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Abstract	

A Lattice Boltzmann Method (LBM) has been adopted for modelling and simulation 

of single phase heat transfer and multiphase flow dynamics. At first the energy 

equation in a test problem involving thermal conduction has been solved and then an 

investigation has been made about the suitability of scalar diffusion in LBM for a new 

class of problems. This is a 2D steady state single phase conduction heat transfer 

problem with dirichlet boundary conditions.  Parametric study has been made by 

varying different boundary conditions and temperature contours are plotted. Then the 

hydrodynamics of water drop in a moving liquid is studied. Velocity of the liquid 

flowing in the channel is varied to establish the effect of medium velocity on final 

shape and motion of the drop. Diffuse interface concept is adopted to track the 

interfacial dynamics. Thirdly, the hydrodynamics of a bubble in a stationary medium 

in a rectangular channel have been investigated by varying the size of the channel. At 

last, numerical simulation of an air bubble and water drop in an inclined rectangular is 

also studied. The effects of channel inclination, and bubble size on the shape of the 

bubble have also been studied. 

 

Keywords:	 Bubble and drop dynamics, lattice Boltzmann, inclined 

channel, Two phase flow 
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1.1	Introduction	

The lattice Boltzmann method (LBM) has received much attention in science and 

engineering as a potential computational technique for solving a large class of 

problems. Among many other types of problems, the LBM has been successfully used 

to simulate a wide range of fluid flow and heat transfer problems. Lattice Boltzmann 

method is widely used to solve the various heat transfer problems involving thermal 

conduction, convection and radiation because of its potential application in 

engineering designs and energy related problems such as solar collectors, cooling of 

electronic component, thermal insulation, heat exchangers etc. and in various fluid 

flows such as flow over porous media, flow through various pipe fittings such as 

return bends, sudden contraction or enlargement etc. Attempt has been made to solve 

energy equation in a test problem involving thermal conduction and then an 

investigation has been made about the suitability of scalar diffusion in LBM for a new 

class of problems.The LBM is emerging as a versatile computational method that has 

many advantages. In comparison to the conventional CFD solvers like the finite 

difference method, the finite element method and the finite volume method, the 

advantages of the LBM comprises of a clear physical meaning, a simple calculation 

procedure, simple and more efficient implementation for parallel computation, 

straightforward and efficient handling of complex geometries and boundary 

conditions, high computational performance with regard to stability and precision.  

 Fluid motion can take a variety of forms ranging from simple flows such as 

laminar flow in a pipe, to more complex flows such as vortex shedding behind 

cylinders, wave motion and turbulence. It incorporates both liquid and gaseous flows. 

Many of the different flow situations are multiphase flow. Attention has been given 

on two phase/multiphase flow as they are often encountered in nature as well as in 
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different industrial processes. Applications of multiphase flows are plenty like 

combustion, chemical reactions, boiling, petroleum refining and in other heat and 

mass transfer processes. With the implication of engineering knowledge in daily life 

problems, multiphase flow is becoming more relevant for different attractive fields 

like filling the fuel tank of a Formula 1 racing car within few seconds, oil jet 

splashing within the cylinders of racing engines, etc. 

 The simplest configuration of multiphase flow is the rise of gaseous/air bubble 

due to buoyancy inside a liquid column. The dynamics of bubble moving in a fluid 

medium has crucial ramifications in research, industrial processing and natural 

processes. Due to its wide application, bubble dynamics in liquid column has been 

studied by number of researchers both experimentally and theoretically. In the 

experimental investigations, researchers are continuously making efforts to predict the 

Taylor bubble shape and velocity in a stationary or moving liquid column. Though the 

shape of the interface is simple in such phenomena, it has been studied by many 

researchers due to its immense application in various processes (Bhaga and Weber 

1981; Bozanno and Dente 2001). Steady shape of the bubble and its terminal velocity 

depends on the resistive drag force as well as the buoyancy force on a rising bubble. 

To model the shape and  dynamics  of  the  interface  knowledge  of  surface  tension  

force  is  of  utmost  important. Configuration of the interface and the force due to 

surface tension are interrelated to each other.  The treatment of these two factors is 

difficult for multiphase flows specially when there exist a large density ratio between 

the fluids. 

