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ABSTRACT 

 

 

Functionally graded materials have received a lot of interest in recent days by their 

diversified and potential applications in aerospace and other industries. They have high 

specific mechanical properties and high temperature capabilities which makes them special 

over all the exiting advanced materials. The present work investigated static and dynamic 

analysis of functionally graded plate. The material properties vary continuously from metal 

(bottom surface) to ceramic (top surface). The effective material properties of functionally 

graded materials for the plate structures are assumed to be temperature independent and 

graded in the plate thickness direction according to a power law distribution of the volume 

fractions of the constituents. The present model is developed using ANSYS parametric 

design language code in the ANSYS platform. An eight noded isoparametric quadrilateral 

shell element is used to discretise the present model for both static as well as dynamic 

analysis. A convergence test has been done with different mesh refinement and compared 

with published results. The parametric study indicates that the power-law indices, thickness 

ratios, aspect ratios, support conditions and different material properties have significant 

effect on non-dimensional mid-point deflection. 
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NOMENCLATURE 

 

a  Length of plate 

b  Width of plate 

h  Height of plate 

a/h   Thickness ratio 

a/b  Aspect ratio 

u, v, w  Displacement field in x, y, z direction  

u
0
, v

0
, w

0
  Mid-plane displacement in x, y, z direction 

x , y , z   Rotational displacement in x, y, z direction 

xx , xy , xz   Lateral strain 

xz , xy , yz   Shear strain 

Rx, Ry, Rz  Radius of curvature in x, y, z direction 

E(z)  Young’s modulus of material 

   Poisson’s ratio 

   Displacement vector 

   Strain vector 

[B]  Strain-displacement matrix 

[D]  Rigidity matrix 

[K]  Stiffness matrix 

[M]  Mass matrix 

J  Jacobian matrix 

F(t)  Time-dependent force 

Ec  Young’s modulus of ceramic 

Em  Young’s modulus of metal 

c   Density of ceramic 

m   Density of metal 

 c  Poisson’s ratio of ceramic 

 m  Poisson’s ratio of ceramic 
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CHAPTER-1                                                                          INTRODUCTION 

 

1.1 Background  

Laminated composites have received a lot of interest in recent days by diversified and 

potential applications in automotive and aerospace industry due to their strength to weight, 

stiffness to weight ratio, low fatigue life and toughness and other higher material properties. 

These are made from two or more constituent materials which have different chemical or 

physical properties and produced a material having different behaviour from the individual. 

These are used in buildings, storage tanks, bridges etc. Each layer is laminated in order to get 

superior material properties. The individual layer has high strength fibres like graphite, glass 

or silicon carbide and matrix materials like epoxies, polyimides. By varying the thickness of 

laminas desired properties (strength, wear resistance, stiffness) can be achieved.  

 Although these materials have superior properties, their major drawback is the 

weakness of laminated materials. This is known as delamination phenomenon which leads to 

the failure of the composite structure. Residual stresses are present due to difference in 

thermal expansion of the matrix and fibre. It is well known that at high temperature the 

adhesive being chemically unstable and fails to hold the lamination. Sometimes due to fibre 

breakdown it also prematurely fails.  

 Functionally Graded Material (FGM) is combination of a ceramic and a metal. A 

material in which its structure and composition both varies gradually over volume in order to 

get certain specific properties of the material hence can perform certain functions. The 

properties of material depend on the spatial position in the structure of material. The effect of 

inter-laminar stress developed at the laminated composite interfaces due to sudden change of 

material properties reduced by continuous grading of material properties. Generally 

microstructural heterogeneity or non-uniformity is introduced in functionally graded material. 

The main purpose is to increase fracture toughness, increase in strength because ceramics 

only are brittle in nature. Brittleness is a great disadvantage for any structural application. 

These are manufactured by combining both metals and ceramics for use in high temperature 

applications. Material properties are varies smoothly and continuously in one or many 

directions so FGMs are inhomogeneous. FGM serves as a thermal barrier capable of 

withstanding 2000K surface temperature. Fabrication of FGM can be done by different 

processing such as layer processing, melt processing, particulate processing etc. FGM has the 

ability to control shear deformation, corrosion, wear, buckling etc. and also to remove stress 
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concentrations. This can be used safely at high temperature also as furnace liners and thermal 

shielding element in microelectronics and thermal protection systems for spacecraft, 

hypersonic and supersonic planes and in combustion chamber also. 

