the kNN distance of a point as its outlier score [Ramaswamy et al 2000]

Aggregating the distances of a point to all its 1NN, 2NN, , kNN as an outlier score

[Angiulli and Pizzuti 2002]

So we conclude that in the dataset of varying density we need a better method to detect

outliers. Thus we bring the concept of using relative density.

1.6 Relative Density

As we saw in the previous, section simply using the distance to the kth nearest neighbor

is not enough to classify an instance especially in the case of varying data instances. We

need to take in account the local and relative density of the point rather than just the

global density.

To solve this problem a new anomaly score was given to a data instance which is called
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LOF(Local Outlier Factor).LOF takes into account both the density of the given data

instance and the density of the data instances in the K nearest neighbor set of point.

It is the ratio of the average local density of the k nearest neighbors to the point itself.

To find this first the k nearest neighbors of the point is computed. The local density

is computer by diving k by the radius of the hypersphere. For a data instance lying in

a dense neighborhood its density will be similar to its k nearest neighbor whereas an

isolated point will have a high density compared to its k nearest neighbors and will have

a high LOF score. In figure 1.1 LOF will correctly classify both P1 and P2 as outliers

.However LOF is not this simple to compute as we will see in further sections where we

will study it in more detail.

Later another anomaly score technique was proposed call COF(Connectivity-Based Out-

lier Factor).The basic difference between COF and LOF only lies in the procedure for

calculation of the k nearest neighbor set. In COF the k nearest neighbor set is calculated

incrementally. First, the closest instance is added to the k nearest neighbor set.Then the

next point closest to the set is added to the set. This is continued till the set contains

k instances which contains the k neighborhood of the point. COF is useful is capturing

shapes and patterns like lines and captures it better than LOF.

Other methods like ODIN(Outlier Detection using in-degree number) is used for each

dataset. For a given data instance ODIN is the number of points who contain the orig-

inal point in their k nearest neighbor set. The inverse of ODIN is generally used as

the anomaly score. This is discussed in detail under the INFLO outlier detection tech-

nique. Other methods include MDEF(Multi-granularity Deviation Factor) which for a

given data instance’s MDEF is equal to the standard deviation in the local densities of

the local neighborhood density. The inverse of this standard deviation is taken as the

anomaly score. Other detection techniques like LOCI finds anomalous micro clusters.

1.7 Global versus local approaches to outlier detection

This means the type of reference set we are ready to take with respect to the outlierness

of an object.

Global approach

The basic premise of this approach is that the reference set contains all other data

object i.e. there is one dataset with all the objects in the reference set. Here we are

assuming that there is only one mechanism of generation of datasets. However this
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might not always be the case. Another drawback is that there might be outliers in the

reference set which might distort the result.

Local approach

The basic premise of this approach is that the reference set contains a small subset of

dataset. We are not assuming a single mechanism here but there is no defined method

to choose a proper reference set.

Some approaches lie somewhere between global and local approach.

Types of Anomaly Detection Techniques

1. Statistical Tests

2. Depth-based Approaches

3. Deviation-based Approaches

4. Distance statistical model

5. Distance-based Approaches

6. Density-based Approaches

1.8 An analysis of Nearest Neighbor Based Techniques

The advantages of nearest neighbor based techniques are as follows

1. The main advantage of this is that it is unsupervised and can run only with the

given data.

2. Different kinds of data can be used, only the equation for finding the distance

has to be changed. Different number of attributes can be adjusted accordingly.

endenumerate

The disadvantages of nearest neighbor based techniques are as follows:

(a) If there are a lot of anomalies in the dataset there might be misclassification

of data and anomalous data might be classified as normal. i.e. false positive

rate will be very high.

(b) The computational complexity of such method is high as the neighborhood

sets of all the data instances have to be calculated.
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(c) Defining the method of calculating distances is also a challenge. In regular

datasets Euclidean distance is preferred but when the data is complex like

graphs or sequences defining distances is a problem.



