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Abstract

A Lattice Boltzmann Method (LBM) has been adopted for modelling and simulation
of single phase heat transfer and multiphase flow dynamics. At first the energy
equation in a test problem involving thermal conduction has been solved and then an
investigation has been made about the suitability of scalar diffusion in LBM for a new
class of problems. This is a 2D steady state single phase conduction heat transfer
problem with dirichlet boundary conditions. Parametric study has been made by
varying different boundary conditions and temperature contours are plotted. Then the
hydrodynamics of water drop in a moving liquid is studied. Velocity of the liquid
flowing in the channel is varied to establish the effect of medium velocity on final
shape and motion of the drop. Diffuse interface concept is adopted to track the
interfacial dynamics. Thirdly, the hydrodynamics of a bubble in a stationary medium
in a rectangular channel have been investigated by varying the size of the channel. At
last, numerical simulation of an air bubble and water drop in an inclined rectangular is
also studied. The effects of channel inclination, and bubble size on the shape of the

bubble have also been studied.

Keywords: Bubble and drop dynamics, lattice Boltzmann, inclined

channel, Two phase flow
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Chapter 1

Introduction
and

Literature survey



1.1 Introduction

The lattice Boltzmann method (LBM) has received much attention in science and
engineering as a potential computational technique for solving a large class of
problems. Among many other types of problems, the LBM has been successfully used
to simulate a wide range of fluid flow and heat transfer problems. Lattice Boltzmann
method is widely used to solve the various heat transfer problems involving thermal
conduction, convection and radiation because of its potential application in
engineering designs and energy related problems such as solar collectors, cooling of
electronic component, thermal insulation, heat exchangers etc. and in various fluid
flows such as flow over porous media, flow through various pipe fittings such as
return bends, sudden contraction or enlargement etc. Attempt has been made to solve
energy equation in a test problem involving thermal conduction and then an
investigation has been made about the suitability of scalar diffusion in LBM for a new
class of problems.The LBM is emerging as a versatile computational method that has
many advantages. In comparison to the conventional CFD solvers like the finite
difference method, the finite element method and the finite volume method, the
advantages of the LBM comprises of a clear physical meaning, a simple calculation
procedure, simple and more efficient implementation for parallel computation,
straightforward and efficient handling of complex geometries and boundary
conditions, high computational performance with regard to stability and precision.
Fluid motion can take a variety of forms ranging from simple flows such as
laminar flow in a pipe, to more complex flows such as vortex shedding behind
cylinders, wave motion and turbulence. It incorporates both liquid and gaseous flows.
Many of the different flow situations are multiphase flow. Attention has been given

on two phase/multiphase flow as they are often encountered in nature as well as in



different industrial processes. Applications of multiphase flows are plenty like
combustion, chemical reactions, boiling, petroleum refining and in other heat and
mass transfer processes. With the implication of engineering knowledge in daily life
problems, multiphase flow is becoming more relevant for different attractive fields
like filling the fuel tank of a Formula 1 racing car within few seconds, oil jet
splashing within the cylinders of racing engines, etc.

The simplest configuration of multiphase flow is the rise of gaseous/air bubble
due to buoyancy inside a liquid column. The dynamics of bubble moving in a fluid
medium has crucial ramifications in research, industrial processing and natural
processes. Due to its wide application, bubble dynamics in liquid column has been
studied by number of researchers both experimentally and theoretically. In the
experimental investigations, researchers are continuously making efforts to predict the
Taylor bubble shape and velocity in a stationary or moving liquid column. Though the
shape of the interface is simple in such phenomena, it has been studied by many
researchers due to its immense application in various processes (Bhaga and Weber
1981; Bozanno and Dente 2001). Steady shape of the bubble and its terminal velocity
depends on the resistive drag force as well as the buoyancy force on a rising bubble.
To model the shape and dynamics of the interface knowledge of surface tension
force is of utmost important. Configuration of the interface and the force due to
surface tension are interrelated to each other. The treatment of these two factors is
difficult for multiphase flows specially when there exist a large density ratio between
the fluids.

Numerical simulations have been adapted to study the interfacial dynamics of
the bubble in liquid media. In conventional CFD models of two phase flow, a set of

Navier-Stokes equations are solved and the interface is captured by using volume of



fluid (VOF) or level set methods. But interface reconstruction using VOF becomes
complicated for three dimensional cases whereas level set method violates mass
conservation for its application in large topological changes. Recently, the lattice
Boltzmann method (LBM) has been developed into an alternative and promising
numerical scheme for simulating multicomponent fluid flows. The LBM has great
advantages over conventional methods for multiphase flows. It does not only track
interfaces, but can maintain sharp interfaces without any artificial treatments. Also,
the LBM is accurate for the mass conservation of each component fluid. Although
lattice Boltzmann method (LBM) has emerged as an alternate and promising tool for
simulation of complex two-phase flow problems as compared to the conventional
CFD solver for Navier-Stokes equation. It takes care about the features of the micro-
scale or meso-scale as well as conserves the macroscopic variables. LBM can handle
multiphase systems and complex interfaces with ease and efficiency. Lattice
Boltzmann technique seems to be most robust and showed fair predictability in
different thermo-physical problems. A brief description of basic lattice Boltzmann
methodology is presented next which shows the flexibility of the method in solution
of the complex hydrodynamics.

