
Secure Data Storage on the Cloud

using Homomorphic Encryption

Manoj Kumar Mohanty

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Secure Data Storage on the Cloud

using Homomorphic Encryption

Thesis submitted in

June 2013

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

in

Computer Science and Engineering

(Specialization: Information Security)

by

Manoj Kumar Mohanty

(Roll 211CS2282)

under the supervision of

Dr. Ashok Kumar Turuk

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela-769 008, India. www.nitrkl.ac.in

Dr. Ashok Kumar Turuk

Associate Professor

June 4, 2013

Certificate

This is to certify that the work in the thesis entitled Secure Data Storage on

the Cloud using Homomorphic Encryption byManoj Kumar Mohanty,

bearing roll number 211CS2282, is a record of an original research work carried

out by him under my supervision and guidance in partial fulfillment of the

requirements for the award of the degree of Master of Technology in Computer

Science and Engineering with specialization in Information Security. Neither this

thesis nor any part of it has been submitted for any degree or academic award

elsewhere.

Ashok Kumar Turuk

Acknowledgment

I would like to take this opportunity to thank each and every person involved in

the successful completion of this thesis. First of all I thank my thesis supervisor

Prof. Ashok Kumar Turuk for the constant support and encouragement that he

has provided me throughout the course of this thesis. I would like to express my

gratitude to him for the guidance and valuable advice that he has provided, and

for being a constant source of motivation.

I thank all the professors of the department of Computer Science and

Engineering for the advices, resources and environment they have provided for

the successful completion of my work. The thesis would not have been successful

without their support. Besides, I thank my friends and peers who have been a

source of inspiration for the work.

I must acknowledge the academic resources that I got from National Institute

of technology Rourkela. I would like to thank the administrative and technical

staff members of the Department who have been kind enough to advise and help

in their respective roles.

I would also like to thank my parents and family members for their love and

support, which has been a guiding force for the work I have done.

Manoj Kumar Mohanty

Abstract

Organizations are showing great interest in storing data on public clouds. This

could be a result of the unprecedented growth of data recorded in the last few years.

However the security issues associated with data storage over cloud is a major

discouraging factor for potential adopters. Hence the focus of today is to find

cryptographic techniques that will offer more than confidentiality. Homomorphic

encryption is one such method that has interesting applications in cloud. The

objective is to manage and protect the data from the users of a client organization

which wants to store the data on untrusted public clouds. In this thesis a

hybrid cloud framework is proposed that addresses the privacy and trust issues

and provides encrypted storage with public clouds. The proposed method uses

Homomorphic Encryption for protecting the user data and uses a modified file

updation technique to reduce bandwidth consumption during transfer of large

encrypted files.

Keywords: Cloud Computing, Cryptography, Cloud Storage Security, Fully Homomorphic

Encryption, Delta Encoding.

Contents

Certificate ii

Acknowledgment iii

Abstract iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Organization of Thesis . 3

2 Cloud Computing: A Security Perspective 5

3 Homomorphic Encryption 13

3.1 Mathematical Background . 15

3.1.1 Integer Factorization Problem 15

3.1.2 Discrete Logarithm Problem 16

3.1.3 Quadratic Residuosity Problem 16

3.2 Homomorphic Cryptosystems . 16

3.2.1 RSA Cryptosystem . 16

3.2.2 Paillier Cryptosystem . 18

3.2.3 Boneh-Goh-Nissim Cryptosystem 19

v

4 Secure data storage using Homomorphic Encryption 22

4.1 Current Scenario . 23

4.2 Proposed Framework . 23

4.2.1 Components . 25

4.2.2 Updation Methods . 28

5 Implementation and Results 33

5.1 Experiment Details . 34

5.2 Performance Analysis . 34

6 Conclusion and Future work 38

Bibliography 40

vi

List of Figures

2.1 Cloud Computing Overview . 6

4.1 Framework Usage Scenario . 24

4.2 Overview of Framework Components 25

4.3 File information on FILES database. 28

5.1 Variation of patch file sizes over instances 36

5.2 Variation of α over instances . 37

vii

List of Tables

5.1 Various file size information for 3 instances. 35

viii

Chapter 1

Introduction

Motivation

Objectives

Organization of Thesis

1

Chapter 1 Introduction

Cloud computing offers a cost-effective solution to manage the IT infrastructure

in a flexible and scalable manner. Cloud computing enables software applications,

deployment platforms, even the computing resources to be made available

on-demand using a pay-as-you-go model. This has drawn a lot of attention towards

the domain in recent years. Today a good number of organizations use the cloud

for their day to day operations and the adoption rate by others are also high [1].

Hosted applications over the Internet have evolved greatly. The web which

originally just consisted of static web pages, today serves as platform for many web

applications that ranges from simple note taking tools to computation intensive

scientific simulation services. One thing that makes such an approach special that

users can outsource data and computation to a remote server that has enough

resources to perform the task within much less time than traditionally running an

equivalent application on the user’s machine. This is also one of the major factors

that are driving the research in the cloud computing technologies.

However there have been concerns with respect to confidentiality and privacy

of data being stored on the clouds. Specifically organizations that handle sensitive

and high-risk data such as medication records, financial details are not convinced

with the security measures currently in-place to protect the data. Further many

public clouds fail to meet the regulatory guidelines required for operations of such

applications.

In recent times there have been reports of many security breaches of cloud

services such as Dropbox [2,3], Last.fm [4,5], and iCloud [6,7]. A study [8] suggests

72% of the IT professionals blame employees for most data breaches, whereas the

rest blame the hackers. It also reveals that 32% data was lost while 18% data was

stolen by employees. This increases the concern of insider attack on public clouds.

1.1 Motivation

In a recent survey [1], 79 % employees said their organization uses SaaS and 45 %

agreed on using IaaS. These numbers indicate a considerable growth and interest in

cloud adoption. In time to come more and more organizations are going to adopt

2

Chapter 1 Introduction

cloud based solutions because of the benefits of the cloud infrastructure over the

local traditional IT infrastructure. This will result in moving a large amount of

data to the cloud. Hence more investigation into cloud storage frameworks is

needed so as to make the cloud adoption simple and user friendly. But as the

rate of cloud adoption is growing, the security risks associated with the networked

applications in general and cloud in specific is also growing. This is a major

discouraging factor towards large scale cloud adoption. Due to the security risks,

organizations that are dealing with sensitive information have ignored the cloud

in the past. But as more amount of data is being generated, consumed, processes

and stored in digital form, the operational cost of a traditional IT infrastructure

is becoming very high. Hence organizations that deals with sensitive information

such as health care records are also considering cloud as an option. Hence the

need of secure cloud storage options are growing.