 Numerical simulations have been adapted to study the interfacial dynamics of 

the bubble in liquid media. In conventional CFD models of two phase flow, a set of 

Navier-Stokes equations are solved and the interface is captured by using volume of 
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fluid (VOF) or level set methods. But interface reconstruction using VOF becomes 

complicated for three dimensional cases whereas level set method violates mass 

conservation for its application in large topological changes. Recently, the lattice 

Boltzmann method (LBM) has been developed into an alternative and promising 

numerical scheme for simulating multicomponent fluid flows. The LBM has great 

advantages over conventional methods for multiphase flows. It does not only track 

interfaces, but can maintain sharp interfaces without any artificial treatments. Also, 

the LBM is accurate for the mass conservation of each component fluid. Although 

lattice Boltzmann method (LBM) has emerged as an alternate and promising tool for 

simulation of complex two-phase flow problems as compared to the conventional 

CFD solver for Navier-Stokes equation. It takes care about the features of the micro-

scale or meso-scale as well as conserves the macroscopic variables. LBM can handle 

multiphase systems and complex interfaces with ease and efficiency. Lattice 

Boltzmann technique seems to be most robust and showed fair predictability in 

different thermo-physical problems. A brief description of basic lattice Boltzmann 

methodology is presented next which shows the flexibility of the method in solution 

of the complex hydrodynamics. 

 The lattice Boltzmann method is a powerful technique for the computational 

modeling of a wide variety of complex fluid flow problems including single and 

multiphase flow in complex geometries. It is a discrete computational method based 

upon the Boltzmann equation. It considers a typical volume element of fluid to be 

composed of a collection of particles that are represented by a particle velocity 

distribution function for each fluid component at each grid point. The LBM is a 

derivative of the lattice gas automata (LGA) method which was first proposed about a 

dozen years ago by a number of physicists. LGA method was first proposed by Friseh 
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et al. in 1986. The motivation behind the development of such a model originated 

from the fact that with its inherent microscopic origin, the model is expected to have a 

broader range of applications than the macroscopic Navier Stokes equations. The 

microscopic simulation can essentially provide more detailed information that is 

important to reveal the underlying physics behind complex fluid behavior. Although a 

direct solution of the full Boltzmann transport equation will provide necessary 

microscopic details, it would be a rather cumbersome task, due to high possible 

dimensions of the distribution functions. As a compromising alternative, it has been 

assumed that the movements of fluid particles are restricted only in few assigned 

directions.  This leads to the concept of discrete velocity methods based on the lattice 

structures. LBM has been derived from the generalized LGA model by effectively 

representing space and time discretized version of the conservation equations in the 

form of the Boltzmann transport equations. The main aim behind the description of 

macroscopic phenomena within the viewpoint of lattice structure is to describe the 

physical nature of fluids from a more statistical orientation.  This provides more 

feasible hydrodynamic solutions as compared to that in the macroscopic viewpoint. In 

recent years, the Lattice Boltzmann Method (LBM) has emerged as a promising 

numerical method for simulating fluid flows. Unlike conventional methods which 

solve the discretized macroscopic Navier-Stokes equations, the LBM is based on 

microscopic particle models and mesoscopic kinetic equations. The fundamental 

concept of the LBM is to construct simplified kinetic models that incorporate the 

essential physics of microscopic or mesoscopic processes so that the macroscopic 

averaged properties obey the desired macroscopic equations. The LBM is especially 

useful for modeling interfacial dynamics, flows over porous media, and multi-phase 

flows. In addition, the LBM algorithm tends to be very simple, allowing parallelism in 
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a straightforward manner. Nowadays, the method has quickly found its way in dealing 

with a number of engineering flow problems. However, the underlying lattice gas (or 

mesh) is a rectangle (or a hexagon) in two dimensions or a cube (or a shape with 

perfect geometric symmetry) in three dimensions, equivalent to the regular Cartesian 

grid used by conventional Navier-Stokes solvers. As a result, solution domains with 

inclined or curved boundaries are approximated by staircase-like steps. This 

restriction severely limits the applicability of LBM as most of the industrial and 

practical flows have complex flow geometries. Looking back on the history of the 

conventional Navier-Stokes methods, the issue of mesh flexibility dominates its 

development. It begins with the Cartesian regular grid, then the use of body-fitted 

coordinate grids and structured multi-block grids, and finally the widespread 

acceptance of unstructured grids, allowing the greatest flexibility in adapting the grid 

to domain boundaries. The body-fitted method and the multi-block structured method 

are merely special cases of the more general unstructured mesh. This method 

naturally accommodates a variety of boundary conditions such as the pressure drop 

across the interface between two fluids and wetting effects at a fluid-solid interface. It 

is an approach that bridges microscopic phenomena with the continuum macroscopic 

equations. Further, it can model the time evolution of systems. 