1.2 Application of FGM 

i. Engineering Application  

a. Shafts 

b. Engine parts 

c. Blades of turbine 

ii. Aerospace Engineering 

a. Rocket engine components 

b. Aerospace parts and skins 

iii. Electronics 

a. Sensor 

b. Actuator 

c. Integrated chips 

d. Semiconductor 

iv. Biomaterials 

a. Artificial bones 

b. Drug delivery system 

1.3 Objective of the work 

The objective of the present study is to analyse the static and dynamic behaviour of 

FG flat panel under different volume fraction indices, aspect ratios, thickness ratios and 

different support conditions. ANSYS parametric design language (APDL) code is use to 

develop the model in ANSYS13.0 platform and solve the problem using appropriate 

algorithm. The present model is discretised by using an eight noded isoparametric 

quadrilateral shell element (SHELL281), as defined in the ANSYS element library. Three 

types of FG flat panels are used in this study namely, Aluminium/Alumina, 

Aluminium/Zirconia and Silicon Nitride/Stainless steel. The effects of different parameters 

on non-dimensional mid-point deflection are studied. 
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Literature review 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER-2                                                           LITERATURE REVIEWS 

 

 

FG material plates have created revolution in aerospace industry for its thermal properties, 

multifunctionalities. It also provides opportunities to take the benefits of different material 

system. Its static and dynamic analysis is necessary to estimate the properties of flat panels.  

Many researchers reported static and dynamic behaviour of functionally graded plates based 

on different theories and developed new methods of solutions.  

2.1 Static and vibration analysis 

Talha and Singh [1] investigated the free vibration and static analysis of rectangular 

FGM plates using higher order shear deformation theory with a special modification in the 

transverse displacement in conjunction with finite element models. Neves et al. [2] studied 

the static deformations analysis of functionally graded plates by collocation with radial basis 

functions, according to a sinusoidal shear deformation formulation for plates. Aragh and 

Hedayati [3] studied the characteristics of free vibration and static response of a 2-D FGM 

open cylindrical shell. Formulations are done by 2-D generalized differential quadrature 

method (GDQM). Ferreira et al. [4] studied static deformations of functionally graded square 

plates of different aspect ratios using meshless collocation method, the multiquadric radial 

basis functions and a third-order shear deformation theory. Reddy[5] studied static and 

dynamic analysis of FGM plates using third-order shear deformation theory. Navier solutions 

are obtained for a simply supported square plate. Abrate[6] investigated static, buckling and 

free vibration deflections of FGM plates by using classical plate theory, FSDT model and 

HSDT model. Zenkour[7] studied the static behaviour of a rectangular FG plate under simply 

supported condition and subjected to uniform transverse load. Ferreira et al. [8] studied static 

deformations of simply supported functionally graded plate by using HSDT and multiquadric 

radial basis functions. Vel and Batra[9] investigated the exact 3-D elasticity solutions of 

simply supported rectangular FG plates under thermo-mechanical load. The author has 

assumed power law for material volume fractions. The exact solutions of displacements and 

stresses are used to find out the accuracy of the solutions. Qian et al.[10] investigated plain 

strain static thermostatic deformations of simply supported thick rectangular FG elastic plate. 

Displacement and stress are computed and validated from the 3D exact solutions of the 

problem. Ramirez et al.[11] studied static analysis of 3D, elastic, anisotropic FG plates. The 
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author has taken simply supported graphite/epoxy material for analysis. Zenkour [12] further 

studied the static response of FG plates using shear deformation plate theory using power law 

for grading. Bhangale and Ganesan[13] investigated static analysis of simply supported FG 

plates which are exponentially graded in the thickness direction. Aghdam et al.[14] studied 

static analysis foe bending of FG clamped thick plates. The solutions are compared with the 

solutions of finite element code ANSYS, power law is used for grading the properties in 

thickness direction. Neves et al.[15] investigated the static deformations of FG square plates 

using radial basis function. Talha and Singh [16] investigated the static and free vibration 

analysis using C
0
 finite element with 13 degrees of freedom per node and formulated by 

HSDT. Nguyen-Xuan et al.[17] studied the static, free vibration and mechanical/thermal 

buckling problems of FG plates by Reisnner/Mindlin plate theory. 