1.2 Objectives

The objective is to develop a framework using which an organization can store its

data on the cloud in a secure manner. The requirements for the framework are as

follows. It should be easy to use and should not depend upon security measures

taken by the end users e.g. the employees of the organization or users of a service

provided by the organization. It should handle all the cryptographic operations

within the trusted infrastructure of the organization and then send the encrypted

data to the cloud. The public clouds in which the encrypted data is stored should

not have the ability to decrypt the content. It should handle file uploads in an

efficient manner to reduce bandwidth consumption.

1.3 Organization of Thesis

Rest of the thesis is organized as follows. Chapter 2 describes cloud computing

from a security perspective. It includes notes on recent works on security

assessment of cloud. Chapter 3 describes Homomorphic Encryption schemes. It

3

Chapter 1 Introduction

provides details on the homomorphic properties of some cryptosystems and notes

on recent developments in this area. In Chapter 4 a framework for secure data

storage on cloud is proposed. A detailed description of the framework along with

all components are described in the chapter. Chapter 5 provides notes on the

implementation of the framework introduced in Chapter 4 and it also describes

the performance of the framework. Chapter 6 provides concluding remarks and

notes for possible enhancements.

4

Chapter 2

Cloud Computing: A Security

Perspective

5

Cloud Computing: A Security Perspective

In simple words, Cloud computing can be described as a method that allow

resources to be made available over a network in general and Internet in specific.

A more formal definition by NIST defines cloud computing as follows. Cloud

computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction [9]. NIST

definition also includes five essential characteristics, three service models, and four

deployment models for cloud. An overview of the same is presented in Figure 2.1.

Figure 2.1: Cloud Computing Overview

Essential Characteristics of the cloud:

On-demand self-service: It allows a consumer to provision resources such as server,

storage, network and the like as required without manual interaction with service

providers. This facilitates quick deployment and provides the consumers flexibility

to make any changes as they see fit.

Broad network access: The services offered by the cloud are provided over the

network using standard protocols so that the services can be easily accessed from a

number of client devices such as workstations, laptops, tablets, and mobile phones.

6

Cloud Computing: A Security Perspective

This gives consumers the flexibility to choose a platform of their choice to work

with.

Resource Pooling: The cloud follows a multi-tenant model in which computing

resources are pooled and the resources are dynamically allocated as per the need

of the consumers. This provides location independence as the consumer is not

aware of the exact physical location of a resource in the cloud. Although the

physical location from where the resource should reside can be controlled at a

higher abstraction level by specifying certain geographical limits. As an example

a consumer in some country can specify to keep its storage limited within physical

infrastructure of the home country only.

Rapid Elasticity: Additional resources can be easily provisioned or released as per

the demand. In the cloud the resource availability appear virtually unlimited and

resources can be requested in any quantity depending upon requirements. The

cloud should handle the scaling as needed.

Measured Service: In order to maintain a transparent record of the resource usage

both for the providers and the consumers the cloud systems often use a metering

capability depending on the kind of service being provided. This helps many

activities such as billing, setting quotas on resource usage, and auditing.

Service Models in Cloud Computing:

Software as a Service (SaaS): It includes services where the consumers are given

access to applications deployed on the cloud infrastructure of the providers. The

applications are accessed using various device platforms through web browser,

or some native applications interface. In this case the consumers do not have

the control over the cloud infrastructure. Still they can specify certain limited

configuration settings.

Platform as a Service (PaaS): It provides the consumer the ability to deploy

an application onto the cloud infrastructure of the provider using development

environment supported by the provider. Here the consumers do not have the

control over the cloud infrastructure of the provider but do have good control over

the applications deployed by them.

Infrastructure as a Service (IaaS): It provides the consumers ability to provision

7

Cloud Computing: A Security Perspective

basic computing resources such as servers, storage, and networks on top of the

cloud infrastructure of the provider. In this case the consumers have more

control over the resources provisioned and can configure it as needed e.g. the

consumers have choice in selecting operating system or installing any software on

a provisioned virtual machine. But the consumers still do not manage or control

the cloud infrastructure of the provider.

Deployment Models in Cloud Computing:

Private Cloud: This type of cloud infrastructure is provisioned by a single

organization for its exclusive use. It allows the organization more control over

the underlying infrastructure and gives feeling of enhanced security. It may be

managed by by the organization or some third party.

Community Cloud: This type of cloud infrastructure is targeted towards a selected

group or community of consumers belonging to organizations with related goals.

It may be managed by one or more of the organizations involved, or by some third

party.

Public Cloud: This kind of cloud infrastructure is available for use by the public.

Public cloud services are getting a lot of attention as it reduces the efforts needed

for managing the infrastructure. This allows the consumers to focus more on their

objectives. However it also raises many security concerns. It is mostly managed

by the providers themselves.

Hybrid Cloud: This kind of cloud infrastructure comprises of two or more forms

of the previous cloud infrastructures where interactions among the different

infrastructures are made possible by using standardized or proprietary data and

application interaction methods.

Recent works done in the context of cloud security is briefly described below.

Chen and Zhao provides an analysis [10] of data security throughout seven

phased data life cycle namely Generation, use, transfer, share, storage, archival,

and destruction. In data storage, they have mentioned key management as an

important point. Again in data destruction phase it is important to ensure that

data is securely erased using methods that makes it unrecoverable. Otherwise an

adversary can take advantage of the physical characteristics of the storage medium

8

Cloud Computing: A Security Perspective

to access sensitive information.

[11] addresses security issues related to both single and multi-cloud models.

Authors have evaluated the security of single clouds based on three factors, namely

data integrity, data intrusion, and service availability. Data integrity is important

since the data can get corrupted during transmission or transfer between data

source and the cloud. The scenarios involving use of multiple clients and devices

for interactions with the cloud further complicates the data integrity requirement.

Another security factor is the data intrusion, in which the adversary gains access

to a cloud service through stolen passwords and then can cause damage to the

services being used by the genuine users. Service availability is also another factor

to be considered.

An execution model called HybrEx (Hybrid Execution) model has been

proposed by Ko, Jeon, and Morales [12]. This model is designed with a view

to ensure confidentiality and privacy. It operates by utilizing the public clouds for

non-sensitive data and computation, while the sensitive data and computations

are performed with in the private cloud infrastructure of the organization. The

model supports application level partitioning i.e. when an application works with

both public and private data, two separate partitions of the applications are made,

one that involves the public data is made to run on the public cloud whereas the

other one runs on the private cloud. It also allows integrations of additional

computing or storage resources to the private cloud from public clouds without

compromising the confidentiality or privacy of data. Although this approach

provides security benefits but this model avoids the public clouds for sensitive

data and computation.

