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Abstract

The Risk analysis process recognizes the different type of hazards that can occur

and recommend control measures that are frequently used for that hazard. Risk is

a measure of the probability and severity of undesired effects. Accomplishment of

risk analysis in the early development phases improves resource sharing decisions.

This method will aid to find the high-risk components and connectors of the

system architecture, so that corrective actions may be implemented to control

and improve the development process as well as the quality of the system.

We propose a technique for risk analysis at design level using UML behavioral

diagrams. We have used state chart and sequence diagram to find the risk factor

of components and connectors involved in the system. Next, we have calculated

the risk factor of each scenario of a use case and combined them to obtain the

overall risk factor of the targeted system. We have used concurrent control flow

graph to evaluate the scenario level risk factor which takes into consideration the

concurrent execution of threads. Along with this interaction overview diagram is

used to estimate the overall system level risk factor. In our approach, we have

also done the sensitivity analysis to find the critical components and connectors

with respect to each scenario and also in overall system level. So we can give

careful analysis, design, implementation and testing effort to these components

and connectors.
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Chapter 1

Introduction

Software testing is a process that detects important bugs with the objective of

having better quality software [1]. It can also be defined as a process of investi-

gation conducted to deliver the information about the quality of the product or

service under test to the stakeholders [2]. In other words software testing can be

defined as the process of validating and verifying a product to check whether it

satisfies the requirements that guided its design and development, works as ex-

pected, can be implemented with the same features and satisfies the requirements

of stakeholders.

Commonly used terms in software testing are error, defect and failure. Software

faults may occur whenever a programmer makes an error (mistake) that results in a

defect in the source code of software. If the defect is executed in certain situations,

the system will produce wrong results causing a failure. Not necessarily all defects

will result in failures. For example, defects in dead code will never result in failures

because that would not be executed ever. A defect can turn into a failure when

the environment is changed.

Software testing can be employed at any time during the development process.

Traditionaly the testing process is carried out after the requirements have been

defined and the coding process has been completed. Testing after coding is very

much expensive and sometimes it is also difficult to test. If we do testing after

coding then we have to wait up to coding is completed. During testing if we get any

error due to requirement analysis fault then we have to change code, design and

requirement which is very much expensive. Sometime code is also not available
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1.1 Risk Analysis

such as in (component based software), so testing is not possible. Therefore it is

very much useful if testing is done at an early phase of software development. For

safety critical systems testing and risk analysis is very much necessary. A safety-

critical or life-critical system is a system whose failure may lead to death or severe

injury to people or may cause severe loss/damage to equipment or environmentally

harm. These systems are designed in such a way that the loss will be less than

one life per billion hours of operation. The risk of this sort are managed with the

tools and methods of safety engineering.

1.1 Risk Analysis

Software risk management is a part of software project management. It is very

important for software projects [3]. Software risk management steps were defined

by Barry Boehm [4] and it has two basic steps. The first one is risk assessment

and the second is risk control. Risk assessment involves risk identification, risk

analysis and risk prioritization. Several techniques can be used for risk identifica-

tion which produces a list of the project risk items. Risk analysis is the method

of discovering risks in applications and ranking them to test. In other words, risk

analysis includes the processes concerned with identifying, analyzing and devel-

oping security strategy and plans for the factors. A risk is the potential for loss

or damage to an organization from materialized threats. Risk Analysis efforts to

identify all possible risks and then measure the severity of the risks. A threat is a

possible damaging event. When it occurs, it exploits vulnerability in the security

of a computer based system. Higher risk value items should be tested early and

frequently. Lower risk value items can be tested later. Risks include the factors

that might adversely affect project outcomes.

The main objectives of risk analysis are as follows,

� It gives an overview of the general level and pattern of risk faced by the

project.

� It helps management to focus on the high-risk items in the list.
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1.2 Categories of Risk

� It helps to decide where action is needed immediately, and where action

plans should be developed for future activities.

� It facilitates the allocation of resources to support management’s decisions.

Risk analysis is useful in many situations, for example:

� During project Planning, it helps to anticipate and neutralize probable prob-

lems.