The lattice Boltzmann method is a powerful technique for the computational
modeling of a wide variety of complex fluid flow problems including single and
multiphase flow in complex geometries. It is a discrete computational method based
upon the Boltzmann equation. It considers a typical volume element of fluid to be
composed of a collection of particles that are represented by a particle velocity
distribution function for each fluid component at each grid point. The LBM is a
derivative of the lattice gas automata (LGA) method which was first proposed about a

dozen years ago by a number of physicists. LGA method was first proposed by Friseh



et al. in 1986. The motivation behind the development of such a model originated
from the fact that with its inherent microscopic origin, the model is expected to have a
broader range of applications than the macroscopic Navier Stokes equations. The
microscopic simulation can essentially provide more detailed information that is
important to reveal the underlying physics behind complex fluid behavior. Although a
direct solution of the full Boltzmann transport equation will provide necessary
microscopic details, it would be a rather cumbersome task, due to high possible
dimensions of the distribution functions. As a compromising alternative, it has been
assumed that the movements of fluid particles are restricted only in few assigned
directions. This leads to the concept of discrete velocity methods based on the lattice
structures. LBM has been derived from the generalized LGA model by effectively
representing space and time discretized version of the conservation equations in the
form of the Boltzmann transport equations. The main aim behind the description of
macroscopic phenomena within the viewpoint of lattice structure is to describe the
physical nature of fluids from a more statistical orientation. This provides more
feasible hydrodynamic solutions as compared to that in the macroscopic viewpoint. In
recent years, the Lattice Boltzmann Method (LBM) has emerged as a promising
numerical method for simulating fluid flows. Unlike conventional methods which
solve the discretized macroscopic Navier-Stokes equations, the LBM is based on
microscopic particle models and mesoscopic Kkinetic equations. The fundamental
concept of the LBM is to construct simplified kinetic models that incorporate the
essential physics of microscopic or mesoscopic processes so that the macroscopic
averaged properties obey the desired macroscopic equations. The LBM is especially
useful for modeling interfacial dynamics, flows over porous media, and multi-phase

flows. In addition, the LBM algorithm tends to be very simple, allowing parallelism in



a straightforward manner. Nowadays, the method has quickly found its way in dealing
with a number of engineering flow problems. However, the underlying lattice gas (or
mesh) is a rectangle (or a hexagon) in two dimensions or a cube (or a shape with
perfect geometric symmetry) in three dimensions, equivalent to the regular Cartesian
grid used by conventional Navier-Stokes solvers. As a result, solution domains with
inclined or curved boundaries are approximated by staircase-like steps. This
restriction severely limits the applicability of LBM as most of the industrial and
practical flows have complex flow geometries. Looking back on the history of the
conventional Navier-Stokes methods, the issue of mesh flexibility dominates its
development. It begins with the Cartesian regular grid, then the use of body-fitted
coordinate grids and structured multi-block grids, and finally the widespread
acceptance of unstructured grids, allowing the greatest flexibility in adapting the grid
to domain boundaries. The body-fitted method and the multi-block structured method
are merely special cases of the more general unstructured mesh. This method
naturally accommodates a variety of boundary conditions such as the pressure drop
across the interface between two fluids and wetting effects at a fluid-solid interface. It
is an approach that bridges microscopic phenomena with the continuum macroscopic

equations. Further, it can model the time evolution of systems.

1.2 Literature survey

Gaseous bubble in liquid column is commonly encountered in variety of industrial
applications such as oil refineries, nuclear reactors etc. Due to its wide applications,
substantial literature can be found to reveal the underlying physics either by
experimental observation or theoretical evolution. Bubble dynamics in liquid column
is studied by number of researchers by both experimental (Tung and Parlange, 1976;

Kataoka et al, 1987; Polonsky et al, 1999) and theoretical (Tudose and Kawaji, 1999;)



investigation. Starting from initial experimental investigation of Zukoski (1966) to
recent effort of Lu and Prosperetti (2009) researchers are continuously making effort
to predict the simplest Taylor drop shape and velocity in a stationary or moving liquid
column. Continuous efforts have been done to predict the Taylor bubble shape and
velocity under the flow of surrounding fluid or quiescent fluid. Most of the studies
related to Taylor bubble are confined in the gas-liquid domain. On the other hand, a
denser fluid, if placed on top of a lighter fluid, causes downward movement in the
form of a Taylor drop. The shape of the Taylor drop is more or less equivalent to the
shape of a Taylor bubble.