 

2.2 Dynamic Analysis 

Yang and Shen [18] studied dynamic response of FGM thin plates under initial stress 

and partially distributed impulsive lateral loads. The author used silicon nitride/ stainless steel 

rectangular plates, assumed temperature dependent material properties clamped on two 

opposite edges, used power law for grading and used Modal superposition method for 

transient response. In 2001 Yang and Shen [19] studied free and forced vibration analysis for 

the same plate and found functionally graded plate with material properties intermediate to 

isotropic material do not necessarily have intermediate natural frequency if thermal effects 

are considered. Liew et al. [20] investigated dynamic stability of symmetrically laminated 

FGM rectangular plates under uniaxial plane load. Formulation is done by Reddy’s third-

order shear deformation theory and material is silicon nitride and stainless steel. [21]Kim 

studied vibration characteristics of rectangular FGM plate under initial stress. Third-order 

shear deformation plate theory is adopted and Rayleigh-Ritz procedure is applied for getting 

frequency equation. Lanhe et al. [22] investigated dynamic stability of thick FGM plate under 

aero-thermo-mechanical loads and used novel numerical solution technique. The equations 

for dynamic analysis are derived by Hamilton’s principle. For different parameters dynamic 

instability regions are studied. Ansari and Darvizeh [23] investigated vibrational behaviour of 

functionally graded shells, based on first-order shear deformation shell theory. The grading 

functions are power law, sigmoid and exponential distribution. Behjat et al. [24] studied 

dynamic response, static bending of functionally graded piezoelectric material plate (PZT-

4/PZT-5H), formulated by using potential energy and Hamilton’s principle. Effects of 

material composition and boundary conditions on dynamic response are also studied. Sladek 
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et al. [25] investigated dynamic analysis of FG plates by MPLG method. For displacement 

field author used Reissner-Mindlin plate bending theory. Simply supported and clamped 

boundary conditions are taken in to consideration. Wen et al. [26] studied 3-D analysis of 

isotropic and orthotropic FG plates with simply supported edge under dynamic loads. The 

equations formulated is based on state-space approach in Laplace transform domain and 

solved by RBF method. Grading has done by exponential method as well as volume fraction 

law. Shariyat [27] studied the vibration and dynamic buckling response of rectangular FG 

plates under thermo-mechanical loading. A nine noded second-order formulation has done 

and graphs are studied under temperature dependent material properties. 

From the above study it has been seen that very few researcher studied the dynamic 

analysis of FG plates. Since most of the practical cases deals with transient or dynamic load, 

its responses has to be analysed with different parameters like volume fraction index. This 

work analysed dynamic responses of aluminium/zirconia flat panel under step load with 

different volume fraction index (n=0, 1, 2, ∞); 
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Chapter III 

Finite element 
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CHAPTER-3                                     FINITE ELEMENT FORMULATION 

 

In the present analysis, a FG plate of uniform thickness h with rectangular base of sides a and 

b is established through APDL code and shown in the Figure 1. The FG plate model is 

developed in ANSYS based on the inbuilt FSDT kinematics. The displacements field u, v and 

w at any point along x, y and z axes can be written as follows: 

0

0

0

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

( , , ) ( , ) ( , )

x

y

z

u x y z u x y z x y

v x y z v x y z x y

w x y z w x y z x y







 

 

 

    (1) 

where,  u, v and w denote displacements; 0u , 0v  and 0w  are the mid-plane displacements in 

x, y, z axes respectively and 
 
, 

 
 and 

 
 are the shear rotations. 