� To decide whether to move ahead with a project or not.

� To improve safety and managing possible risks in the workplace.

� To prepare for happenings such as technology or equipment failure, theft,

staff issue, or natural disasters.

� To plan for changes in the environment, such as new competitors entering

into the market, or variations to government policy.

Risk: “Risks are future indeterminate events with a likelihood of occurrence and

a possibility of loss”. Risk consists of two things: the probability of something

going wrong, and the negative consequences that will happen if it does. Risk

identification and management are the key concerns in every software project.

Efficient analysis of software risks helps in effective planning and assignments of

work. Risks are identified, classified and managed before actual execution of the

program takes place.

1.2 Categories of Risk

The main purpose of categorizing risk is to develop a collective viewpoint on a

group of factors, that will help the managers to recognize the group that con-

tributes maximum risk. A better way of approaching risks is to categorize them

on the basis of attributes of risk. Classification of risk is an economical way of

analyzing risks and their causes by grouping similar types of risks together into
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1.2 Categories of Risk

classes [5]. Software risks is of two types - external and internal. The external

risks come from outside of the organization and these are very difficult to control.

Where as, internal risks come from the risk factors within the organization. Soft-

ware risks can be classified into project risk, process risk, and product risk. This

classification technique can be applied to internal risks [6], [7]. Again, risk can

be categorized into three general categories [8]: project, technical, and business

risk. In addition to this, risk can be categorized into performance risk, budget risk

and schedule risk. [9]. In general we can say there are many risks in the software

engineering. So it is very difficult to recognize all of them.

software engineering project risks are categorized on the basis of scheduling,

quality, budget, and business. Since these factors can affect the risk. Some of the

categories of risks are defined below,

� Schedule Risk: The schedule of the project gets slipped if project tasks and

schedule release risks are not properly addressed. It affects on project and

economy of the company and may lead to failure of the project. Schedules

often slip due to the following reasons : wrong estimation of time, improper

tracking of resources, failure to identify complex functionalities and time

required to develop those functionalities, sudden expansion of project scope.

� Budget Risk: Budget risk occures if the budget of the project is not es-

timated properly. Budget risk occures due to the following reason: wrong

estimation of budget, cost overruns, expansion of project scope.

� Operational Risks: This risk occurs due to improper implementation of

process. Reasons for the occurance of operational risks are as follows: failure

to address priority conflicts, insufficient resources, proper subject training is

not done, proper resource planning is not done, communication gap in team.

� Technical Risks: Technical risks usually leads to failure of functionality

and degradation of performance. The different causes of technical risks are as

follows: continuous change in requirements, understandability of advanced

technology is not available or the existing technology is in initial stages,
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1.2 Categories of Risk

product is complex to implement and difficulty in integration of project

modules.

While developing a test plan, risk involved in the product and the probability of

occurrence of risk are taken into consideration. Along with this the damage they

may cause also considered. Detailed study of the implications of risk occurrence

is called risk analysis. Some other risks arise due to use of new hardware, new

technology and new automation tools. Some unavoidable risk in Software Testing

are:

� Frequent change in requirements.

� Incomplete requirements.

� Insufficient time for testing.

� Developers delay to deliver the build to test.

� Client needs the delivery of product urgently.

� Defect Leakage because of application size or complexity.

Some of the activities that can be done to overcome the above risks are as follows:

� Risk assessment review meeting can be conducted with the development

team.

� Risk coverage profile is created by revealing the importance of each area.

� Allocate maximum resources to high risk areas and minimum resources to

medium and low risk areas.

� Creating the risk assessment database which will help in maintenance in

future activities and management reviews.

� Identify and define the degree of risk: high, medium and low.