Chapter 2

Literature Survey

2.1 Local Outlier Factor(LOF)

We described in fig 1.2 the problem with simplistic use of the k nearest neighbor

procedure leads to false labelling. Local density based methods compare the local

density of the object to that of its neighbors. For the LOF to accomplish that the

following definitions were used.

2.1.1 Definitions

K-Dist of an object p

For any positive integer k, the k-distance of object p, denoted as k-dist(p), is

defined as the distance d(p,o) between p and an object o such that oεD is

(i) for at least k objects óεD/ {p} it holds that d(p, ó) ≤ d(p, o), and

(ii) for at most k-1 objects óεD/ {p} it holds that d(p, ó) < d(p, o).

K-distance neighborhood of an object p

Given the k-distance of p, the k-distance neighborhood of p contains every object

whose distance from p is not greater than the k-distance, i.e.

Nk−distance(p)(p) = {qεD\ {p} | d(p, q) ≤ k − distance(p)}

9
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These objects q are called the k-nearest neighbors of p.

Reachability distance of an object p w.r.t. object o

Let k be a natural number.

reach− distk(p, o) = max {k − distance(o), d(p, o)}

Local Reachability Density of an object p

lrdMinpts(p) = 1/

{∑
oεNMinpts(p)

reach−distMinpts(p,o)

NMinpts(p)

}

Local outlier factor of an object p

LOFMinpts(p) =

∑
oεNMinpts(p)

lrdMinpts(o)

lrdMinpts(p)

|NMinpts(p)|

2.1.2 Properties of LOF

• LOF ' 1: point is in a cluster (region with homogeneous density around the

point and its neighbors)

• LOF � 1: point is an outlier.

• The output factor depends a lot on the choice of k(Minpts).

Here there is a single parameter Minpts which can vary the LOF.Let us see its

impact on LOF- Let take a Gaussian distribution as shown in fig 2.1

The following figure shows the distribution of values of LOF with varying k(2-

50).As we can see the standard deviation of LOF values only really stablises when

k > 10.
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Figure 2.1: A Gaussian Distribution

Figure 2.2: Values of LOF with varying k
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2.2 Connectivity Based Outlier Factor(COF)

The connectivity-based outlier factor is a local density based approach proposed

in order to find outliers when data specifies certain patterns like lines or spheres.

It is a simple variant of LOF which also uses the k nearest neighbor method but

method to calculate k nearest neighbor is different. So basically COF can detect

outliers in low density patterns and thus is more effective in such a case than LOF.

An example of such patterns are straight lines.

Figure 2.3: Data Instances conforming to patterns

In the fig 2.3 it can be noticed that the points in the spherical cluster are far apart

as compared to the straight line cluster. As we see the Anomaly point here is point

O which belongs to neither of the clusters. But as we can clearly see the k near

neighborhood of o will have many points and thus will have an LOF which is close

to any point in the spherical cluster, thus it gets wrongly classified as a normal

data instance. Thus COF was introduced to find this pattern.

The local density in the COF is the inverse of the average chaining distance. The

average chaining distance is different from the local reachability distance in LOF

as it takes into account the distance of each point from the original point and the

sequence. The following figure helps in explaining the chaining distance method

to calculate the k nearest neighbor set of p .

2.2.1 Definitions

Distance between two sets of points

d(P,Q) The distance between the set P and Q is the minimum distance between

their elements, denoted be d(P,Q)
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Figure 2.4: Nearest Neighborhood in COF

Let P,Q ⊆ D, P ∩ Q =φ and P,Q 6= φ. For any given q ∈ Q we say that q is the

nearest neighbor of P in Q if dist (q, P) = dist(Q, P)

Set-Based Nearest Path(SBN)

A set-based nearest path, or SBN-path, from p1 on G is a sequence (p1, p2, ....pr)

of all the elements in G such that for all 1 ≤ i ≤ r − 1, pi+1 is a nearest neighbor

of set {p1, ., pi} in {pi+1, ., pr}

Average Chaining Distance

Let s = (p1, p2, ....pr) be an SBN-path from p1 on G. The average chaining dis-

tance from p1 on G, denoted by ac− distG(p1), is defined as

ac−DistG(p1) =
∑r

i=1
2(r−1)
r(r−1)dist(ei)

where dist(e1) = dist(p1, p2, ...pi, (pi+1, ...pr))

Connectivity-Based Outlier Factor(COF)

COFk(p) = Nk(p).ac−dist(p)∑
oεNK (p) ac−dist(o)

As observed by the formulas the average chaining distance is the weighted sum of the

cost description sequence. The earlier edges have a greater contribution to the sum than

the latter edges. Like LOF a score near to 1 indicates that the point is not an outlier.