To the best of the knowledge of the authors, very few efforts have been made
to study the gas-liquid Taylor bubble and liquid-liquid Taylor drop inside an inclined
column. Complexities increase further when the conduit through which the bubble or
the drop is traversing gets more inclination. The bubble/drop takes an asymmetric
shape across the conduit axis which largely affects its dynamics. In industry, pipe
fittings are essential component of any two-phase flow system. Thus two-phase
invariably contain a variety of pipe fittings which may involve a change in channel
area such as sudden contraction or sudden enlargement in flow direction. The flow of
two-phase mixtures across sudden expansions and contractions is relevant in many
applications such as chemical reactors, power generation units, oil wells and
petrochemical plants. As the two-phase mixture flows through the sudden area
changes, the flow might form a separation region at the sharp corner. Continuous
efforts are also still going on to equip LBM for tackling complex interfacial
dynamics. Rothman and Keller (1988) first proposed color method and gave a concept
to transition across the interface or diffused interface. Diffused layer can be identified

by the non-zero gradient of the color field assigned differentially to different fluids.



Shan et al. (1993) introduced a new potential method which can identify the
interfacial layer by the potential gradient similar to the color method. But Potential
method also fails to describe the evolution of the interface. Later on, Swift et al.
(1995) proposed free energy method which defines a distribution function and its
conservation equation throughout the domain. He et al. (1999) came with a new idea
of correlating fluid mobility with their respective density field. A new lattice
Boltzmann scheme has been proposed for simulation of multi-phase flow in the nearly
incompressible limit. The numerical stability is improved by reducing the effect of
numerical errors in calculation of molecular interactions. An index function is used to
track interfaces between different phases. Numerical simulations were carried out for
the two-dimensional Rayleigh-Taylor in-stability developed from both single-mode
and multiple-mode initial perturbations. The evolution of the conservation equation
takes a form of convection diffusion equation and turns out to be modified Cahn-
Hilliard equation after suitable approximation.

Takada et al. (2000) have described the numerical simulation results of bubble
motion under gravity by the lattice Boltzmann method (LBM), which assumes that a
fluid consists of mesoscopic fluid particles repeating collision and translation and a
multiphase interface are reproduced in a self-organizing way by repulsive interaction
between different kinds of particles. The two-dimensional results by LBM agree with
those by the Volume of Fluid method based on the Navier-Stokes equations. Obtained
results prove that the buoyancy terms and the 3D model proposed here are suitable,
and that LBM is useful for the numerical analysis of bubble motion under gravity.

Inamuro et al. (2004) have proposed a lattice Boltzmann method for two-phase
immiscible fluids with large density differences. The difficulty in the treatment of

large density difference is resolved by using the projection method. The method can



be applied to simulate two-phase fluid flows with the density ratio up to 1000. To
show the validity of the method, they have applied the method to the simulations of
capillary waves, binary droplet collisions, and bubble flows.

Zheng et al. (2006) described the lattice Boltzmann model for simulating
multiphase flows with large density ratios. The method is easily implemented. The
interface capturing equation is recovered without any additional terms as compared to
other methods. The method is further verified by its application to capillary wave and
the bubble rising under buoyancy with comparison to other method.

Mandal et al. (2008) have worked on an experimental study on the shape and
stability of liquid Taylor bubbles and liquid Taylor drops in vertical and inclined
tubes. The effect of tube inclination, tube diameter, and pipe material on shape,
stability, and velocity of a liquid Taylor bubbles and liquid Taylor drops has been
explained qualitatively from basic physics. It is observed that the shape of the nose in
vertical tubes is spherical. Ripples are observed at the tail region of a Taylor bubble

and drop.

1.3 Gaps in literatures

The above discussion gives a broad overview of the multitude research activities
carried out so far on the analysis of multiphase flows heat transfer problems. From the
literature survey one can make out the aspects where further research is necessary.
Some of the gaps in literature are as follows:
1. Very few efforts have been made to solve energy equation for single phase
heat transfer problems using LBM.
2. Established CFD techniques are not suitable for tracking complex interface for

multi-phase flow.



3. However the recently developed Lattice Boltzmann method overcomes all
limitations and can be used to model the multiphase flow successfully.

4. Two phase flow inside an inclined channel of rectangular cross-section is a
challenging task to solve numerically. Very few efforts have been made in this

direction.

1.4 Aims and Objectives

From the literature survey conclusion can be drawn that very few efforts have been

done to investigate the suitability for simulation of single phase heat transfer problems

using LBM. The capturing of non-linear hydrodynamics of the bubble or drop moving

in surrounding medium inside vertical and inclined channel has not been studied in

details. On the other hand, due to numerical difficulties, asymmetric bubble or drop

movement in an inclined channel has not been investigated in details. Based on the

lacuna of the literature following objectives are identified for the present work:

1. Effort has to be made to solve energy equation and then to investigate the
suitability of scalar diffusion in LBM for new class of problems.

2. Effect of primary phase velocity on the movement of drop inside the vertical
channel will be modeled using LBM.

3. Effect of channel size on the shape of bubble will be modeled numerically.

4. To capture the asymmetry in the shape of the bubble or drop under different

inclinations of the channel, numerical model will be developed.