 

 

 

 

 

 

 

Figure 1: Geometry and dimensions of the FG plate 

The linear stains corresponding to the displacement field is 
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For the flat panel i.e. plate,  Rx = Ry  =  Rxy  =    
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It can be rewritten as 

   , , , , ,
T
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The linear constitutive relations are 
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where, 

2

11 12 13 2 3

12 13 23 2 3

44 55 66

( )(1 )

(1 3 2 )

( ) (1 )

(1 3 2 )

( )

2(1 )

E z v
Q Q Q

v v

E z v v
Q Q Q

v v

E z
Q Q Q

v


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 
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  

 

  


 

The modulus of elasticity E(z) and elastic coefficients Qij vary through the plate thickness. 

For the implementation of finite element method, the developed model is discretised 

by using an eight noded isoperimetric quadrilateral shell element (SHELL281), as defined in 

the ANSYS element library.  This element is suitable for analysing thin to moderately-thick 

shell structures with six degrees of freedom.(three translations and three rotations) at each 

(3) 

(4) 

(5) 
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node in the x, y and z directions. The displacements are expressed in terms of interpolation 

functions (Ni)  

                                                    

8

1

i i

i

N 


                                                               (6) 

where,  
0 0 0, , , , ,i

T

x y zu v w       . The interpolation functions for eight noded isoperimetric 

quadrilateral shell element in natural (ξ-η) coordinates are given as [15] 

1

1
(1 )(1 )( 1)

4
N           ,      2

1
(1 )(1 )( 1)

4
N         , 

3

1
(1 )(1 )( 1)

4
N         ,         4

1
(1 )(1 )( 1)

4
N          , 

2

5

1
(1 )(1 )

2
N     ,                            2

6

1
1 1

2
N     , 

  2

7

1
1 1

2
N     ,                           2

8

1
1 1

2
N                                  (7) 

The strain vector in terms of nodal displacement vector can be written as   

                                
      B                   (8) 

where,  B  is the strain-displacement matrix containing interpolation functions and derivative 

operators and { }  is the nodal displacement vector. 

 The generalized stress-strain relation with respect to its reference plane can be written 

as
                                   

   {  { } }D 
                                                                                                       

(9) 

 where    
T

x y z xy yz xz        and    
T

x y z xy yz xz        are 

the linear stress and strain vector, respectively and    D is the rigidity matrix. 

[ ] [ ] [ ][ ]TQ T Q T  

/2

/2
[ ] [ ]

h

h
D Q dz


   

The elemental stiffness matrix   eK  and the mass matrix [M]
e
 are integrated by using 

Gauss-quadrature integration over the domain to obtain the global stiffness and mass matrices 

and this can be conceded as  

      
1 1

1 1

e T
K B D B J d d 

 

 
    

                             
1 1

1 1

e T
M N m N J d d 

 

 
    

(10) 

(11) 

(12) 

(13) 
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where, J is the determinant of the Jacobian matrix and [N] is the interpolation  function 

matrix. The jacobian is used to map the domain from natural coordinate to the general 

coordinate. 

The governing equation of static analysis of FG plate under force F can be expressed as 

follows: 

   { } 0K F  
                       

(14) 

where, [K] is the global stiffness matrices. Eqn. (8) is a generalized eigenvalue problem and 

non-dimensional central point deflection can be found from this equation. 

The governing equation of dynamic analysis of FG plate under dynamic load F (t) can be 

expressed as follows: 

     { } { } ( )K M F t  
                     

(15) 
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Chapter IV 
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CHAPTER-4                                 EFFECTIVE MATERIAL PROPERTIES 

 

The effective material properties of the FGM plate are assumed to be varying continuously 

along their thickness direction as discussed earlier and are obtained by using a simple power-

law distribution or exponential law which counts the volume fraction of each constituent.  

4.1 Exponential law 

Exponential law of grading FGM states that for a FGM structure of uniform thickness 

‘h’, the material properties ‘P(z)’ at any point located at ‘z’ distance from the mid-plane 

surface is given by: 

2
1

( )

z

h

tP z Pe


  
   

    , where,    
1

ln
2

t

b

P

P


 
  

             
(16) 

( )P z  denotes material property like Young’s modulus of elasticity (E), shear modulus of 

elasticity (G), Poisson’s ratio ( ), material density (  ) of the FGM structure. tP  and bP  are 

the material properties at the top (z=+h/2) and bottom (z=-h/2) surfaces.   is the material 

grading indexes which depend on the design requirements. 