A score much greater than 1 indicates outlierness.

TEST CASE 2
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Figure 2.5: A test case to demonstrate effictiveness of COF

We take another test case in which the dataset mainly consists of one straight line of data

as shown in the figure.There are two outlying points 1 and 2 and we apply the COF algo-

rithm to all points.The following result was obtained with k = 10, we have the following:

COFk(1) = 2.1

COFk(2) = 1.35

COFk(3) = 1.11

COFk(4) = 1.07

COFk(5) = 1.06

COFk(6) = 1.00

COFk(7) = 0.96

COFk(8) = 1.00

Thus we identify the correct outliers using COF method.
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2.3 Local Distance-Based Outlier Detection Factor(LDOF)

The previous outlier detection schemes are average when it comes to detecting outliers

in real world scattered datasets. LDOF uses the relative distance from an object to its

neighbors to measure how much objects deviate from their scattered neighborhood. The

higher the factor is the more likely the point is an outlier. It is observed that outlier

detection schemes are more reliable when used in a top-n manner. This means that the

top n factors are taken as outliers, the n is decided by the user as per his requirements.

TEST CASE 3

Figure 2.6: Test case to demonstrate effectiveness of LDOF

We use a test case in which there are 3 major clusters C1,C2 and C3 and four outlying

points O1,O2,O3,O4.When we set a value ok k > 10 the cardinality of a cluster. i.e. in

this case C3 is the smallest cluster whose cardinality is 10.If we set k > 10 we get wrong

values of KNN and LOF as it starts taking points from clusters C1 and C2.We solve this

proposing the following method.

2.3.1 Formal Definitions

KNN distance of xp

Let Np be the set of the k-nearest neighbors of object xp (excluding xp). The k-nearest

neighbors distance of xp equals the average distance from xp to all objects in Np. More

formally, let dist(x, x) > 0 be a distance measure between objects x and ó. The k-nearest
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neighbors distance of object xp is defined as

d̄xp = 1
k

∑
xiεNp

dist(xi, xp)

KNN inner distance of xp

Given the k-nearest neighbors set Np of object xp, the k-nearest neighbors inner distance

of xp is defined as the average distance among objects in Np

D̄xp = 1
k(k−1)

∑
xi,x́iεNp,i 6=í dist(xi, xí)

LDOF of xp

LDOF (xp) =
d̄xp
D̄xp

Figure 2.7: Showcasing dxp
Dxp

Here d mainly denotes the distance between the specified point and all other points in

the k neighborhood set of the point and D represents the distance between the points

in the k neighborhood set. Another way to minimize calculation is to find the median

of the k neighborhood points and name is x and then calculate distance between points

in k neighborhood set and x́. This minimizes calculations.
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Furthermore LDOF is often used as top-n LDOF and it is used as the following-

Input: A given dataset D, natural numbers n and k.

(a) For each object p in D, retrieve p’s k-nearest neighbors

(b) Calculate the LDOF for each object p.The objects with LDOF < LDOFlb

are directly discarded

(c) Sort the objects according to their LDOF values

(d) Output: the first n objects with the highest LDOF values

Complexity of the LDOF algorithm only relies on the computation of k nearest neigh-

bors. It is naively done in O(n2) , however using data structures like X-tree or R-tree

the complexity can be reduced to O(n2).Later the LDOF values can be sorted by merge

sort to find the top-n values.