1.5 Organization of the Thesis

The thesis is organized into five different chapters. First Chapter contains introduction
of multiphase flow and various heat transfer phenomena. Preliminary concepts along

with brief review of earlier works of the dynamics of bubble and drop have been

10



discussed. Brief history of evolution of lattice Boltzmann method has been described.
Based on the review of earlier works gaps in literatures and scope of present work
have been described. Second chapter deals with the basic methodology used for
modeling the dynamics of bubbles or drop is described. Third chapter contains
problem description in detail. Four different problems have been studied. Fourth
chapter deals with results and discussion of the problem described in third chapter.
Fifth chapter deals with concluding remarks based on the results obtained in chapter

4. Potential future areas of research are also identified in this chapter.
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Chapter 2

Lattice Boltzmann

Formulation



In this chapter the 2D lattice Boltzmann model proposed by Zheng et al. (2006) has
been described in detail. Based on this 2D model, 3D version of diffused interface
based formulation has been developed. A rectangular parallelepiped section of Lyx
X Ly X Lz dimension has been taken as the problem domain. To see the bubble
dynamics initially a spherical bubble is placed at the bottom of the domain filled with
liquid (Figure 2.1.a). Due to its own dynamics bubble will take a bullet shape as has
been shown in Figure 2.1.b. Further simulation is done for bubble movement
when velocity provided in liquid and for simulation of inclined channel the domain

has been inclined with a prescribed angle.
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Figure 2.1: Computational 3D domains for a single rising bubble: (a) Initial position
(b) Final position. (Inamuro et al. 2004)

2.1 2D Diffused interface based LBM

A basic model to track the two-phase flow is developed based on lattice Boltzmann
methodology. Diffused interface concept is considered to track the interfacial
behavior. As domain is associated with two different fluids and their mutual

interactions two derived properties have been defined based on the respective

14



densities p;, and py. The properties and their corresponding definitions are

described as:

[ o]

6 5

3 b= 1
0

2 8

4

Figure 2.2: D2Q9 lattice structure used for 2D model
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The dynamics of the two fluids inside the domain follows conservation equations and

an interface capturing equation which can be written as:

on —\

P V.(nu)=0 (2.2)
9 (;‘f) + V. (ntit)=- V. P + uV’ i +F, 23)
Z—i’ + V. (@%) = 0, V° pio (2.4)

Where, P is the pressure tensor, [Lg is the chemical potential 0, is the mobility, F} is
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the body force associated with the flow.

A statistical description of a fluid system can be made in terms of a
distribution function f; (X,t) in the basis of lattice Boltzmann equation. D2Q9 lattice
structure as has been shown in Figure 1.1, has been used for the propagation of
information of f; (X,t). Using LBM approximation equation (2.2-2.3) can be written

as:

29w 0- fi (%, D,

fi(x+cott+8t)= f (k) + =

Tn
(1- o) %[E-m)+ 5 ] (uaVe + Fy)st (25)
. Uep b :
Where,
3 9
7 = wiA+ Win(3cia Uy — Euz + Euauﬁciaciﬁ) (2.6)

With coefficients as:

9 15 (@ugp+n/3)
n- Uptn/

A=y 4
A=3 (Puyp +n/3) (2.7)
4 _1 1
Wo = 5> Wi=1234, » Wi=s5,6,7,8~ 3¢

In Eq. (2.5) T,, is the relaxation parameter which can be directly related with viscosity
of the fluid. To accommodate the diffused interface concept in Eq. (2.5) Zheng et al
(2006) defined chemical potential Uy as follows:

He=AM4P> — (py — pp)* ®)-k V2D (2.8)
Here, A is amplitude parameter used to control the interaction of energy between two

phases and k is the curvature of the interface. These two parameters are related with

surface tension, o and diffused interface width, W as:

2./k/A and UZ4,/k/A (0

PH- PL 5 (P = L)’ 29

W:
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To capture the dynamics of the interface modified Cahn-Hillard equation is simulated.
Order Parameter g; (X,t) has been assigned to replicate the interface dynamics. The
conservation equation of, can be written using LBM approximation:

gi(x+e ott+dt)-g(x,t)=(1-q) [ g(x +e; 6t,t+6t) - g (x,t)] +

g; 1 (®)-gi (£
Tp

(2.10)
Here, T is a dimensionless relaxation time, €; is lattice velocity and q is constant
coefficient.
Equilibrium distribution of g; (f ,t) can be written as:

g1 =A;+ B® + C;PC. T (2.11)

Where, the coefficients are taken as,

Ay =-2Tlg
B;=1,B;=0 (2.12)
1
C; “ %

I" is used to control the mobility and is defined as,
1
61 =4 (toq — 3) 5(D) (2.13)
Where ¢ is implicit parameter. The relation between g and T 1is as follows:

1
Tp+0.5

q= (2.14)
The macroscopic parameter @ is evaluated from equilibrium distribution function g;
(x,t) as:

D=3, (2.15)

As the phenomena are surface tension related it can be related as:

17



F,=-V.P=-®Vug -Vp, (2.16)
Where p, = nCS2 , Cs being the speed of sound. Modified Navier-Stokes equation
after incorporation of diffused interface concept can be written as:
on —
PRl V.(nu) =0 (2.17)

d(nu —_ _
% + V. (niill)= - ®Vjg -V p, + Ue VP + UV’ +F, (2.18)
The pressure tensor is calculated as:

* * V(pz
P=43®0"-207®* - ™) 1OV ® + QLI (2.19)
2 3

Where A is amplitude parameter used to control the interaction of energy between

two phases.
® = @ tanh(2/W) (2.20)
¢ is the coordinate which is perpendicular to the interface and W is the thickness

of the interface layer.

Here, the expected order parameter is:

@ =LH_PL 2.21)
2
From equations (2.8) and (2.20) we can obtain:
3
HeVe @ = W_Gz tanh3(2¢ /W)sech?(2{ /W) (2.22)

Thus the potential form of surface tension related term is independent of the

density and density difference. It is obvious from equation (2.22) that UgVy @ is

related with the surface tension coefficient and the width of interface layer.

18



2.2 3D Diffused interface based LBM
The domain is discretized using 3D cubic lattice to replicate the inclined channel. The
physical information is propagated using D3Q19 structure of the lattice, is shown in

Figure 2.3.

16
Figure 2.3: D3Q19 lattice structure used for 3D model

This model is similar kind of the 2D model described above but due to more number
of lattice direction involved, directional velocities and weight parameters are adapted

accordingly. Directional velocities can be written as:

e;= (+1,0,0), (0,4+1,0), (0,0,+1) i=2,3,..7 (2.23)
(+1,41,0),(+1,0,+1),(0,+1,+1) i= 89,...19

Weight parameter for 19 different directions can be written as:

1 1
Wo = —., W;_ = — W;_ = — 2.24
0= 3>Wi=123..6 = 15> Wi=789,..18 = 3¢ (2.24)
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The macroscopic properties like density and velocity of the domain can be calculated

from, f;(X,t) and g;(X,t) as:

n=>%;-1.19 (fi (5,1)) (2.25)
0=[(Zict.10 (fi ®Y)E)+ 5 eV +Fp)]/n (2.26)
D= Yi=1,19 (g; (X,1)) (2.27)
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Chapter 3

Problem Statement



In this chapter problems have been described in detail based on gaps in literatures
cited in Chapter 1. Four problems have been studied which is described in details

below:

3.1 Single phase heat transfer in 2D square domain

In the present problem single phase heat conduction through a 2D square domain has
been studied using Lattice Boltzmann Method. Dirichlet boundary condition is
provided in square domain and temperature contours have been plotted. A lattice
Boltzmann Method (LBM) is used to solve the energy equation in a test problem
involving thermal conduction and to thus investigate the suitability of scalar diffusion

in LBM for a new class of problems.

)

%
T.

10 mm

T.<Th

[
\_1,

10 mm

Figure 3.1: Single phase heat transfer in 2D square domain

The problem is chosen as steady state single phase conductive heat transfer in
a 2-D square enclosure of 10 mm x 10 mm with dirichlet boundary conditions as
shown in Figure 3.1. A parametric variation is done with different temperature

boundary conditions and temperature contours and graphs are plotted.
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3.2 Effect of fluid velocity on dynamics of drop

Here, the effect of velocity of surrounding fluid on the dynamics of the drop is
studied. 2D methodology as proposed in Chapter 2 has been used for the
simulation. The dynamics of a liquid drop in the surrounding of a lighter liquid
has been modeled using the described methodology. The schematic

representation of the problem is shown in Figure 3.2.

Figure 3.2: Effect of fluid velocity on dynamics of drop

Water has been taken as drop liquid and channel has been considered to
be filled with kerosene. For the numerical simulation of dynamics of drop
density of water has been taken as 1000 kg/m® and that of kerosene is 787
kg/m®. The diameter of the drop is taken as 30mm and the channel dimension
has been considered as 120 mm x 500 mm. To replicate the no slip boundary
condition at the solid vertical wall bounce back condition is applied for the
lattices adjacent to it. Constant inlet velocity has been provided at top boundary

to simulate dynamics of drop under the different flow situations. Periodic
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boundary condition is maintained at the inlet and outlet of the tube to avoid end
effect. Two lattice unit interfacial widths have been allowed to model the

complex liquid-liquid interactions.

3.3 Effect of cross-section on bubble shape formation

In this case the effect of conduit configurations on the shape of the bubble is studied.
Three different conduit configurations (110 mm x 500 mm, 130 mm x 500 mm and
150 mm x 500 mm) have been chosen for simulation. Periodic boundary condition
IS maintained at the inlet and outlet of the channel to avoid end effect. No slip
boundary condition at the solid vertical wall is applied. Bubble is placed in the
water column symmetrically as shown in Figure 3.3. The volume of bubble is kept
constant (5.236 x 10 m%) and establish the effect of conduit configuration. Density

of bubble and water medium are taken as 1 kg/m® and 1000 kg/m? respectively.