Another scheme due to Jajodia, Litwin, and Schwarz utilizes client-side

encryption for ensuring privacy of outsourced data [13]. This scheme involves

use of symmetric keys to protect data and uses Diffie-Hellman scheme for

authenticating clients. Here the data is encrypted using a symmetric encryption

with a unique key. The keys are cached at the client side and are also kept on the

cloud as backup. A key on the cloud is kept hidden in a Public Share produced by

the owner which belongs to a two-share secret. The secret is the key and the other

9

Cloud Computing: A Security Perspective

share called the Client Share is specific to the owner and each selected reader.

In [14] authors provide security assessment of cloud in 4 categories, namely

Traditional security in a computer network, Availability of cloud computing

applications, Third-party data privacy, and Third-party data control. The

traditional security covers issues such as attacks on virtual machines, cloud

provider weaknesses, authentication and authorization, and data stealing or

leakage.

The vulnerabilities involving critical applications are described in availability of

cloud computing applications. This includes cloud application uptime, single point

of failure, valid computation. The third-party data privacy describes issues in

context of auditability, SLAs, and design of cloud infrastructure. The third-party

data control presents issues related to third-party data usage and the level of

control the owner have to control it. This involves fixed response time and data

deletion assurance, cloud data stealing, and losing data access.

In guidelines on security and privacy in cloud computing [15], NIST cites insider

security threats as a problem against trust. Security concerns in context of data

isolation in multi-tenant environment of cloud, and data sanitization measures are

also described.

Another survey [16] by Subashini and Kavitha, highlights the security issues

across the different service models of the cloud computing. Some of security

aspects with focus on data being stored in the cloud is presented below.

Data confidentiality:

The common solution for data confidentiality is data encryption. In order to

ensure the effective encryption, the key strength and the encryption algorithm

both should be analyzed. As the cloud computing environment involves large

amounts of data transmission, and storage hence the processing speed and

computational efficiency of encrypting large amounts of data should be taken into

consideration. Since large number of users are also involved hence key management

is a key problem as well. Ideally the data owners should be responsible for key

management. But due to the lack of expertise to manage the keys, users usually

entrust the key management to the cloud providers. As the cloud providers need

10

Cloud Computing: A Security Perspective

to maintain keys for a large number of users, key management is getting more

complex and difficult.

Data locality:

In the SaaS model of cloud computing infrastructure, consumers use the

softwares and tools provided by SaaS vendors, to process their business data. The

customer anyhow does not know where the data is being stored and processed.

Sometimes this is not desirable because of several privacy laws prevalent in

many countries. So the locality of data is very important in many enterprise

applications. In many European countries, certain confidential data should not

leave the country. A secure SaaS model should thus provide reliability to the

customer on the location of the data.

Data integrity:

In a standalone system with a single database, data integrity is easily achieved

using the database constraints. Transactional data integrity is ensured by following

the ACID(Atomicity, Consistency, Isolation, Durability) properties. However

in a distributed system, multiple databases and applications are maintained.

Also transactions are performed along multiple data sources. To perform them

in a failsafe manner, a centralized transaction management is required. SaaS

applications are generally multi-tenant applications hosted by a third party. SaaS

applications generally use XML based APIs. For a web service transaction

management poses a problem due to lack of support for transactions at the HTTP

protocol level. So API level support is required. Most SaaS vendors expose their

web services APIs without any support for transactions. The lack of integrity

controls at the data level can result into data corruption, hence developers must

ensure that the integrity of the data is not compromised.

Data access:

The issue of data access is related to the security policies followed by the cloud

provider for accessing the data. Security policies should be designed with a view

to control the access to the data by the category of the user. For example regular

users should be allowed to access critical or sensitive data and it should be ensured

that the data is only accessible by a privileged user. Following the security policies

11

Cloud Computing: A Security Perspective

is the key to prevent intrusions by unauthorized users.

Data segregation:

Because of the multi-tenancy feature of the cloud infrastructure, data of several

users share same physical storage location, thus giving rise to the possibility of

data intrusion. This can be achieved by hacking through some vulnerability or

by injecting client code. It will allow intrusion into others data. A SaaS model

should thus maintain proper isolation between the data of from different users.

Data deletion: Local data deletion is often received with less attention but

in case of cloud since the data is being stored in remote servers to which the

user do not have physical access, hence data deletion in case of cloud is also

important. A delete request for a particular data should be processed with secure

data deletion practices to ensure that the data cannot be recovered later. The

cloud provider should guarantee data deletion as more and more organizations are

storing sensitive data in the cloud. If data is not deleted securely then it can be

recovered by an adversary and will be misused.

12

Chapter 3

Homomorphic Encryption

Mathematical Background

Homomorphic Cryptosystems

13

Homomorphic Encryption

Homomorphic encryption is a form of encryption which allows specific types

of computations to be carried out on ciphertext and obtain an encrypted result

which when decrypted gives the result of operations performed on the plaintext.

For example, one could add two encrypted numbers and then another could

decrypt the result, without either of them being able to find the value of the

individual numbers.

Methods that would allow operation on data without knowing the actual

content can help in lot of areas. Homomorphic encryption is one such method.

Today most systems operate with help of a trusted party. Users have to trust an

entity, human or machine to maintain secrecy of their data. But an attack on

the trusted party or vulnerability with the system can expose the users secret.

Hence the necessity of systems where even the service providers have no detailed

knowledge of the users data is growing. In the next section, some of the work

done in the area of homomorphic encryption is described.

Homomorphic encryption originated from the concept of privacy

homomorphism [17], introduced by the Rivest et al. In their paper, they

discussed about performing operations on the encrypted data. The RSA [18]

cryptosystem introduced by them also exhibited the property of partially

homomorphic encryption, allowing multiplication of encrypted data, which when

decrypted will give the product of the plaintexts. Ever since many schemes with

homomorphic properties have been proposed. Another cryptosystem developed

during the same period was the ElGamal Cryptosystem [19]. Developed and

named after Taher El Gamal, ElGamal cryptosystem also had some homomorphic

properties. Although these two cryptosystems in their basic form is not that

popular but still serves as a great introduction to the concept and many variation

of the basic scheme are used in some applications. Paillier cryptosystem [20],

developed by Pascal Paillier is one of the popular cryptosystem supporting

additive homomorphism. Although the scheme is partially homomorphic but its

simplicity and performance makes it one of the best homomorphic scheme today.