6



1.4 Motivation for Our Work

1.3 Risk Assessment

The risk assessment provides information to support risk management and rank

resources. Formal risk assessments are made at a later stage of development,

usually when more information is available. But that will be more expensive to

handle. Early stage risk assessments are carried out in the initial stages of software

development. Risk assessment is of two types qualitative and quantitative. A

qualitative assessment [10] approach relies more on expert knowledge, unpublished

information provided by expert(s), in addition to this other available information

can be considered such as observational studies or case reports. In contrast, a

quantitative assessment [10] needs calculation of two factors of risk: the probability

and the impact. We have considered quantitative method for our work to estimate

the risk at a design level, since it provides effective means to accomplish limited

resources and reduced time is required for evaluating the validity of proposals.

1.4 Motivation for Our Work

The primary motivation of our work is to overcome the drawbacks of existing risk

estimation methods. The motivation behind our work is:

� To develop a risk analysis mechanism for software systems at design level

using UML behavioral diagrams. For large or safety-critical systems risk

analysis is very much necessary. Since failure of safety critical system leads

to loss of life. So by risk analysis, we can find the risk and manage it to

reduce the rate of failure and consequences of its occurrence.

� Risk analysis at early stage is beneficial since analysis at later stage is more

expensive in terms of effort, cost and time. Early analysis also helps in better

allocation of resources.

� To estimate risk factor at early phase of software development process using

UML specifications. Since at early stage only UML diagrams are available to

get the dynamic behavior of each component and connectors of the system.
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1.6 Organization of the Thesis

It reduces the coding effort and also ensures the platform independence.

This is so because the code often needs to be changed when ported to a new

platform.

� To develop a risk assessment method based on quantitative metrics which

can be estimated with little involvement of subjective measures from domain

experts.

1.5 Objectives of Our Work

The main objective of our work is to develop a method for risk analysis at design

level using UML behavioral diagrams. Our major goals are as follows:

� To estimate risk factors of a system at design level. For this we plan to :

– Use the UML diagrams to calculate the risk factors since it is available

at design level. The dynamic behavior of each component and connec-

tor can be represented by UML behavioral diagrams (state chart and

sequence diagram).

– Then concurrent control flow graph is generated to represent each sce-

nario’s control flow and for estimation of risk factor at scenario level.

– For overall system level risk factor estimation interaction overview di-

agram is used.

– Implement the proposed method.

� To analyze the sensitivity of each component and connector for each scenario

and also for overall system to rank the components and connectors as per

their risk factors. So allocation of resources will be easier.

1.6 Organization of the Thesis

The rest of this thesis is organized into chapters as follows.
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1.6 Organization of the Thesis

Chapter 2 consists of the background concepts used in the rest of the thesis.

First we describe some basic concepts on risk analysis, software architecture and

metrics used in our proposed approach. Then, we discuss about UML diagrams

(state chart, sequence and interaction overview diagram) and CCFG used for risk

estimation of system along with other used formulas.

Chapter 3 presents a brief review of the related work relevant to our proposed

work. We discuss the work on risk estimation of softwares at early phase of

development cycle.

Chapter 4 presents our proposed work analysis of risk at design level using

UML diagrams. We first describe the risk factor estimation method of components

and connectors that consists the system. Then the scenario level risk estimation

method after that the overall system level risk factor estimation technique is dis-

cussed. Finally, we present the implementation of our work along with sensitivity

analysis.

Chapter 5 concludes the thesis with a summarization of our contributions. We

also briefly describe the possible future extensions to our work.
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Chapter 2

Background

Risk Analysis is a cost-effective way to identify and manage potential problems

that could undermine key business initiatives or projects. Risk consists of two

things: the probability of something going wrong, and the negative consequences

that will happen if it occurs.

2.1 Basic Concepts on Software Architecture

Software architecture aids as a blueprint for the system. Architecture describes

the organization of a system that includes the constituting components, the re-

lationships among them and with the development environment, and the guiding

principles for its design and evolution, [IEEE 1471]. Early analysis of architecture

will ensure whether the design approach will lead to an acceptable system or not.