Figure 3.3: Effect of channel cross-section on bubble

3.4 Dynamics of bubble and drop through inclined channel
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In this chapter dynamics of bubble and liquid drop through a liquid filled inclined
channel has been studied. In this case a developed 3D lattice Boltzmann model has
been used for simulation of dynamics of bubble and drop through the inclined

channel.

(a) (b)

Figure 3.4: Effect of channel inclination (60° inclination with horizontal) (a) on
bubble (b) on drop

In this case efforts have been made to simulate the dynamics of 3D gaseous
bubble in an inclined channel filled with high density fluid shown in Figure 3.4(a).
Air (p,= 1 kg/m®) has been taken as gaseous bubble material and water (p;; = 1000
kg/m®) has been taken as surrounding fluid. For the simulation of dynamics of bubble
the diameter of the air bubble is taken as 80 mm and the channel dimension is taken
as 100 mm x 100 mm x 500 mm. No slip boundary condition is applied at the solid
vertical wall with bounce back condition at the adjacent lattices. Simulations have
been made for three different inclinations of the channel (90°, 60° and 30°) with

horizontal.
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Numerical simulation of water drop moving in stationary kerosene medium
moving downward in inclined channel has also been done as shown in Figure 3.4(b).
Channel size and boundary conditions are kept identical to that of the case of bubble

dynamics.

26



Chapter 4

Results
and

Discussion



In present chapter obtained results of the problems described in Chapter 3 using the
prescribed methodology (described in Chapter 2) have been discussed in detail. The
consecutive explanations for each problem have also been discussed here. Various
contours and graphs have also been depicted in respective sections with explanation.

The results in details (case wise separately) are given below.

4.1 Single phase heat transfer in 2D square domain

A lattice Boltzmann method (LBM) is used to solve the energy equation in a test
problem involving thermal conduction and then to investigate the suitability of LBM

for a new class of problems.

4.1.1 High temperature at bottom plane only

Variation of temperature with high temperature at bottom plane and low temperature
at remaining three planes in a 2D square domain has been studied. Figure 4.1 shows
the temperature contour with temperature T),= 100°C at the bottom surface and T, =

0°C at the remaining three surfaces.

Figure 4.1: Temperature contour of 2D square domain with 100°C at bottom plane.
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It is clear from the figure that temperature is decreasing from bottom plane to
top plane. Figure 4.2 shows the plot between temperature and the distance from the

bottom plane for mid plane of the square domain.

Temperature Distribution
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2 3 4 5 6 7 8 9 10
Vertical Distance (mm)

Figure 4.2: Temperature profile of vertical mid plane for 2D square domain with
100°C at bottom plane

Figure 4.3: Temperature contour of 2D square domain for top and bottom plane at
100°C and remaining at 0°C.
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4.1.2 High temperature at top and bottom plane

Figure 4.3 shows the temperature contour with temperature T,= 100°C at the bottom
and top surface and 7. = 0°C at the remaining two surfaces. It is clear from the figure
that temperature is decreasing as somebody move from bottom plane to mid plane and
again it increases as somebody move towards top plane. Figure 4.4 shows the plot
between temperature and the distance from the bottom plane for mid plane of the

square domain.

Temperature Distribution

Temperature (in degree celsius)

B

2 3 4 5 6 7 8 9 10
Vertical Distance (mm)

Figure 4.4: Temperature profiles for vertical mid plane for temperature of 100°C at
top and bottom plane and remaining plane at 0°C.

4.2 Effect of fluid velocity on drop

The simulation has been started by considering a water drop at the top of the
moving liquid (kerosene) column. Four different velocities Om/s, 0.1m/s, 0.2m/s,
0.3m/s of kerosene matrix have been tried during the simulation. The phase
contours obtained from the numerical simulations have been depicted in Figure

4.5at0 4.5c
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(a) (b) (c) (d)
Figure 4.5: Effect of liquid velocity (V.) on the dynamics of drop: (a) V. = 0m/s (b)
Ve=0.1m/s (c) VL=0.2m/s (d) V. =0.3m/s

It has been observed that for different magnitude of velocity, the
circular drop moves. It is evident from the figures that circular drop remains
symmetric as it moves downward direction. As the drop is bounded by the
channel walls, the shape of the drop no longer remains circular. Moreover, the
drops in all the situations turn into bullet like shape while moving downward.
Bullet like shape of the drop is more pronounced as the velocity of surrounding
fluid increases.

Effect of surrounding liquid velocity can be clearly identified from the
respective position and shape of the drops at fixed time interval. Drop under the
action of liquids having high velocity moves down faster compared to the situation
where surrounding liquid velocity is low. The shape of the drop gets distorted due to

the influence of its neighboring liquid velocity. As a result drop moving with velocity
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of 0.3 m/s becomes more distorted as compared to the case where drop moving under

liquid velocity of 0.1 m/s.