However, a cryptosystem that supports both additive and multiplicative

homomorphism has been investigated since a long time. In that context,

14

Chapter 3 Homomorphic Encryption

Boneh-Goh-Nissim Cryptosystem [21] provided promising potential for a long

time. It allowed unlimited addition along with one multiplication operation.

But the first fully homomorphic scheme was possible due to Craig Gentry.

Gentry’s scheme [22] involves creating a somewhat homomorphic scheme and

then bootstrapping it make it fully homomorphic.

Although homomorphic encryption has existed since a long time, but due to

its computational and storage overhead it has received less attention. Further the

possibility of a working fully homomorphic encryption in real world was one of the

question. However in recent years development of fully homomorphic encryption

schemes [23–25] have attracted a lot of focus into this field of cryptography.

Homomorphic encryption has great potential for use in scenarios ranging from

multi-party communication to secure computation in cloud systems.

3.1 Mathematical Background

Cryptosystems are designed in a manner such that breaking the system would

require solving a problem that is intractable in nature. Some of the intractable

problems that form the basis for many cryptosystems are described below.

3.1.1 Integer Factorization Problem

Integer factorization or prime factorization is the decomposition of a composite

number into smaller non-trivial divisors, which when multiplied together equal the

original integer. Consider two unknown distinct primes p and q and n = p ∗ q.

Given the product n, the difficulty in determining the primes p and q, is referred

to as the factorization problem.

The general number field sieve (GNFS) algorithm is the best published algorithm

for factoring large n. However in context of quantum computers, Peter Shor

discovered an algorithm in 1994 that solves the factorization problem in polynomial

15

Chapter 3 Homomorphic Encryption

time. Shor’s algorithm takes only O(b3) time and O(b) space for a b-bit number.

3.1.2 Discrete Logarithm Problem

Given a generator α ∈ G of a cyclic group of order n, and given some β = αx ∈ G,

the discrete logarithm of β in a base α is the unique value of x mod n. Given β,

the problem of finding x is called the Discrete Logarithm Problem.

3.1.3 Quadratic Residuosity Problem

An integer a is said to be quadratic residue modulo n if there exists 0 < x < n

such that

x2 ≡ a mod n.

Otherwise, a is said to be a non-quadratic residue modulo n.

If n is an odd prime number, then determining whether or not an integer a is a

quadratic residue modulo p is equivalent to calculating Legendre symbol, (a
p
).

Let the set QRn denote the set of quadratic residues modulo n. Then given an

odd composite integer n > 3 and an integer a such that (a
n
) = 1, the problem of

determining if a ∈ QRn is called the Quadratic Residue Problem.

3.2 Homomorphic Cryptosystems

3.2.1 RSA Cryptosystem

RSA [18] is a popular public-key cryptosystem both in theory and practice that

is used mostly for digital signature. Its strength lies on the intractability of

the integer factorization problem described in the previous section. The basic

RSA scheme including the key generation, encryption and decryption procedure

is described below. Make the Public Key available to everyone and keep the

Private Key a secret.

16

Chapter 3 Homomorphic Encryption

Algorithm 1 RSA KeyGeneration()

1: Choose two large prime numbers p and q.

2: Compute n = pq and φ(n) = (p− 1).(q − 1).

3: Choose an integer e and an integer d, such that e, is coprime to φ(n) and

1 < e < φ(n).

4: ed ≡ 1 mod m.

5: Public Key = (e, n)

6: Private Key = d

Encryption Procedure

To encrypt, the sender encodes the message into a numerical form M . Encryption

is carried as follows:

EM ≡Me mod n.

Decryption Procedure

To decrypt, the receiver uses the following formula first and then decodes the

obtained number to get the intended Message,

M ≡ EMd mod n.

Homomorphic Properties:

The unpadded RSA exhibits the property of multiplicative homomorphism as

shown below.

Consider two ciphertexts C1 and C2, which are encryptions of plaintexts M1 and

M2.

Then according to the encryption function of RSA, C1 can be written as follows,

C1 = P1
e mod n, where (e, n) is the public key.

Similarly C2 can be expressed as follows,

C2 = P2
e mod n, where (e, n) is the same public key.

Now multiplying the ciphertexts as follows,

C1.C2 mod n = P1
e mod n.P2

e mod n = P1.P2
e mod n

17

Chapter 3 Homomorphic Encryption

This represents a valid encryption for M1 ∗M2.

However, in real world applications random padding is used in RSA and the

homomorphism does not hold. Hence RSA is not widely used for homomorphic

applications. But still it is one of the oldest cryptosystem with homomorphic

property.

The security of this system rests upon the difficulty in factoring n into p and

q. Hence the numbers p and q must be very large at least 512 bits and n must

be at least 1024 bits to ensure security. So far 768-bit RSA has been broken and

hence higher key sizes are recommended for present and future usage [26].

3.2.2 Paillier Cryptosystem

Introduced in 1999, Paillier cryptosystem [20] is a probabilistic asymmetric

algorithm for public key cryptography that is based on the composite residuosity

classes problem.

An integer z is said to be an nth residue mod n2 if there exists y ∈ Z
∗

n2 such

that z ≡ yn mod n2. The main idea, is that it is hard to determine whether

an arbitrary element in Z
∗

n2 is an nth residue mod n2 without the underlying

factorization. This is called the decisional composite residuosity assumption

(DCRA).

The key generation, encryption, and decryption procedure, along with the

homomorphic property of the cryptosystem is presented below.

Algorithm 2 Paillier KeyGeneration()

1: Choose two large prime numbers p and q randomly such that gcd(pq, (p −

1)(q − 1)) = 1.

2: Compute n = pq and λ = lcm(p− 1, q − 1)

3: Select random integer g where g ∈ Z∗

n2

4: µ = (L(gλ mod n2))−1 mod n where L(u) = u−1

n

5: PublicKey = (n, g)

6: PrivateKey = (λ, µ)

18

Chapter 3 Homomorphic Encryption

Algorithm 3 Paillier Encryption()

1: Let m be a message to be encrypted and m ∈ Zn.

2: Select random r where r ∈ Zn.

3: Compute the ciphertext c as c = gm.rn mod n2.

Algorithm 4 Paillier Decryption()

1: Compute the message as m = L(cλ mod n2).µ mod n.