4.2 Power law 

The power-law distribution of a panel considered from the mid-plane reference plane can be 

written as 

1

2

n

f

z
V

h

 
  
 

                            (17) 

where, n is the power-law index, 0    n   . The variations of volume fraction of the 

ceramic and metal phase through the non-dimensional thickness coordinate are plotted in 

Figure 2 and 3 for five different values of power-law indices (n = 0.2, 0.5, 1, 2 and 10). The 

functionally graded material with two constituents and their properties such as, Young’s 

modulus E and the mass density ρ have been obtained using the following steps. 

 
1

2

n

c m m

z
E E E E

h

 
    

 
                                   (18)                                               

 
1

2

n

c m m

z

h
   

 
    

 
             (19) 

 
1

2

n

c m m

z

h
  

 
    

 
                (20) 
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In the present work, the power- law distribution is used for the continuous gradation of 

material properties in thickness direction. 

The effective material properties are calculated based on the Eqns. (18), (19) and (20), 

when z = - h/2, E= Em , ρ = ρm and   = 
m similarly, when z = + h/2; E= Ec , ρ = ρc  and   = 

c i.e., the material properties vary continuously from metal at the bottom surface to ceramic 

at the top surface. The Poisson’s ratio ν is assumed to be constant throughout the thickness of 

the shell panel. The properties of the FGM constituents at room temperature (27
o
C) are used 

for the analysis and presented in Table 1. The different material properties are used to analyse 

the responses for throughout the study. 
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Figure 2: Variations of volume fraction of ceramic through non-dimensional thickness coordinate  
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Figure 3 Variations of volume fraction of metal through non-dimensional thickness coordinate 
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Table 1:  Properties of the FGM plate constituents 

Materials 

Properties 

Young's Modulus  

E (GPa) 

 

Poisson's Ratio 

Density            

(Kg/m
3
) 

  Aluminium (Al) 70 0.3 2707 

Alumina (Al2O3) 380 0.3 3800 

Zirconia (ZrO2)  151 0.3 3000 

Silicon Nitride (Si3N4) 348.43 0.28 2370 

Steel (SUS304) 201.04 0.28 8166 

 

 

4.3 FE Modelling of FGM plates: 

FGM plates with different length to thickness ratio(   ) , aspect ratio (a/b) are 

analysed in this experiment. The analysis is performed in commercially available software 

(ANSYS 13.0). The loading conditions are assumed to be static. The element chosen for this 

analysis is SHELL281, which is a layered version of the 8-node structural shell model. This 

is suitable for analysing thin to moderately-thick shell structures. This shell element has six 

degrees of freedom at each node namely three translations and three rotation in the nodal x, y 

and z directions respectively. The FGM plate is modelled in ANSYS 13.0 as shown in the fig 

4. 

 

Figure 4: FGM plate modelled in ANSYS 13.0 using SHELL281 element 
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Chapter V 

Static analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER-5                                                                   STATIC ANALYSIS 

 

5.1 FG model (ANSYS) 

The static responses of the FG plates are analysed using ANSYS 13.0 under static surface 

load for simply supported boundary condition for Aluminium/Zirconia FG flat panel. The 

computed results are validated and compared with those available in the literature. The 

analysis is carried out for thickness ratio (a/h) = 5, aspect ratio (a/b=1) with different volume 

fraction indices. APDL code has been developed in ANSYS 13.0 for analysing the above 

panel. The following non-dimensional parameters are used: 

 Central deflection         ̅  
 

 
  

 Load parameter              
 

    
                        (21) 

 

 

5.2 Convergence and validation: 

The static analysis of FG plates is analysed by ANSYS 13.0 using APDL program. The 

aluminium/zirconia material is analysed for different mesh size under simply supported 

boundary condition. These boundary conditions are there to reduce the no of unknowns from 

the final equation and in order to avoid rigid body motion. 