Channel Cross-section
Time _ _ _
X =110 mm X =130 mm X =150 mm
t=0sec
t=0.2 sec
t=0.4sec

Figure 4.6: Effect of channel size on bubble shape at different time step

4.3 Effect of cross-section on bubble shape

In this case three different conduit configurations (110 mm x 500 mm, 130 mm x 500
mm and 150 mm x 500 mm) have been chosen for simulation. Bubble is placed in the
water column symmetrically. Due to buoyant force bubble moves upward in the
channel filled with water and its shape changes owing to no slip boundary condition
applied at the wall. Phase contours at vertical plane have been reported in the Figure
4.6. Wall effect on the bubble shape is more pronounced for channels of smaller
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cross-section. Shape of the bubble changes into a bullet like shape for smaller channel
and symmetry across the axis of the conduit is maintained. For large conduit

configuration shape of the bubble is more or less spherical.

9

Figure 4.7: Deformed bubble at particular time step

Effect of channel size on the deformation of bubble can also be observed from
the plots shown in the Figure 4.8. Plot between non dimensional parameter ‘c’ and
time have been made for different conduit cross-section, where ‘c’ has been taken as
‘c = a/b’ and ‘a’ and ‘b’ are shown in Figure 4.7. It is clear from Figure 4.8 that
deformation of the bubble is more pronounced for smaller channel.

Wall Effect

For¢/s = 110 mm
—_—
For¢/s = 130 mm

For ¢/s = 150 mm
e———

b 4

0.08 0.16 0.24 0.32 0.4

Time (seconds)

Figure 4.8: Effect of channel cross-section on the bubble shape
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The effect of channel cross-section on the shape of the bubble decreases also
with increase in channel size. Size of the channel also affects the velocity distribution
within the gaseous phase of the bubble. As wall effect on the surface of the bubble is
more pronounced in the case of smaller channel cross-section, velocity distribution
along the surface of the bubble will be more. The velocity at the tail of the bubble

with time instant has been plotted which is shown in Figure 4.9.

Velocity vs Cross-section
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Figure 4.9: Effect of channel size on velocity of bubble

4.4 Dynamics of bubble and drop in inclined channel

In this case a developed 3D Lattice Boltzmann Model has been used for simulation of

dynamics of bubble and drop through the inclined channel.

4.4.1. Effect of channel inclination on bubble

In this case simulations have been made for three different angle of inclinations of
the channel position (90°, 60° and 30°). The shapes and location of the bubbles for

different inclination angle are depicted in Figure 4.10a to 4.1c. For a vertical
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channel, it can be seen that the bubble becomes bullet shaped and remain symmetric
across the channel axis. The symmetricity is also clear from the sectional view as has
been depicted in the Figure 4.10(a).

It has been observed that channel with 60° inclination angle, the bubble
becomes asymmetric along the centerline of the channel. The trend of asymmetricity

increases with the inclination angle of the chnnel.

(@) (b) (©)

Figure 4.10: Effect of channel inclination on bubble asymmetry for (a) 90° inclination
(b) 60° inclination (c) 30° inclination. For each figure lower part is showing the top
view and upper part is showing the vertical sectional view.

4.4.2. Effect of bubble volume

Bubble volume is obviously another parameter which influences the shape and
location of the bubble in an inclined channel. Simulations have been made for
different volumes of bubble (4.08 x 10* m®, 2.68 x10™* m®, 1.79x10™* m®) passing

through inclined channel. It has been observed that bubble with smaller volume
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acquiring bullet shape very quickly. Because with the increase of bubble volume, the

effect of wall becomes prominent.

Figure 4.11: Effect of bubble volume on the shape of bubble in vertical channel with
(a) volume = 4.08 x 10™* m? (b) volume = 2.68 x 10* m® (c) volume = 1.79 x 10™* m?.
For each figure lower part is showing the top view and upper part is showing the
vertical sectional view.

But the symmetricity of the bubble spoiled as the channel is inclined from its
original vertical position. Asymmetry is observed for all three bubble vollumes when
the channel is inclined at 60° and 30° as shown in Figure 4.12 and 4.13 respectively.

The effect of asymmetricity is higher for bubble with higher volume.
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(a) (b) (©)

Figure 4.12: Effect of bubble volume on the shape of bubble in 60° inclined channel

with (a) volume = 4.08 x 10*m*®  (b) volume = 2.68 x 10 m® (c) volume = 1.79 x

10" m. For each figure lower part is showing the top view and upper part is showing
the vertical sectional view.

(@) (b) (©)

Figure 4.13: Effect of bubble volume on the shape of bubble in 30° inclined channel

with (a) volume = 4.08x10™ m® (b) volume = 2.68 x 10* m* (c) volume = 1.79x10™*

m?. For each figure lower part is showing the top view and upper part is showing the
vertical sectional view.