Homomorphic Properties:

Paillier cryptosystem supports the property of additive homomorphism. In this

cryptosystem the product of two ciphertexts will decrypt to the sum of their

corresponding plaintexts. If m1 and m2 are the message to be encrypted, E()

and D() are the encryption and decryption function respectively and n is from

the publicKey, then the additive homomorphism property can be expressed as

follows.

D(E(m1, publicKey) ∗ E(m2, publicKey) mod n2) = m1 +m2 mod n

Consider c1 and c2 are the ciphertexts of the plaintexts m1 and m2.

Now following the encryption function of Paillier Cryptosystem,

c1 = gm1.rn1 mod n2, for some random r1 ∈ Z∗

n and c2 = gm2 .rn2 mod n2, for some

random r2 ∈ Z∗

n.

Now c1.c2 = gm1+m2 .(r1r2)
n mod n2.

This represents a valid encryption for m1 +m2.

3.2.3 Boneh-Goh-Nissim Cryptosystem

Boneh, Goh, and Nissim described a homomorphic public key Cryptosystem [21]

based on the subgroup decision problem. In simple terms the subgroup decision

problem can be described as follows. Let G be a group of composite order n = q1q2,

then given x ∈ G, the infeasibility in determining whether x belongs to a subgroup

of order q1, is called the subgroup decision problem. Next the key generation,

encryption and decryption procedure of the cryptosystem is described.

19

Chapter 3 Homomorphic Encryption

Algorithm 5 BonehGohNissim KeyGeneration(τ)

1: Given a security parameter τ ∈ Z+, select two random τ -bit primes p and q

and set n = pq ∈ Z.

2: Generate a bilinear group G of order n.

3: Let g be a generator of G and e : GXG→ G1 be the bilinear map.

4: Choose two random generators g, u
R
←− G and set h = uq.

5: PublicKey = (n,G,G1, e, g, h)

6: PrivateKey = p

Algorithm 6 BonehGohNissim Encryption()

1: Message space consists of integers in the set {0, 1, 2, ..., T} with T < q.

2: Choose a random r
R
←− {0, 1, 2, ..., n− 1}.

3: To encrypt a message m, compute C = gmhr ∈ G.

4: Return C as the ciphertext.

Algorithm 7 BonehGohNissim Decryption()

1: Given a ciphertext C, and the private key p the decryption can done on the

basis of the following observation.

2: Cp = (gmhr)p = (gp)m.

3: Compute m as the discrete log of Cp base ĝ, where ĝ = gp.

4: Return m as the decrypted message.

20

Chapter 3 Homomorphic Encryption

Homomorphic Properties

This cryptosystem supports additive homomorphism and allows one homomorphic

multiplication as well, as demonstrated below.

Let (n,G,G1, e, g, h) be the public key used for encrypting messages m1, m2 ∈

{0, 1, ..., T} to get the ciphertexts C1, C2 ∈ G1. The additive homomorphism can

be achieved by computing the product C = C1C2h
r for a random r ∈ {0, 1, ..., n−

1}.

Two ciphertexts can also be multiplied once by using bilinear map. If g1 =

e(g, g) and h1 = e(g, h), then g1 is of order n whereas h1 is of order p. For some

unknown α ∈ Z, determine h = gαq.

Let C1 = gm1hr1 ∈ G and C2 = gm2hr2 ∈ G.

Now given C1andC2, a valid encryption of the product m1.m2 mod n can be

calculated as follows.

Select a random r ∈ Zn and calculate C = e(C1, C2)h
r
1 ∈ G1.

Now C = e(C1, C2)h
r
1 = e(gm1hr1 , gm2hr2)hr

1

= gm1m2

1 h
m1r2+r2m1+αqr1r2+r
1 = gm1m2

1 hr̈
1 ∈ G1.

where r̈ = m1r2 + r2m1 + αqr1r2 + r is distributed uniformly in Zn. Hence C is

valid encryption of m1m2 mod n ∈ G1.

In terms of application, [27] describes an application of homomorphic

encryption for secure aggregation in Sensor Networks. CryptDB [28] is

another example that allows SQL queries over encrypted data and uses Paillier

Cryptosystem to perform database operations.

21

Chapter 4

Secure data storage using

Homomorphic Encryption

Current Scenario

Proposed Framework

22

Chapter 4 Secure data storage using Homomorphic Encryption

4.1 Current Scenario

The necessity of data storage over the cloud and the challenges associated with

protection of outsourced data has been discussed. Common solutions taken by

organizations today includes server-side encryption, client-side encryption or the

use of both along with strong authentication and authorization schemes to ensure

controlled access to the data stored on cloud. But despite of all these measures,

security breaches have occurred in past taking advantages of loop holes in the

system. Hence new methods in context of cloud security are always welcomed. A

framework developed as part of the work, for secure data storage over the cloud

is described below.

4.2 Proposed Framework

The proposed framework is for a hybrid cloud environment and can be extended

to support multi-cloud scenarios. This is designed with a view towards use in

client organizations who already have a private cloud setup. Client organizations

who operate using third-party cloud infrastructure can also integrate the

framework with their infrastructure. However in such a case it is assumed that

the organization has complete trust on its infrastructure provider. In both the

cases the objective is to secure the data of the organization stored with other

untrusted public clouds. A usage scenario of the framework is depicted in the

Fig. 4.1.

Before the framework can be used, some initialization steps need to be

followed. The first step involves generation of public and private keys. The public

cloud services with which interactions are to be done are provided in the next

step. The public key file is sent to all the available public clouds specified in the

previous step. This completes the initialization steps.

As new providers are added, the public key needs to be sent to the new

providers. The private key is kept secret and is never communicated with any

third-party. It is only used within the private cloud to decrypt, the encrypted

23

Chapter 4 Secure data storage using Homomorphic Encryption

Figure 4.1: Framework Usage Scenario

files. In case the private key is compromised, the initialization steps must be

performed again and all files stored using the framework must be encrypted again

with the newly generated public key.

The framework mostly helps in storing, distributing, and serving files in a

secure manner so that the user do not have to manually deal with the process.