We can identify risk at design level and mitigate them by building an effective

architecture. Software architecture and components are closely related. Every

software systems have an architecture which can be viewed as a composition of

components and connectors. A component can be defined as an abstract unit

of software which provides services to other components via interface by doing

some transformation of data. Transformation means performing some calculation,

loading some data from secondary memory etc. A component can be a class, an

object, a package of classes, or a collection of related functions. A connector is

an architectural unit tasked with effecting and regulating the interaction between

components. Connector facilitates communication, co-ordination, co-operation
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2.2 Basic Concepts on Metrics

between components. A connector can be a procedure call, pipe, data stream,

client-server protocol etc. Risk assessment at the design level is more beneficial

as compared to later phases of development in terms of cost and allocation of

resources.

2.2 Basic Concepts on Metrics

McCabe’s Cyclomatic Number

It is developed by McCabe in the year 1976 [11], to measure the complexity of a

program. It measures the number of independent paths in a program. The cyclo-

matic complexity (cc) is calculated from a contol flow graph using the following

formula:

CyclomaticComplexity(CC) = Numberofedges(e)−Numberofnodes(n) + 2

(2.1)

Advantages

� It can be calculated early in the development life cycle.

� Helps in measuring the minimum effort and best areas of concentration for

testing.

� Easy to apply.

� Act as a quality metric, provides relative complexity of software design.

� Helps in guiding the testing process during development by limiting the

program logic .

Disadvantages

� It can measure the program complexity but not the data complexity.

� The same weight is given to both nested and non-nested loops. So deeply

nested conditional structures are very difficult to understand than non-

nested structures.
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Information Flow Complexity Information flow complexity is introduced by

Henry and Kafura in the year 1981 [12] to measure program complexity İt is

defined as :

IF = length× (Fan in× Fan out)2 (2.2)

where length is number of lines of code, fan in of a component is the number of

components that call a given component and the parameters passed to it, fan out

of a component is the number of components called by a given component and the

parameters passed from it to others. In object-oriented systems interactions among

objects can be described using fan in and fan out. Generally high fan in leads to

better design of the overall system. High fan in means an object is being used by

other objects extensively which indicates reuse. It reduces redundant coding and

makes maintainance easier. High fan out indicate high degree of interdependency

between classes i.e an object directly deals with a large number of other objects.

High fan out shows poorer design of overall system.

Advantages

� It can be applied on data-driven programs.

� It can be computed in the design phase prior to coding.

Disadvantages

� If procedures do not have any external interaction then the complexity value

will be zero.

2.3 Basic Concepts on UML Diagrams

UML 2.x has 14 types of diagrams which is divided into two categories,

� Structural Diagram

� Behavioral Diagram

Structural Diagram includes seven diagrams (class, component, composite

structure, deployment, object, package and profile diagram) to represent struc-
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2.3 Basic Concepts on UML Diagrams

tural information. These diagrams represent the structure and they are used ex-

tensively in documenting the software architecture of software systems. Structure

diagrams emphasize the things that must be present in the system being modeled.

Behavioral Diagram includes other seven diagrams out of which state machine,

use case, activity diagram represent general types of behavior and other four dia-

grams (communication, interaction overview, timing and sequence diagram) repre-

sent different aspects of interactions . Behavioral diagrams emphasize what must

happen in the system being modeled. Since behavioral diagrams explain the be-

havior of a system and they are used extensively for describing the functionality

of software systems.

Here we have discussed the basic information about the UML diagrams which

we used in our approach,

2.3.1 Use case Diagram

A use case diagram provides the higher-level view of the system. In another way, “

Use case diagrams are the blueprints for your system ” [13]. These diagrams pro-

vide the simplified and graphical picture of what the system actually does. It helps

in gathering the requirements of a system and the factors (internal or external)

which influences it. The requirements are nothing but the design requirements.

So while analyzing the system to gather the functionalities use cases are set and

actors are also identified. The functionalities are represented as the use cases and

an actor may be a human, internal application or external application. The main

purpose of use case diagrams are as follows:

� Helps in gathering requirements of a system.

� Helps to get a high-level view of a system.

� Identify external and internal factors that influences the system.

� Shows the interaction among the functionality are actors.

14



2.3 Basic Concepts on UML Diagrams

Use case diagrams are used in different scenarios:

� For analyzing the requirements and high-level design,

� For context modeling,

� For reverse engineering,

� For forward engineering.