1.2	Literature	survey 

Gaseous bubble in liquid column is commonly encountered in variety of industrial 

applications such as oil refineries, nuclear reactors etc. Due to its wide applications, 

substantial literature can be found to reveal the underlying physics either by 

experimental observation or theoretical evolution. Bubble dynamics in liquid column 

is studied by number of researchers by both experimental (Tung and Parlange, 1976; 

Kataoka et al, 1987; Polonsky et al, 1999) and theoretical (Tudose and Kawaji, 1999;) 
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investigation. Starting from initial experimental investigation of Zukoski (1966) to 

recent effort of Lu and Prosperetti (2009) researchers are continuously making effort 

to predict the simplest Taylor drop shape and velocity in a stationary or moving liquid 

column. Continuous efforts have been done to predict the Taylor bubble shape and 

velocity under the flow of surrounding fluid or quiescent fluid. Most of the studies 

related to Taylor bubble are confined in the gas-liquid domain. On the other hand, a 

denser fluid, if placed on top of a lighter fluid, causes downward movement in the 

form of a Taylor drop. The shape of the Taylor drop is more or less equivalent to the 

shape of a Taylor bubble.  

  To the best of the knowledge of the authors, very few efforts have been made 

to study the gas-liquid Taylor bubble and liquid-liquid Taylor drop inside an inclined 

column. Complexities increase further when the conduit through which the bubble or 

the drop is traversing gets more inclination. The bubble/drop takes an asymmetric 

shape across the conduit axis which largely affects its dynamics. In industry, pipe 

fittings are essential component of any two-phase flow system. Thus two-phase 

invariably contain a variety of pipe fittings which may involve a change in channel 

area such as sudden contraction or sudden enlargement in flow direction. The flow of 

two-phase mixtures across sudden expansions and contractions is relevant in many 

applications such as chemical reactors, power generation units, oil wells and 

petrochemical plants. As the two-phase mixture flows through the sudden area 

changes, the flow might form a separation region at the sharp corner. Continuous  

efforts  are  also still  going  on  to  equip  LBM  for  tackling  complex interfacial 

dynamics. Rothman and Keller (1988) first proposed color method and gave a concept 

to transition across the interface or diffused interface. Diffused layer can be identified 

by the non-zero gradient of the color field assigned differentially to different fluids. 
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Shan et al. (1993) introduced a new potential method which can identify the 

interfacial layer by the potential gradient similar to the color method. But Potential 

method also fails to describe the evolution of the interface. Later on, Swift et al. 

(1995) proposed free energy method which defines a distribution function and its 

conservation equation throughout the domain. He et al. (1999) came with a new idea 

of correlating fluid mobility with their respective density field. A new lattice 

Boltzmann scheme has been proposed for simulation of multi-phase flow in the nearly 

incompressible limit. The numerical stability is improved by reducing the effect of 

numerical errors in calculation of molecular interactions. An index function is used to 

track interfaces between different phases. Numerical simulations were carried out for 

the two-dimensional Rayleigh–Taylor in-stability developed from both single-mode 

and multiple-mode initial perturbations. The evolution of the conservation equation 

takes a form of convection diffusion equation and turns out to be modified Cahn-

Hilliard equation after suitable approximation. 

Takada et al. (2000) have described the numerical simulation results of bubble 

motion under gravity by the lattice Boltzmann method (LBM), which assumes that a 

fluid consists of mesoscopic fluid particles repeating collision and translation and a 

multiphase interface are reproduced in a self-organizing way by repulsive interaction 

between different kinds of particles. The two-dimensional results by LBM agree with 

those by the Volume of Fluid method based on the Navier-Stokes equations. Obtained 

results prove that the buoyancy terms and the 3D model proposed here are suitable, 

and that LBM is useful for the numerical analysis of bubble motion under gravity. 

Inamuro et al. (2004) have proposed a lattice Boltzmann method for two-phase 

immiscible fluids with large density differences. The difficulty in the treatment of 

large density difference is resolved by using the projection method. The method can 
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be applied to simulate two-phase fluid flows with the density ratio up to 1000. To 

show the validity of the method, they have applied the method to the simulations of 

capillary waves, binary droplet collisions, and bubble flows. 