The overall flow of data proceeds as follows. First, data generated by various users

which could include data from the employees, remote collaborators, employees

from third-party organizations on contract, or individuals using services provided

by the client organization. This data is stored and uploaded in files to the cloud

infrastructure of the organization through an interface. As long as the files

remain within the trusted infrastructure of the organization it remains secure,

but when it is forwarded to other public cloud services the question on trust

arises. The proposed framework offers a convenient method to achieve interaction

with other public clouds. The uploaded files are stored in a temporary private

storage and are encrypted using Paillier Homomorphic Cryptosystem [20] to

ensure confidentiality. Now based on the configuration, the encrypted files are

sent to the public clouds. From this point onwards the security of the data is

questionable but since the contents are encrypted, confidentiality of the data is

ensured. Now at a later stage when access to a file is requested and if the file is

available within the private storage then it is returned as response otherwise the

file is downloaded from the third-party cloud service on which it is stored and

24

Chapter 4 Secure data storage using Homomorphic Encryption

Figure 4.2: Overview of Framework Components

then decrypted within the trusted private storage and the decrypted file is served

as response.

4.2.1 Components

The proposed framework consists of five major components as shown in Fig. 4.2.

A brief description of each component is described below.

Encryption/Decryption Module

This module is responsible for the key generation, encryption, and decryption

of files. It uses the Paillier Cryptosystem [20] for different cryptographic

operations. The key generation procedure is the same as described by the Paillier

Cryptosystem. The procedure for encrypting and decrypting files are described

next. Here the encrypt and decrypt procedures refer to the encryption and

decryption methods as described by the Paillier Cryptosystem [20]. To encryption

and decryption of files are performed in blocks of fixed size e.g. 128 bytes. The

content of each block is converted to a numerical form using their hexadecimal

representation. Then the encryption and decryption is performed on the block

and the result is appended to the encrypted file. For simplicity the procedure is

described below in form of an algorithm.

25

Chapter 4 Secure data storage using Homomorphic Encryption

Algorithm 8 ENCRYPTFILE (FILE,EFILE, publicKey)

1: Read FILE till end, in fixed size blocks

2: for all blocks do

3: BlockContent← Content of the block from FILE

4: e← encrypt(BlockContent, publicKey)

5: Write e to EFILE

6: end for

Algorithm 9 DECRYPTFILE (EFILE,DFILE, privateKey)

1: Read EFILE till end, in fixed size blocks

2: for all blocks do

3: BlockContent← Content of the block from EFILE

4: d← decrypt(BlockContent, privateKey)

5: Write d to DFILE

6: end for

Private Store

This framework is designed with a view to forward files to other cloud services. But

in order to process the files before sending, a temporary storage area is necessary

and Private Store offers that storage. Various operations supported by the private

store are storing user files, serving file download requests and sending files to public

clouds. Details of the operations are described in STOREFILE, DISPATCHFILE,

and ACCESSFILE procedures.

FILES database

FILES database contains basic information on each and every file stored using this

framework including the files created afterwards such as encrypted files and patch

files. It also includes the list of cloud services where the files need to be stored.

Various information stored in the database is given in Fig.4.3. File ID is a unique

value assigned to identify the file. The file name and file size attribute contain the

name of the file as uploaded by the user and its size respectively. The location

26

Chapter 4 Secure data storage using Homomorphic Encryption

Algorithm 10 STOREFILE (FILE)

1: Write FILE to Private Store

2: Update FILES database

3: ENCRYPTFILE(FILE)

4: Search for existing versions of FILE

5: if found then

6: Select the latest existing file version, Fold and remove others, if any

7: if size(FILE) > size(Fold) then

8: EncryptedDifferencing(Fold, F ILE,EFdiff, publicKey)

9: end if

10: end if

11: DISPATCHFILE(FILE)

Algorithm 11 DISPATCHFILE(FILE)

1: Search for encrypted version of the file, EFILE and encrypted patch file,

EFdiff

2: if EFdiff is found then

3: F ← EFdiff

4: else

5: F ← EFILE

6: Get the list of public cloud services for file storage, LocationList from the

FILES database.

7: for cloudService ∈ LocationList do

8: Send (F , cloudService)

9: end for

10: [Optional] Remove EFdiff (if any) and EFILE from Private Store.

11: end if

27

Chapter 4 Secure data storage using Homomorphic Encryption

Figure 4.3: File information on FILES database.

attribute contains a list of cloud storage services on which the file is stored. The

Public Key File attribute keeps the name of the public key file to be used for

encrypting the file. In case same public key file is used for all plaintext files, this

attribute will have same value. This attribute is kept for future use. It can be

used to encrypt a file with different keys depending on the cloud storage location

or other file attributes.

Presentation Module

This is the primary interface for user interaction with the cloud. It is a web

interface which provides users a list of their files stored with our framework and

allows them to upload or download files. For an administrator, it provides options

to change the configuration such as generating new keys, and adding support for

new cloud services.

4.2.2 Updation Methods

Now one problem is noticed with this framework. After encryption, the file size

becomes huge and consumes high bandwidth during transmission. Further many

files get frequent updates in which case with the normal approach, transmission

of the encrypted version of the updated file is necessary. To reduce the bandwidth

consumption the following approaches can be considered.

File Updation Approach 1 : The different versions of the plaintext file can be

compared to find the differences among them using tools such as bsdiff [29], or

xdelta [30]; and then the generated difference file can be encrypted and sent to

28

Chapter 4 Secure data storage using Homomorphic Encryption

Algorithm 12 ACCESSFILE(P lainF ile)

1: Query the FILES database for P lainF ile

2: if not found then

3: Print ’File Not Found!’

4: else

5: Scan for the latest version of plaintext file, P lainF ile in Private Store.

6: if available then

7: return P lainF ile in response

8: else

9: Search for the encrypted version of P lainF ile, EFile.

10: if EFile does not exist in Private Store then

11: Get the list of public cloud services for file storage, LocationList

from the FILES database.

12: Download it from any one of the public clouds in LocationList

13: else

14: Use the existing EFile

15: end if

16: DECRYPTFILE(EFile,DFile, privateKey)

17: end if

18: return DFile in response

19: end if

29

Chapter 4 Secure data storage using Homomorphic Encryption

the cloud providers where the file is stored. But as the providers now have the

encrypted version of original file, the public key, and encrypted version of the

patch file hence to carry out the updation would require the private key file to

decrypt the contents first. Therefore for security reasons this approach cannot be

adapted.

File Updation Approach 2 : As an alternative, the updated version of the

plaintext file is encrypted and comparison is made between the respective

encrypted versions of the file and then the resulting patch file is sent to the public

clouds as it is. As the patch file contains the difference between two encrypted

files, its content does not reveal anything of the either plaintext file. Now using

tools, the patch file can be used to create an encrypted version of the updated file

from the encrypted version of the original plaintext file.