 

Simply-supported (SSSS): 
0 0   0y zv w       at x=0 and a 

       
0 0   0x zu w     

 
at y = 0 and b 

 

For validation of obtained data and the efficiency of present finite element model, the results 

obtained using FG flat panel model is compared with the published literature. The non-

dimensional mid-point deflection  ̅  
 

 
 of square simply supported FG flat panel (a/h =5) 

are computed for five different power-law indices (n=0, 0.5,1,2, ∞) and tabulated in Table. It 

is observed from the results that convergence satisfies at a (16 x 16) mesh and the differences 

between present and published results are negligible. 
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Table 2: Convergence study of non-dimensional mid-point deflection of simply supported FG (Al2O3/ZrO2) flat 

panel with a/b = 1 and a/h = 5) 

n 
  Mesh size 

Ref.[4] 
6x6 8x8 10x10 12x12 14x14 16x16 18x18 

Ceramic 0.024875 0.024855 0.024845 0.02484 0.024835 0.024835 0.024835 0.0247 

0.5 0.031245 0.031215 0.0312 0.031195 0.03119 0.031185 0.03118 0.0313 

1 0.03459 0.034555 0.03454 0.03453 0.03452 0.034515 0.034515 0.0351 

2 0.037955 0.03792 0.0379 0.03789 0.03788 0.037875 0.03787 0.0388 

Metal 0.05366 0.053615 0.053595 0.053585 0.053575 0.05357 0.05357 0.0534 

 

6 x 6 8 x 8 10 x 10 12 x 12 14 x 14 16 x 16 18 x 18 Ref [4]
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Figure 5: Variation of non-dimensional mid-point deflection with different mesh size in ANSYS SHELL 181 

model for simply supported FGM plate 

 

5.3 Numerical results: 

In this section some new problems have been solved and new data, graphs are given for 

different parameters and responses are discusses. The variations of non-dimensional mid-

point deflection of FG plate for simply supported boundary condition (SSSS) with different 

mess size in ANSYS SHELL 181 element are plotted in figure 6. The results are obtained 

using other geometric properties i.e., thickness ratio, aspect ratio for five fraction indices (n = 

0, 0.5,1,2 and ∞). And also there are results for different material properties and different 

mesh size in ANSYS. Different material properties of FGM plates are given in table 1.  
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Graphs varying mesh size, thickness ratio and aspect ratio are plotted for aluminium/ 

zirconia, aluminium/ alumina, silicon nitride/stainless steel respectively. And also graphs are 

plotted for different boundary conditions for aluminium, zirconia FGM plates. Figure 7 and 

figure 8 shows the variation of thickness ratio and aspect ratio and central deflection varied. 

Figure 9-12 shows the central deflection varied under different boundary conditions for 

aluminium/zirconia plate. Figure 13-15 shows the behaviour of mid-point deflection if mesh 

size, thickness ratio and aspect ratio varies respectively for aluminium/alumina plate. For 

aluminium/stainless steel flat panel, the same behaviours are studied and plotted in figure 16-

18. 

5.3.1 Aluminium/Zirconia plate: 
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Figure 6: Variation of non-dimensional mid-point deflection with different mesh size in ANSYS SHELL 181 

model for simply supported FGM plate
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Figure 7: Variation of non-dimensional mid-point deflection with different thickness ratio ( a/h ratio ) in 

ANSYS SHELL 281 model for simply supported  FGM plate 
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Figure 8: Variation of non-dimensional mid-point deflection with different aspect ratio ( a/b ratio ) in ANSYS 

SHELL 281 model for simply supported FGM plate 

 

 

5.3.2 Different boundary conditions: 

 

Figure 9: Non-dimensional deflection vs. Length to thickness ratio square FGM plate with simply supported 

(SSSS) boundary condition 
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Figure 10: Non-dimensional deflection vs. Length to thickness ratio square FGM plate with clamped (CCCC) 

boundary condition 

 

 

 

Figure 11: Non-dimensional deflection vs. Length to thickness ratio square FGM plate with clamped-simply 

supported (CSCS) boundary condition 
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Figure 12: Non-dimensional deflection vs. Length to thickness ratio square FGM plate with clamped-simply 

supported (SSCC) boundary condition 

 