Zheng et al. (2006) described the lattice Boltzmann model for simulating 

multiphase flows with large density ratios. The method is easily implemented. The 

interface capturing equation is recovered without any additional terms as compared to 

other methods. The method is further verified by its application to capillary wave and 

the bubble rising under buoyancy with comparison to other method. 

Mandal et al. (2008) have worked on an experimental study on the shape and 

stability of liquid Taylor bubbles and liquid Taylor drops in vertical and inclined 

tubes. The effect of tube inclination, tube diameter, and pipe material on shape, 

stability, and velocity of a liquid Taylor bubbles and liquid Taylor drops has been 

explained qualitatively from basic physics. It is observed that the shape of the nose in 

vertical tubes is spherical. Ripples are observed at the tail region of a Taylor bubble 

and drop. 

1.3	Gaps	in	literatures		

The above discussion gives a broad overview of the multitude research activities 

carried out so far on the analysis of multiphase flows heat transfer problems. From the 

literature survey one can make out the aspects where further research is necessary. 

Some of the gaps in literature are as follows:  

1. Very few efforts have been made to solve energy equation for single phase 

heat transfer problems using LBM. 

2. Established CFD techniques are not suitable for tracking complex interface for 

multi-phase flow.  
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3. However the recently developed Lattice Boltzmann method overcomes all 

limitations and can be used to model the multiphase flow successfully. 

4. Two phase flow inside an inclined channel of rectangular cross-section is a 

challenging task to solve numerically. Very few efforts have been made in this 

direction.	

1.4	Aims	and	Objectives		

From the literature survey conclusion can be drawn that very few efforts have been 

done to investigate the suitability for simulation of single phase heat transfer problems 

using LBM. The capturing of non-linear hydrodynamics of the bubble or drop moving 

in surrounding medium inside vertical and inclined channel has not been studied in 

details. On the other hand, due to numerical difficulties, asymmetric bubble or drop 

movement in an inclined channel has not been investigated in details. Based on the 

lacuna of the literature following objectives are identified for the present work: 	

1.  Effort has to be made to solve energy equation and then to investigate the 

suitability of scalar diffusion in LBM for new class of problems. 

2. Effect of primary phase velocity on the movement of drop inside the vertical 

channel will be modeled using LBM.  

3.  Effect of channel size on the shape of bubble will be modeled numerically. 

4. To capture the asymmetry in the shape of the bubble or drop under different 

inclinations of the channel, numerical model will be developed.  

1.5 Organization of the Thesis   

The thesis is organized into five different chapters. First Chapter contains introduction 

of multiphase flow and various heat transfer phenomena. Preliminary concepts along 

with brief review of earlier works of the dynamics of bubble and drop have been 
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discussed. Brief history of evolution of lattice Boltzmann method has been described. 

Based on the review of earlier works gaps in literatures and scope of present work 

have been described.  Second chapter deals with the basic methodology used for 

modeling the dynamics of bubbles or drop is described. Third chapter contains 

problem description in detail. Four different problems have been studied. Fourth 

chapter deals with results and discussion of the problem described in third chapter. 

Fifth chapter deals with concluding remarks based on the results obtained in chapter 

4. Potential future areas of research are also identified in this chapter. 
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the body force associated with the flow. 

A statistical description of a fluid system can be made in terms of a 

distribution function fi (̅ݔ,t)  in the basis of lattice Boltzmann equation. D2Q9 lattice 

structure as has been shown in Figure 1.1, has been used for the propagation of 

information of fi (̅ݔ,t). Using LBM approximation equation (2.2-2.3) can be written 

as: 

fi (̅ݐߜ ̅ܿ + ݔ,t + ݐߜ) =  fi  (̅ݔ,t) + 
௙೔
೐೜ሺ௫̅,௧ሻି	௙೔	ሺ௫̅,௧ሻ

ఛ೙
 + 

             ቀ1 െ	
ଵ

ଶఛ೙
ቁ 
௪೔

௖ೞ
మ ቂሺܿ̅ െ ሻ	തݑ ൅	

௖.̅௨ഥ

௖ೞ
మ 	ܿ̅ቃ ሺߤఃߔ׏ ൅  (2.5)                     ݐߜ௕ሻܨ

Where,  

    ௜݂
௘௤ = ݓ௜ܣ௜+ ݓ௜nቀ3ܿ௜ఈ	ݑఈ െ	

ଷ

ଶ
ଶݑ ൅	

ଽ

ଶ
 ఉܿ௜ఈܿ௜ఉቁ                     (2.6)ݑఈݑ

With coefficients as: 