File Updation Approach 3 (Recommended approach): Now a modified approach

for updating encrypted files that is useful in cloud scenarios is described. In this

approach, given two versions of a plaintext file, say F1 and F2 which are states of

the file at time t1 and t2, the objective is to find an encrypted patch file EFdiff

that can be used to create an encrypted version of F2 say EF2 from the encrypted

version of F1 say EF1. Now EFdiff can be sent to the public clouds where

EF1 is stored and can be used to update the encrypted file without the need for

transmission of the encrypted version of the updated file. The method for finding

encrypted difference and performing update using the difference is described in the

EncryptedDifferencing and EncryptedPatching procedures. Here the encryptAdd

procedure uses the additive homomorphism property of the Paillier Cryptosystem

to add the encrypted values. The size of the resulting patch file can be further

reduced using compression techniques.

Security Analysis:

Consider M1 and M2 as two instances of a message.

Hence, M1 = m11.m12.m13...m1n

and M2 = m21.m22.m23...m2n, where mi represents a single block of a message.

Let C1 and C2 be the ciphertexts generated by applying the encryption procedure

on M1 and M2, respectively.

30

Chapter 4 Secure data storage using Homomorphic Encryption

Algorithm 13 EncryptedDifferencing (F1, F2, EFdiff, publicKey)

1: Read F1 and F2 till the end, in fixed size blocks

2: for all blocks do

3: BN1 ← Content of the block from F1

4: BN2 ← Content of the block from F2

5: if BN1 6= BN2 then

6: if BN2 > BN1 then

7: d← BN2 − BN1

8: findex← BlockIndex

9: else

10: d← BN2

11: findex← −(BlockIndex)

12: end if

13: e← encrypt(d, publicKey)

14: write (findex, e) to EFdiff

15: end if

16: end for

Algorithm 14 EncryptedPatching (EF1, EFdiff, EF2, publicKey)

1: Read EFdiff till end, in pairs (findex, difference)

2: Read EF1 and write unaffected blocks to EF2

3: for all pairs do

4: if findex < 0 then

5: u← difference

6: else

7: Assign e the encrypted value at findex of EF1

8: u← encryptAdd(e, difference, publicKey)

9: end if

10: Write u to EF2

11: end for

31

Chapter 4 Secure data storage using Homomorphic Encryption

Now C1 = c11.c12.c13...c1n

and C2 = c21.c22.c23...c2n, where ci represents a single block of a ciphertext C.

As M2 is an updated version of M1, hence it can also be expressed as follows

M2 = (m11 + d1).(m12 + d2).(m13 + d3)...(m1n + dn),

where di = m2i −m1i, is the difference.

Now a single block of ciphertext can be expressed as,

c1i = encrypt(mi, publicKey).

Further the encrypted difference for a block i can be expressed as,

edi = encrypt(di, publicKey).

As the Paillier Cryptosystem is used for encryption which exhibits the additive

homomorphism property,

Hence decrypt((c1i ∗ edi) mod n2, privateKey) = m1i + di = m2i

Similarly when this is applied over all the blocks, one can update the message

M1 to M2, by using the ciphertext C1 and the encrypted difference.

It is important to note that in the proposed framework the cloud providers

do not have the privateKey and hence cannot decrypt the ciphertexts. However

they can update the content in their encrypted form itself. All interactions with

the untrusted cloud involves encrypted contents only.

32

Chapter 5

Implementation and Results

Experiment Details

Performance Analysis

33

Chapter 5 Implementation and Results

A prototype to evaluate the working of the proposed framework has been

developed in Python. The Paillier homomorphic cryptosystem and associated

cryptographic operations are implemented using Sage [31]. The framework

has been tested only in local environment as described in section 5.1. This

offers details on the performance of the proposed framework with respect to the

performance parameter i.e. the file size. For a full-scale cloud implementation a

python server process running in the background is needed to keep the framework

alive and to provide the client interface.

5.1 Experiment Details

To evaluate the framework eight different text files were considered. Each of

these files were updated 7 times which resulted into a new state for a file after

each update. Considering the state or version of all eight files after a change as

an instance, there were total of eight instances including the state of the original

text files. For each instance every file is encrypted, and the patch file if possible

is generated with respect to the previous instance. As described earlier the patch

file is generated using the proposed updation approach and using two popular

tools xdelta [30], and bsdiff [29]. The size of the encrypted file, the patch file

generated using xdelta, bsdiff, and proposed approach for three instances for all

the 8 text files are tabulated in Table 5.1. After generation the patch files using

the proposed approach were compressed for further reduction in size.

5.2 Performance Analysis

In order to understand the performance the different approaches, a plot of change

in file sizes for the encrypted and various patch files over the eight instances

is presented in figure 5.1. For a given instance the average value of the eight

file sizes are considered for each type. It has been observed that the proposed

34

Chapter 5 Implementation and Results

Table 5.1: Various file size information for 3 instances.

Files
Encrypted File Size

in KB

Patch File Size in KB

xdelta bsdiff Our Approach

File 1

1072 616 464 412

2968 1700 1288 188

5272 3020 2288 716

File 2

620 356 268 200

1428 820 620 140

2536 1452 1100 296

File 3

1036 596 448 388

2708 1552 1176 156

4768 2732 2072 556

File 4

1280 732 556 516

3800 2176 1652 48

6600 3784 2872 616

File 5

848 488 368 308

2260 1296 980 132

3812 2184 1656 396

File 6

448 260 196 100

848 484 368 36

1412 812 612 144

File 7

1172 672 508 480

3172 1816 1376 256

5596 3204 2432 616

File 8

2348 1344 1016 928

7112 4076 3096 540

10640 6100 4640 932

35

Chapter 5 Implementation and Results

1 2 3 4 5 6 7

0

1,000

2,000

3,000

Instance

S
iz
e(
K
B
)

bsdiff
xdelta
Our approach

Figure 5.1: Variation of patch file sizes over instances

approach generates smaller patch files on an average. It is also observed that

patch files generated using the proposed approach are small compared to the

ones produced by other tools in their current state. This is due to the fact

that other tools were not designed with security applications in mind and hence

have to compare and produce the patch based on the encrypted version of the

files, whereas our approach compares the plaintext versions of the files and then

encrypts the differences and uses the property of additive homomorphism to

apply the patches.

Another way to visualize the performance is to analyze the reduction in size

of the file to be transmitted. For this a parameter α which is defined as follows is

used.

α =
PatchF ileSize

EncryptedF ilesize
∗ 100% (5.1)

A plot of α for the files considered over the different instances is presented in figure

5.2.