Different use case dependences or relationships are include, extend, generaliza-

tion, specialization. These are defined as follows,

Include - An include relationship of a use case (base use case) includes the

functionality of another use case (the inclusion use case). It supports the reuse of

functionality in a use case model.

We can use include relationships in following situations:

� The feature of the inclusion use case is same for two or more use cases

� The outcome of the behavior which the inclusion use case specifies is signif-

icant to the base use case.

The Fig 2.1 demonstrates an e-commerce application that offers customers

with an alternative of checking the status of their orders. The checkOrderStatus

use case represents this behavior. It has an inclusion use case named logIn. The

logIn use case is a distinct inclusion use case as it includes behaviors that several

other use cases in the system use. An include relationship points from the check-

OrderStatus use case to the logIn use case is to specify that the checkOrderStatus

use case constantly includes the behaviors in the logIn use case.

Figure 2.1: Use case for include relationship

Extend - An extend relationship of one use case (extension) extends the fea-

tures of another use case (base). It helps to reveal the details about a system or

application which are typically hidden in a use case.
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2.3 Basic Concepts on UML Diagrams

The extend relationship states that the inclusion of the extension use case is

dependent on what happens when the base use case executes. We can indicate

numerous extend relationships for a single base use case.

The extension use case is not meaningful on its own whereas the base use

case is defined independently and is meaningful by itself. The extension use case

comprises of one or more behavior sequences that explain supplementary behavior

which can incrementally add to the behavior of the base use case. Every segment

can be added into the base use case at a different point, called an extension point.

The features of the base use case can be accessed and changed by extension use

case. But, the base use case cannot access or change the attributes and operations

of the extension use case.

We can append extend relationships to a model to illustrate the following

circumstances:

� A fraction of a use case which is optional system behavior.

� A subflow is executed only under definite circumstances.

� A set of behavior that may be introduced in a base use case.

The following Fig 2.2 of e-commerce system shows base a use case named

placeOrder which has an extending use case named shippingDetail. An extend

relationship spots from the shippingDetail use case to the placeOrder use case to

specify that the behaviors in the shippingDetail use case are optional and occur

only in definite conditions.

Figure 2.2: Use case for extend relationship

Generalization - If two or more use cases have some common features in behavior,

structure, and purpose then we can use generalization. It describes the common

features in a new use case.
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2.3 Basic Concepts on UML Diagrams

Specialization - A base use case may be specialized into one or more derived

use cases. These derived use cases represents more specific features of the base

use case. Both the base use case and derived use case need not to be necessarily

abstract, although in most cases the base use case is abstract. A derived use case

inherits all behavior, structure, and relationships of the base use case. Derived

use cases of the same base use case are all specializations of that base use case.

2.3.2 State chart Diagram

It is one of UML diagrams which shows the dynamic behavior of a system in

response to internal or external stimuli. Then the behavior is explored and rep-

resented in a sequence of events, that could take place in one or more probable

states. The dynamic flow of control from one state to another is shown by state

chart diagram. Each state chart diagram typically represent objects of an individ-

ual class and keeps track of various states of its objects over the system. Here we

can say it models the life span of an object from its formation to end. The main

purpose of state chart diagram is to model reactive systems. Reactive system

means, a system which responds to an internal and external stimulus.

The state chart diagram is used for the following purposes:

� For modeling dynamic aspect of a system.

� For modeling life span of a reactive system.

� For describing various states of an object in its life time.

� To define a state machine which model states of an object.

� To recognize events accountable/responsible for state changes.

� For forward and reverse engineering.

2.3.3 Sequence Diagram

Sequence diagram is one of the interaction diagram which represents how processes

interact with each other and in what sequence. It helps in dynamic modeling of
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the system which focuses on identifying the behavior of the system. It shows the

sequence of messages transferred between different objects. It shows the objects

and classes involved in a particular scenario and the order of messages exchanged

between them to do the functionality of that scenario. Each use case functionality

can be realized using sequence diagram to get the logical view of the system under

development.