4.4.3 Effect of channel inclination on drop
In this section efforts have been made to simulate the dynamics of drop of liquid of

higher density in the surrounding of lighter fluid medium in an inclined channel.
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Water has been taken as drop in the surrounding of kerosene medium. Boundary
conditions are kept identical as in section 4.4.1. Channel dimension has been taken as
100 mmx100 mm x 300 mm. The diameter of drop has been taken as 80mm.
Simulation have been made for three different inclinations of the channel (90°, 60°
and 30°) with the horizontal. The shapes and location of the drop for different
inclinations are depicted in Figure 4.14a-c.

For a vertical tube it can be observed that the drop is bullet shaped and
symmetric across the channel cross section. The symmetry is also clear from the
sectional view as has been depicted in the vertical channel (Figure 4.14a). It has been
observed that at 60° inclination with horizontal, the drop becomes asymmetric along

the centerline of the channel.

(a) (b) (©)

Figure 4.14: Effect of channel inclination on drop asymmetry for (a) 90° inclination
(b) 60° inclination (c) 30° inclination.
This trend of asymmetry continues for higher inclinations of the channel. Asymmetry
in the drop shapes increases as the inclination varies at 60° and 30° with horizontal.
From the cross sectional view of all the figures, the asymmetry is quite clear.
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4.4.4 Effect of drop volume

Drop volume is another parameter which influences its shape and velocity during its
downward motion. Simulations have been made for different volumes (4.08x10™ m?,
2.68 x 10 m®, 1.79 x10™* m®) of the drop passing through inclined channel. It has
been observed that drop retains symmetry while moving downward in vertical
channel irrespective of volume. Figure 4.15a-c clearly shows the symmetric drop
shape for three different volume of water drop moving through vertical kerosene

column. Symmetric shape is also evident in their sectional view.

(a) (b) (©)

Figure 4.15: Effect of drop volume on the shape of drop in vertical channel with (a)
volume = 4.08 x 10™* m? (b) volume = 2.68x10™ m* (c) volume = 1.79 x 10 m®

But the symmetry of the drop shifts as the channel is inclined from its original vertical
position. Asymmetry is observed for all three drop volumes when the channel is
inclined at 60°. It is evident from the Figure 4.16a-c, and Figure 4.17a-c that drop

becomes more asymmetric when its size decreases.
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(@) (b) (©)

Figure 4.16: Effect of drop volume on the shape of drop in 60° inclined channel with
(a) volume = 4.08 x 10”*m? (b) volume = 2.68 x 10™* m® (c) volume = 1.79 x 107 m?

From the sectional views observations can be made that drop having volume 1.79 x

10 m® is more asymmetric as compared to the drop of volume 2.68 x 10 m®,

(a)

Figure 4.17: Effect of drop volume on the shape of drop in 30° inclined channel with
(a) volume = 4.08 x 10 m* (b) volume = 2.68 x 10 m® (c) volume = 1.79x10™* m®
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Chapter 5

Concluding Remarks
and

Future Scope



In the present chapter the important findings from the overall study of the selected
problems have been given. Concluding remarks and scope of the future work have

also been discussed.

5.1 CONCLUDING REMARKS

The important finding and concluding remarks about the present investigation are

given below point wise.

5.1.1 Single phase heat transfer in 2D square domain

» 2D heat transfer phenomena have been studied for different variations of
boundary conductions using lattice Boltzmann model.
» Temperature contours has been shown for different boundary conditions.

» Temperature profiles are plotted for the vertical mid plane of the square domain.

5.1.2 Effect of fluid velocity on drop

» The drop moves faster as the liquid velocity increases.

» Shape of drop is also influenced as the velocity of the surrounding liquid
changes.

» The crater at the bottom position of the drop increases with the increase in

velocity of liquid.

5.1.3 Effect of channel cross-section on bubble shape
> Bubble becomes more distorted as channel size decreases.
» For smaller channel bubble becomes bullet like shape and for larger channel
shape is more or less spherical.

> Velocity of bubble moving upward increases with increase of channel size.

5.1.3 Dynamics of a bubble and drop through inclined channel
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» Numerical model was efficient enough to capture the asymmetry in the
shape of the drop or bubble under different inclinations of the channel.

» Simulations have been made for a wide range of drop or bubble volume.

» Asymmetry in the bubble or drop shapes increases as the inclination varies at
60°and 30° with horizontal.

» With the increase of bubble or drop volume the effect of wall becomes
prominent which makes the bubble shape similar to a bullet.

» Bubble or drop becomes more asymmetric with the axis of channel when its

volume decreases.

5.2 Future scope
Based on the work done in this session following topics can be done in next
session:
» Proper combinations of thermal and two phase lattice Boltzmann method can
simulate complicated bubble column reactor.
> 3D lattice Boltzmann model can be used for complicated channel geometry
like sudden contraction and expansion or sharp return bend.
> Heat transfer model can be extrapolated for different complicated boundary

conditions and inside intrusions.
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