5.3.3 Aluminium/Alumina plate: 
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Figure 13: Variation of non-dimensional mid-point deflection with different mesh size in ANSYS SHELL 281 

model for simply supported FGM plate 
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Figure 14: Variation of non-dimensional mid-point deflection with different thickness ratio ( a/h ratio ) in 

ANSYS SHELL 281 model for simply supported FGM plate 
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Figure 15: Variation of non-dimensional mid-point deflection with different aspect ratio ( a/b ratio ) in ANSYS 

SHELL 281 model for simply supported FGM plate 
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5.3.4 Silicon Nitride/Stainless steel plate: 
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Figure 16: Variation of non-dimensional mid-point deflection with different mesh size in ANSYS SHELL 281 

model for simply supported FGM plate 

0 2 4 6 8 10 12 14 16

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

N
o

n
 d

im
e

n
s
io

n
a

l 
d

e
fl
e

c
ti
o

n

 Ceramic

 n=0.5

 n=1

 n=2

 Metal

a/h ratio

 

Figure 17: Variation of non-dimensional mid-point deflection with different thickness ratio ( a/h ratio ) in 

ANSYS SHELL 281 model for simply supported FGM plate 
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Figure 18: Variation of non-dimensional mid-point deflection with different aspect ratio ( a/b ratio ) in ANSYS 

SHELL 281 model for simply supported FGM plate 
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Chapter VI 

Dynamic analysis 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER-6                                                              DYNAMIC ANALYSIS 

 

 

6.1 FG model (ANSYS) 

 

Rectangular simply supported Aluminium/Zirconia FG flat panel has been developed in 

ANSYS13.0 platform. Time dependant step load has been taken for transient dynamic 

analysis.  Step type loading has been taken in to consideration. From time 0 to 0.001s force is 

zero and from 0.001 to 0.002s force is 10kN. APDL code has been developed in ANSYS 13.0 

for analysing the above panel. 

 

6.2 Numerical results: 

The analysis is carried out for different volume fraction indices (n=0, 1, 2, ∞). Dynamic 

behaviour of FG flat panel can be seen in figure 19-22. By time step of 0.0001s analysis has 

been performed and displacement has been plotted. . An enlarged view of dynamic response 

has been shown in figure 23 for ceramic flat panel. 

 

 

  

Figure 19: Deflection of mid-point of simply supported FG flat panel with n=0 
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Figure 20: Deflection of mid-point of simply supported FG flat panel with n=1 

 

 

 

 

Figure 21: Deflection of mid-point of simply supported FG flat panel with n=2 
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Figure 22: Deflection of mid-point of simply supported FG flat panel with n=∞ 

 

 

 

 

Figure 23: Deflection of mid-point of simply supported FG flat panel with n=0 in time interval of 

0.0001 to 0.012s 
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Chapter VII 

Conclusion 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER-7                                                                          CONCLUSION 

 

7.1 Conclusion: 

In this study, static and dynamic responses of FGM plates are analysed. The effective 

material properties of functionally graded materials for the plate structures are assumed to 

vary continuously through the plate thickness and are graded in the plate thickness direction 

according to a volume fraction power law distribution. Various boundary conditions have 

been considered to check the efficacy of ANSYS model. Convergence tests and comparison 

studies have been carried out with the commercially available software (ANSYS). An eight 

noded layered shell element (SHELL281) is used throughout the problem. The obtained 

results have illustrated a good agreement with those available in the literature for different 

volume fraction indices, thickness ratios, aspect ratios and different support conditions. The 

following points revealed the concluded remarks for thin to thick FGM plates are: 

 For all the boundary conditions, the non-dimensional central deflection increases as 

the volume fraction index increases. 

 For all the boundary conditions, the non-dimensional central deflection increases as 

the aspect ratio increases 

 For all the boundary conditions, the non-dimensional central deflection increases as 

the thickness ratio increases 

 For simply supported boundary condition vibration amplitude increases as the volume 

fraction index increases. 

 

7.2 Future Scope of work 

 Different geometric structures can be modelled such as cylindrical, spherical, 

conical, hyperboloid etc. 

 Temperature dependent material property can be considered. 

 Different type of analysis like buckling, post buckling, free vibration, forced 

vibration etc. can also be performed using the presented model. 
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