36

Chapter 5 Implementation and Results

1 2 3 4 5 6 7

0

20

40

60

80

100

Instance

α

bsdiff
xdelta
Proposed approach

Figure 5.2: Variation of α over instances

37

Chapter 6

Conclusion and Future work

Conclusion

Suggestions for Improvement

38

Conclusion and Future work

To summarize, the work gives a model of a framework that can be used by

organizations to protect and manage their data stored over untrusted public

clouds. As part of the work the possibility of using delta encoding concepts

along with homomorphic encryption scheme with additive homomorphism to

update encrypted files, instead of transmitting entire encrypted versions each

time after an update, was explored. Under the test environment, the developed

prototype has delivered promising performance results as compared to other

common solutions. Hence the proposed approach might be considered for use in

real world scenarios.

Suggestions for Improvement

The included support for the choice of cloud providers is limited and very

basic, but the framework can be extended to support new providers. Further in

the current implementation the organizations have to maintain an application at

the public clouds that will perform the updation procedure. The framework can

be developed in a manner such that the providers can easily integrate it with their

platform. Moreover working with encrypted data is computation intensive and

expensive in terms of storage, hence high performance data processing options in

the cloud can be applied for better performance. With reference to cryptographic

techniques, the proposed approach using newer homomorphic cryptosystems

having additive homomorphism, can be explored for performance benefits.

39

Bibliography

[1] Ponemon research study infographic: Whos minding your cloud? http://www.ca.

com/us/collateral/white-papers/na/ponemon-research-study-infographic-whos-

minding-your-cloud.aspx, 2013.

[2] Dropbox. https://www.dropbox.com/.

[3] Dropbox confirms it was hacked, offers users help. http://news.cnet.com/8301-1009_3-

57483998-83/dropbox-confirms-it-was-hacked-offers-users-help/.

[4] Last.fm. http://www.last.fm/.

[5] Last.fm password security update. http://www.last.fm/passwordsecurity, 2012.

[6] icloud. https://www.icloud.com/.

[7] Another apple disaster: The icloud gets hacked. http://www.forbes.com/sites/

timworstall/2012/08/07/another-apple-disaster-the-icloud-gets-hacked/.

[8] Securing the clouds [infographic]. http://www.tappin.com/blog/2012/12/cloud-

security-infographic/, 2012.

[9] Peter Mell and Tim Grance. The NIST definition of cloud computing. Technical report,

July 2009.

[10] Deyan Chen and Hong Zhao. Data security and privacy protection issues in

cloud computing. In Computer Science and Electronics Engineering (ICCSEE), 2012

International Conference on, volume 1, pages 647–651, 2012.

[11] M.A. AlZain, E. Pardede, B. Soh, and J.A. Thom. Cloud computing security: From single

to multi-clouds. In System Science (HICSS), 2012 45th Hawaii International Conference

on, pages 5490–5499, 2012.

[12] Steven Y. Ko, Kyungho Jeon, and Ramsés Morales. The hybrex model for confidentiality

and privacy in cloud computing. In Proceedings of the 3rd USENIX conference on Hot

topics in cloud computing, HotCloud’11, pages 8–8, Berkeley, CA, USA, 2011. USENIX

Association.

40

Bibliography

[13] Witold Litwin, Sushil Jajodia, and Thomas Schwarz. Privacy of data outsourced to a cloud

for selected readers through client-side encryption. In Proceedings of the 10th annual ACM

workshop on Privacy in the electronic society, WPES ’11, pages 171–176, New York, NY,

USA, 2011. ACM.

[14] A. Patrascu, D. Maimut, and E. Simion. New directions in cloud computing. a security

perspective. In Communications (COMM), 2012 9th International Conference on, pages

289–292, 2012.

[15] Wayne Jansen and Timothy Grance. Sp 800-144. guidelines on security and privacy in

public cloud computing. Technical report, Gaithersburg, MD, United States, 2011.

[16] S. Subashini and V. Kavitha. Review: A survey on security issues in service delivery models

of cloud computing. J. Netw. Comput. Appl., 34(1):1–11, January 2011.

[17] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomorphisms.

pages 169–177. Academic Press, 1978.

[18] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public-key cryptosystems. Commun. ACM, 21(2):120–126, February 1978.

[19] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18, New

York, NY, USA, 1985. Springer-Verlag New York, Inc.

[20] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In

Proceedings of the 17th international conference on Theory and application of cryptographic

techniques, EUROCRYPT’99, pages 223–238, Berlin, Heidelberg, 1999. Springer-Verlag.

[21] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In

Proceedings of the Second international conference on Theory of Cryptography, TCC’05,

pages 325–341, Berlin, Heidelberg, 2005. Springer-Verlag.

[22] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st

annual ACM symposium on Theory of computing, STOC ’09, pages 169–178, New York,

NY, USA, 2009. ACM.

[23] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-lwe

and security for key dependent messages. In Proceedings of the 31st annual conference

on Advances in cryptology, CRYPTO’11, pages 505–524, Berlin, Heidelberg, 2011.

Springer-Verlag.

[24] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and

modulus switching for fully homomorphic encryption over the integers. In Proceedings

of the 31st Annual international conference on Theory and Applications of Cryptographic

Techniques, EUROCRYPT’12, pages 446–464, Berlin, Heidelberg, 2012. Springer-Verlag.

41

Bibliography

[25] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with

polylog overhead. In Proceedings of the 31st Annual international conference on Theory

and Applications of Cryptographic Techniques, EUROCRYPT’12, pages 465–482, Berlin,

Heidelberg, 2012. Springer-Verlag.

[26] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thomé,

Joppe W. Bos, Pierrick Gaudry, Alexander Kruppa, Peter L. Montgomery, Dag Arne Osvik,

Herman Te Riele, Andrey Timofeev, and Paul Zimmermann. Factorization of a 768-bit

rsa modulus. In Proceedings of the 30th annual conference on Advances in cryptology,

CRYPTO’10, pages 333–350, Berlin, Heidelberg, 2010. Springer-Verlag.

[27] R. Riggio and S. Sicari. Secure aggregation in hybrid mesh/sensor networks. In Ultra

Modern Telecommunications Workshops, 2009. ICUMT ’09. International Conference on,

pages 1–6, 2009.

[28] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan.

Cryptdb: protecting confidentiality with encrypted query processing. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages 85–100,

New York, NY, USA, 2011. ACM.

[29] Colin Percival. Naive differences of executable code, 2003.

[30] Joshua P. MacDonald. File system support for delta compression. Technical report, 2000.

[31] Sage: Open source mathematics software. http://www.sagemath.org/.

42