 =ଵܣ
ଽ

ସ
	݊- 

ଵହ	ሺఃఓ೻ା௡/ଷሻ

ସ
  

ఃߤߔሺ	௜= 3ܣ                                     ൅ ݊/3ሻ                                 (2.7) 

଴ݓ ൌ 	
ସ

ଽ
 = ,௜ୀଵ,ଶ,ଷ,ସݓ , 

ଵ

ଽ
 = ,଼,௜ୀହ,଺,଻ݓ , 

ଵ

ଷ଺
 

In Eq. (2.5) ߬௡ is the relaxation parameter which can be directly related with viscosity 

of the fluid. To accommodate the diffused interface concept in Eq. (2.5) Zheng et al 

(2006) defined chemical potential ߤః as follows: 

ଷߔః= Aሺ4ߤ                       െ	ሺߩு െ	ߩ௅ሻଶ	ߔሻ- k ߘଶ(2.8)                     ߔ 

Here, A is amplitude parameter used to control the interaction of energy between two 

phases and k is the curvature of the interface. These two parameters are related with 

surface tension, ߪ and diffused interface width, W as: 

                     W = 
ଶඥ௞/஺

ఘಹି	ఘಽ
    and  ߪ = 

ସඥ௞/஺

ଷ
 ሺߩு െ	ߩ௅ሻଷ                  (2.9) 
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To capture the dynamics of the interface modified Cahn-Hillard equation is simulated. 

Order Parameter gi (̅ݔ,t) has been assigned to replicate the interface dynamics. The 

conservation equation of, can be written using LBM approximation: 

gi (̅ݔ + ݁̅௜ ݐߜ,t + ݐߜ) - gi (̅ݔ,t) = (1-q) [ gi (̅ݔ + ݁̅௜ ݐߜ,t + ݐߜ) - gi (̅ݔ,t)] + 

                              
௚೔
೐೜ሺ௫̅,௧ሻି௚௜	ሺ௫̅,୲ሻ	

ఛ೻
                                      (2.10) 

Here, ߬ః is a dimensionless relaxation time,  ݁̅௜ is lattice velocity and q is constant 

coefficient. 

Equilibrium distribution of gi (̅ݔ,t)  can be written as: 

                    	݃௜
௘௤ = ܣ௜ ൅	ܤ௜ߔ ൅ .̅ܿߔ௜ܥ തݑ

                                             (2.11) 

Where, the coefficients are taken as, 

 ఃߤ௜ = -2Γܣ

 ௜= 0                                         (2.12)ܤ ,ଵ= 1ܤ                                                 

௜ܥ  = 
ଵ

ଶ௤
	

 

Γ is used to control the mobility and is defined as, 

ݍெ = q ቀ߬ఃߠ          െ	
ଵ

ଶ
ቁ  ሺΓሻ                                                       (2.13)ߜ

Where q is implicit parameter. The relation between q and ߬ః is as follows:   

                        q = 
ଵ

ఛ೻ା௢.ହ
                                                (2.14) 

The macroscopic parameter ߔ is evaluated from equilibrium distribution function gi 

 :as (t,ݔ̅)

∑ = ߔ                                ݃௜௜                                                                (2.15) 

As the phenomena are surface tension related it can be related as: 
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.׏- = ௦ܨ                      P = -	ߤ׏ߔః - ׏	݌௢                                                  (2.16) 

Where ݌௢ = nܿ௦ଶ, ܿ௦ being the speed of sound. Modified Navier-Stokes equation 

after incorporation of diffused interface concept can be written as: 

                     డ௡
డ௧

.׏ +  ሺ݊ݑതሻ = 0                                                       (2.17)       

డሺ௡௨ഥሻ

డ௧
.׏ +  ሺ݊ݑതݑതሻ= -	ߤ׏ߔః - ׏	݌௢ + ߤఃݑ 2׏ߤ +  ߔ׏ത +Fb                                  (2.18)     

The pressure tensor is calculated as: 

P = A (3 ߔସ െ ଶߔଶ∗ߔ2 െߔ∗ସ	)- k	2׏ߔ	ߔ +  
ሺ	ߔ׏ሻమ

ଶ
 + 

௡

ଷ
                       (2.19) 

Where A is amplitude parameter used to control the interaction of energy between 

two phases. 