A problem with LDOF

Figure 2.8: A data instance is located between two clusters

When a data instance is located between two clusters.The denominator value D increases

abnormally as the interdistance between the objects of the K nearest neighborhood in-

creases.This leads to a low factor and leads false classification of the instance as an

outlier. Thus LDOF has a high False Positive Rate
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2.4 Influenced Outlierness(INFLO)

INFLO was introduced in 2006. It is also based on LOF, however it expands the

neighbor- hood of the object to the inuence space (IS) of the object. INFLO was in-

troduced in order to handle the case where clusters with varying densities are in close

proximity. Figure 2.9 shows an example of such a case. The data sets has two clusters

C1 and C2, where C1 is more dense than C2. Point p for instance would have the same

or an even higher LOF score when k is equal to 3 as point q. This is because the nearest

neighbors of p all lie within cluster C1 as shown in the figure. This is counter intuitive

as point p actually lies within cluster C2. The inuence space overcomes that problem by

taking more neighbors into account, namely the reverse k nearest neighbors set (RNNk).

RNNk(p) is the set of objects that has p in its k-neighborhood set. This is shown in

figure 3.4 where s and t are the reverse neighbors of p.The definitions of RNNk and IS

are given below.

Figure 2.9

Formal Definitions

• Reverse k Nearest Neighbor set (RNN)

RNNk(p) = {q | qεZ, pεNNk(p)}

• Local density of P

den(p) = 1
Kdist(p)

• Influence Space (IS)

ISk(p) = RNNk(p) ∪NNk(p)

• INFLOk(p) =
denavg(ISk(p))

den(p)

• Where denavg(ISk(p)) =

∑
oεISk(p)

den(o)

ISk(p)
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As with other outlier detection method, if INFLO >> 1 the point is classified as an

outlier.

2.5 A Depth Based Outlier Detection Method

Motivation

Need a method to detect outliers on the fringe portions of dataspace but independent

of the distribution of the dataspace.

Figure 2.10: Convex Hull on a Gaussian Distribution

Basic Idea

Data objects are organized in convex hull layers. Objects on the outermost layers are

Outliers and normal objects are located in the centre of dataspace.
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Figure 2.11: Model

Model

• Points on the convex hull of the full data space have depth = 1

• Points on the convex hull of the data set after removing all points with depth

= 1 have depth = 2 , point on the convex hull of dataset after removing all

points having depth = 2 have depth 3 and so on.

• Points having a depth k(as set by the user) are reported as outliers.
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Objective

• Reducing the False Positive error rate as compared to that of LDOF.

• Reducing the False Negative rate than that of LOF.

• Finding a way to improve the Speed of INFLO .

• To improve the efficiency of density based outlier detection and comparison

with the existing algorithms

Let O be the set of outliers

Let be the set of detected outliers

Maximize(O ∩ Ô)

Minimize(O − Ô) (False Positive)

Minimize (Ô −O) (False Negative)
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A Proposed Outlier Detection

Method

4.1 Features

• Uses the concept of d and D ie KNN distance and KNN inner distance of

point xp

• Calculates a temporary factor called TF of the whole dataset and passes top

N values(to be set) by the user.

• Also uses the concept of reverse KNN and Influence Space.

4.2 Pseudocode

Algorithm 1

Z=dataset
For each j in Z
Calculate KNN(i)
X ← 1

k

∑
xiεNp

dist(xi, xp)

Y ← 1
k(k−1)

∑
xi,x́iεNp,i 6=í dist(xi, xí)

LF [j] = X
Y

End For
Sort LF Array
LF-Subset=FIRST(LF,n)
For each a in LF-Subset
Calculate RNNk(a)
ISk(a) = RNNk(a) ∪NNk(a)

PDOM [a] =
denavg(ISk(a))

den(a)
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Implementation and Analysis

Local Outlier Factor(LOF),Connectivity-Based Outlier Factor,Influenced Outlierness(INFLO)

and Proposed Outlier Detection Method was implemented under the following specifi-

cations.