A sequence diagram consists of parallel vertical lines and horizontal arrows.

Where parallel vertical lines represent lifelines of objects, the horizontal arrows

represent messages exchanged between them in the sequence in which they oc-

cur. It models the flow of logic inside the system in a visual manner. It helps

in validating and documenting the logic as well as used for analysis and design

purposes.

Sequence diagrams are used for the following purposes:

� Modeling usage scenarios.

� Modeling the logic of methods.

� Modeling the logic of services.

2.3.4 Interaction Overview Diagram

Interaction overview diagram is one of the fourteen diagrams of UML. It pictures

the control flow with nodes that can contain sequence diagram, timing diagram and

communication diagram. It shows the sequence of activities like activity digram.

But the difference is that each activity is pictured as a frame which can contain

other diagrams like sequence diagram, communication diagram, timing diagram.

With these elements the interaction overview diagram can be used to deconstruct

a complex scenario that would otherwise require multiple if-then-else paths to be

illustrated as a single sequence diagram. In other way, we can say it provides

an overview of the relationship between two more specialized UML diagrams like

sequence diagrams, communication diagrams, timing diagrams
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2.4 Concurrent Control Flow Graph

Generally CCFG is useful to represent the concurrent control flows in a program.

In concurrent computation the programs are designed as group of interacting

computational units which may be parallelly executed. Concurrent programs or

threads can be executed on a single processor or in parallel. Execution on a sin-

gle processor is done by interleaving the execution steps of each in a time-slicing

method. Execution in parallel is possible by allocating each computational process

to one of a set of processors which is closed or distributed through a network.

In design level also we can use CCFGs to analyze the concurrent control flow

of sequence diagrams [14]. Since conventional Control Flow Analysis (CFA) [15]

methods are usually applied to sequential programs. Sequential program means

there is no concurrency in a single module. The most commonly used control

flow model is Control Flow Graph (CFG) [15]. But, the use of the CFG model

is restricted to only sequential programs. Its standard model cannot be easily

used to accomplish control flow analysis in a module if intra-module concurrency

is there, or some of the statements run parallelly with others.

From the UML 2.x sequence diagram metamodel [14] it is very clear that asyn-

chronous messages and par interaction operator require intra-sequence diagram

concurrency. But, such concurrency cannot be explored by conventional CFGs.

The above two modeling features which lead to Concurrency has to be taken into

consideration while analyzing the control flow in sequence diagram. The impacts

of these two modeling features are discussed below,

Impact of Asynchronous Messages: UML introduces two types of messages

for sequence diagrams: synchronous and asynchronous.

Synchronous message - Here the caller waits for completion of the invoked

behavior and expects a return values.

Asynchronous message - Here the caller proceeds immediately and does not

expect a return value.

Hence, asynchronous messages of a sequence diagram will involve a concurrent

control flow in the sequence diagram. For better understandability of the impact
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2.4 Concurrent Control Flow Graph

Figure 2.3: A sequence diagram with asynchronous messages

in CFA due to occurrence of asynchronous messages, we have considered an ex-

ample. The sequence diagram shown in Fig 2.3 describes an asynchronous request

processing approach.

Message are prefixed with alphabetical symbols for easier reference to the mes-

sages. The sequence diagram has both synchronous and asynchronous messages.

There are five objects such as c, apr, dummy, pf and ap. To realize the effect of

asynchronous messages of the sequence diagram in the control flow, let us con-

sider the case when the message addToQueue() is send by the object c of class

Controller to the object apr of class AsyncProcessor. As addToQueue() message

is asynchronous, the caller will not wait for the reply message of the asynchCall

message addToQueue(). It will continue running the other messages in its lifeline.

In the mean while, object apr will start executing addToQueue() method. So we

can say, in addition to the thread of control for object c, a new concurrent thread

of control will be created for object apr. Hence, we can say asynchronous mes-

sages has impact on control flow of a sequence diagram. Since it introduces two

separate concurrent threads of control, one for the sender object and another for

the receiver object of a message [14].