 ሻ                                              (2.20)ܹ/ߞtanhሺ2 ∗ߔ = ߔ                  

 is the coordinate  which is perpendicular  to  the  interface  and  W is  the  thickness ߞ

of  the interface layer. 

Here, the expected order parameter is: 

 = ∗ߔ                        
ఘಹି	ఘಽ

ଶ
                                                          (2.21)              

From equations (2.8) and (2.20) we can obtain: 

 = ߔ	఍׏ఃߤ
ଷఙ

ௐమ tan݄ଷሺ2ߞ	/Wሻsec݄ଶሺ2ߞ	/Wሻ                                  (2.22)  

 Thus the potential form of surface tension related term is independent of the 

density and density difference. It is obvious from equation (2.22) that ߤః׏఍	ߔ is 

related with the surface tension coefficient and the width of interface layer. 
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The macroscopic properties like density and velocity of the domain can be calculated 

from,  fi (̅ݔ,t) and  gi (̅ݔ,t) as: 

n = ∑ ሺ	 ௜݂	ሺ̅ݔ, tሻ	௜ୀଵ,..ଵଽ			 ሻ                                                               (2.25) 

u = [൫∑ ሺ	 ௜݂ 	ሺ̅ݔ, tሻ	௜ୀଵ,..ଵଽ			 ሻ	݁̅݅	൯ ൅	
ଵ

ଶ
	ሺߤఃߔ׏ ൅  ௕ሻሿ / n                      (2.26)ܨ

∑  = ߔ ሺ	݃௜	ሺ̅ݔ, tሻ	௜ୀଵ,..ଵଽ			 ሻ                                                             (2.27) 
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Numerical simulation of water drop moving in stationary kerosene medium 

moving downward in inclined channel has also been done as shown in Figure 3.4(b). 

Channel size and boundary conditions are kept identical to that of the case of bubble 

dynamics. 
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In the present chapter the important findings from the overall study of the selected 

problems have been given. Concluding remarks and scope of the future work have 

also been discussed. 

5.1 CONCLUDING	REMARKS 

The important finding and concluding remarks about the present investigation are 

given below point wise. 

5.1.1 Single phase heat transfer in 2D square domain 

 2D heat transfer phenomena have been studied for different variations of 

boundary conductions using lattice Boltzmann model. 

 Temperature contours has been shown for different boundary conditions. 

 Temperature profiles are plotted for the vertical mid plane of the square domain. 

5.1.2 Effect	of	fluid	velocity	on	drop 

 The drop moves faster as the liquid velocity increases. 

 Shape of drop is also influenced as the velocity of the surrounding liquid 

changes. 

 The crater at the bottom position of the drop increases with the increase in 

velocity of liquid. 

5.1.3	Effect	of	channel	cross‐section	on	bubble	shape	

 Bubble becomes more distorted as channel size decreases. 

 For smaller channel bubble becomes bullet like shape and for larger channel 

shape is more or less spherical. 

 Velocity of bubble moving upward increases with increase of channel size.  

5.1.3	Dynamics	of	a	bubble	and	drop	through	inclined	channel	
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 Numerical model was efficient enough to capture the asymmetry in the 

shape of the drop or bubble under different inclinations of the channel. 

 Simulations have been made for a wide range of drop or bubble volume. 

 Asymmetry in the bubble or drop shapes increases as the inclination varies at 

60°and 30° with horizontal. 

 With the increase of bubble or drop volume the effect of wall becomes 

prominent which makes the bubble shape similar to a bullet. 

 Bubble or drop becomes more asymmetric with the axis of channel when its 

volume decreases. 

5.2	Future	scope	

Based on the work done in this session following topics can be done in next 

session: 

 Proper combinations of thermal and two phase lattice Boltzmann method can 

simulate complicated bubble column reactor. 

 3D lattice Boltzmann model can be used for complicated channel geometry 

like sudden contraction and expansion or sharp return bend. 

 Heat transfer model can be extrapolated for different complicated boundary 

conditions and inside intrusions. 
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