Language C++

Processor Intel(R) Core(TM) i7-2630 CPU @ 2.00GHz

Installed memory (RAM) 4.00 GB

System type: 64-bit Operating System, x64-based processor

5.1 Datasets used

5.1.1 Dummy Dataset

A Dummy test set was taken with very skewed values:

No. of Instances: 9

No. of Attributes: 2

23 56

24 27

65 78

35 45

68 45

57 87

34 76

14 18

99999 99999

23
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The aim of taking this dataset was to check whether the algorithms were working per-

fectly.

5.1.2 IRIS dataset

Attribute Information

Number of Instances :150

Number of Attributes :4

1. sepal length in cm

2. sepal width in cm

3. petal length in cm

4. petal width in cm

5. class:

– Iris Setosa

– Iris Versicolour

– Iris Virginica

First 50 instances from Iris Setosa were taken and 3 instances from class Iris Versicolour

were taken. The aim of doing so was to test whether the 3 instances from class Iris

Versicolour were classified as outliers.

Secondly 50 instances from both Iris Setosa,Iris Versicolour were taken and 6 instances

were taken from Iris Virginica.

5.1.3 Spambase dataset

Attribute Information

No. of Attributes: 57

No. of instances: 4601

The last column of ’spambase.data’ denotes whether the e-mail was considered spam (1)

or not (0), i.e. unsolicited commercial e-mail. Most of the attributes indicate whether

a particular word or character was frequently occuring in the e-mail. The run-length

attributes (55-57) measure the length of sequences of consecutive capital letters.
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5.1.4 Breast Cancer Dataset

Number of Instances: 286

Number of Attributes: 9

Attribute Information

1. Class: no-recurrence-events, recurrence-events

2. age: 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99

3. menopause: lt40, ge40, premeno.

4. tumor-size: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54,

55-59.

5. inv-nodes: 0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35,

36-39.

6. node-caps: yes, no.

7. deg-malig: 1, 2, 3.

8. breast: left, right.

9. breast-quad: left-up, left-low, right-up, right-low, central.

10. irradiat: yes, no.

5.1.5 Seeds Dataset

Attribute Information

Number of Instances: 210

Number of Attributes: 7

To construct the data, seven geometric parameters of wheat kernels were measured:

1. area A,

2. perimeter P,

3. compactness C = 4 ∗ pi ∗A/P 2,

4. length of kernel,

5. width of kernel,

6. asymmetry coefficient

7. length of kernel groove.

All of these parameters were real-valued continuous.
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5.2 Results

5.2.1 Results on Seeds Dataset

Figure 5.1: LOF Output on Seeds dataset(The last three instances have higher values
and thus classified as outliers.)

Figure 5.2: LDOF Output on Seeds Dataset
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Figure 5.3: INFLO Output on Seeds Dataset

Figure 5.4: PODM output on Seeds Dataset
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Figure 5.5: Results in Graphical Form

Figure 5.6: Seeds dataset Table
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5.2.2 Results on Iris 53 Dataset

Figure 5.7: Results of LOF on Iris53 Dataset

Figure 5.8: Results of LDOF on Iris53 Dataset
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Figure 5.9: Results of INFLO on Iris53 Dataset

Figure 5.10: Results of PODM on Iris53 Dataset
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Figure 5.11: Results in graphical form

Figure 5.12: Iris53 dataset Table
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5.2.3 Results on Iris 106 Dataset

Figure 5.13: Results on IRIS106 Dataset

Figure 5.14: Iris106 dataset Table
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5.2.4 Breast Cancer Dataset

Figure 5.15: Results on Breast Cancer Dataset in graphical form.

Figure 5.16: Breast Cancer dataset Table
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5.2.5 Spambase Dataset

Figure 5.17: Results on Spambase Dataset in graphical form

Figure 5.18: Spambase dataset Table
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5.3 Analysis w.r.t. time

Figure 5.19: Analysis with respect to Time



Chapter 6

Conclusion

Thus we conclude that the Proposed Outlier Detection Method(PDOM) improves the

accuracy of outlier detection wrt LDOF and betters the time taken wrt INFLO thus

increasing accuracy and decreasing time taken for execution.This is only achieved by

reducing the number of reverse KNN computations.
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