Impact of par Interaction Operator: Another new feature introduced by

UML 2.x is par interaction operator. It supports parallel execution of interaction

fragments. A sequence diagram where interaction operator is used is shown in

the Fig 2.4. A cook use case of a microwave oven is defined by the sequence dia-
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2.4 Concurrent Control Flow Graph

Figure 2.4: A sequence diagram with par interaction operator

gram. The controller of the oven is the object Controller. Other two objects are

RotatingPlate and SignalEmitter. The controller receives a startCook(duration)

message, where duration tells about the time required to cook. Then, the con-

troller parallelly sends two messages, one to RotatingPlate and another one to

SignalEmitter to start doing their tasks. So two interaction fragments holding

message rotate(duration) and emit(duration) run concurrently. Hence, par inter-

action operators also impact the control flow of a sequence diagram by involving

two or more concurrent threads of control [14].

So concurrent control flow graph is needed to describe the control flow of a

sequence diagram. For each sequence diagram a CCFG will be generated. There

is some sequence diagrams which calls other sequence diagrams, in that scenario

a control flow edge will connect the corresponding CCFG of sequence diagrams to

generate the inter-sequence diagram CCFG. The inter-sequence diagram CCFG is

similar to the idea of interprocedural CFG [15]. The mapping rules from sequence

diagram (SD) to concurrent control flow graph (CCFG) features are shown in

Table 2.1.
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Table 2.1: Mapping rules from SD features to CCFG features
Rule Number Sequence Diagram Features Concurrent Control Flow Graph Features

1 InteractionFragment Activity
2 First message end Flow between InitialNode and first control node
3 SynchCall/SynchSignal CallNode
4 AsynchCall or AsynchSignal (CallNode + ForkNode) or ReplyNode
5 Message SendEvent and message ReceiveEvent ControlFlow
6 Lifeline ObjectPartition
7 par CombinedFragment ForkNode
8 loop CombinedFragment DecisionNode
9 alt/opt CombinedFragment DecisionNode
10 break CombinedFragment ActivityEdge
11 Last message ends Flows between ending control nodes and ActivityFinalNode
12 InteractionOccurrence Control Flow across CCFGs
13 Polymorphic message DecisionNode
14 Nested InteractionFragments Nested CCFGs
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Chapter 3

Review of Related Work

This chapter presents an overview of the research work carried out related to our

research work.

A number of metrics have been developed to measure the design quality of a

object-oriented software [16], [17]. Design metrics are categorized as static and

dynamic. A quality metric should associate external quality attributes (maintain-

ability, reusability, understandability, error-proneness) of a design [18]. On the

basis of observation and empirical studies it was found that coupling [19] and

complexity [20] have direct impact on quality of software. Based on this Yacoub

et al. [21] introduced a metrics suite to measure the design qualities at early devel-

opment stage. This metric suite includes metrics for object coupling and dynamic

complexity based on execution scenario. Here we are focusing on this metrics to

calculate the risk factors of different components and connectors.

Almendros-Jimenez and Iribarne [22] explained a method to describe use cases

by means of sequence diagrams. They also compares sequence diagrams to define

sequence diagram relationships for recognizing and describing use case relation-

ships. Their main aim is to provide a semantics of use case relationships by means

of sequence diagrams. They described how to map each relationship (generaliza-

tion, specialization, extend, include) of use case to the relationship of sequence

diagram. We followed their method to get the sequence diagram from use case

diagram for our approach.

Garousi et al. [14] presents a methodology for control flow analysis on the ba-

sis of UML diagrams. Generally control flow analysis is done at code level but
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this method can be applied at early phase of software development life cycle. It

uses UML diagrams for control flow analysis. They proposed a extended activity

metamodel kown as concurrent control flow graph (CCFG) for control flow anal-

ysis. They define an OCL-based mapping rules between a sequence diagram and

a CCFG. They also define Concurrent Control Flow Paths, which are a general-

ization of the conventional Control Flow Path concept. We have followed their

technique of mapping from sequence diagram to concurrent control flow graph.

Jeffrey D. Gordon [23] proposed three distinct UML methods to compute effort

corresponding to early, mid and late stage of design phase. In early stage he used

object point to compute the effort. In mid stage interaction point is used to

calculate the effort. For late stage of design message pont and transaction point

is used to calculate the effort of software. Here we have used the interaction point

method for our work.

Amland [24] proposed a method for risk-based testing where risk is estimated

for a high level function on the basis of failure probability and cost of failure of

that fuction. Failure probability is estimated on the basis of four factors : new

functionality, size, design quality and complexity. The cost of failure is calculated

based on both customer and supplier cost. The main drawback of this approach is

the calculation of complexity. Since it considers informal way to calculate which

is based on subjective judgment of domain experts.

Different risk assessment methods [25], [26] are developed at requirement phase

on the basis of experts knowledge. These two approaches initially identify different

modes of failures for high-level requirement and then attempt to estimate the effect

of these failures on the requirement. It does not take into account any structural

and behavioral dependencies between interacting objects of the system. So it is

purely subjective and more human intensive.

Several methods for reliability-based risk assessment on the basis of formal de-

sign model [27], [28] are available. Yacoub and Ammar [27] developed a component-

based risk assessment method using UML diagrams. They calculated the heuristic

risk factor of each component and connector individually. Then, the overall sys-
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tem level risk factor is estimated using the component and connector risk factor

along with the transition probabilities between components and connectors. For

estimatinig the overall system level risk factor they developed an intermediate

graph known as Component Dependence Graph (CDG) on the basis of scenarios.

A similar type of approach is introduced by Goseva-Popstojanova et al. [28]

for risk assessment. They also calculated individual component and connector

risk factor. Then used these values along with Discrete Time Markove Chain and

transition probability to estimate the scenario level risk factor. Multi-failure states

also introduced by them for each scenario which represents the failure modes with

different severity level.

Appukkutyet al. [29] introduced a risk assessment method which considers

possible failure modes of a scenario and computed the complexity of the scenario

in each failure mode. This method is for risk assessment at requirement phase.

So, the risk related with low-level details (component and connector level details)

are not taken into cosideration.

For estimating the risk factor probability of failure and consequences of its

occurance is taken in to consideration. Luke [30] Software failure probability is

difficult to find in advance, design complexity is linearly related to rate of defect.

So occurance of defects at code level should be calculated using cyclomatic or

Halsteads complexity. At design level we can estimate this complexity using UML

diagrams.

Cortesselaet al. [31] have also introduced a risk assessment method using UML

diagrams. This approach estimates performance-based risk. This method uses

UML diagrams to estimate the performance failure probability. Then combines it

with the failure severity which is computed using the Functional Failure Analysis.

Which helps to determine risky scenarios along with risky software components.

Cheung [32] proposed a user-oriented reliability model to measure the relia-

bility of a software system with respect to a user environment. A simple Markov

model is formulated to determine the reliability of a software system on the basis

of reliability of each individual module and the measured inter-modular transition
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probabilities as the user profile. Sensitivity analysis techniques are developed to

determine modules most critical to system reliability.
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Chapter 4

Analysis of Risk at Design Level
using UML Diagrams

In this chapter, we introduce our approach for risk assessment [32]. We first

describe the risk analysis process. Then, we discuss the risk calculation techniques

of components and connectors for each scenario. Next, we present the scenario

level and overall system level risk calculation techniques along with sensitivity

analysis.

4.1 Basic Concepts

Information Flow Complexity: Information flow complexity is used to measure

program complexity.It is defined as :

IF = length× (Fan in× Fan out)2 (4.1)

where length is number of lines of code, fan in is the number of components

called this component and the parameters passed to it, fan out is the number of

components called by this component and the parameters passed from it to others.

It can also be applied at design level where length is the cyclomatic complexity.

Cyclomatic Complexity: It is introduced by McCabe in the year 1976, used

to measure the complexity of a program. It measures the number of independent

paths in a program . The cyclomatic complexity (CC) is calculated from a control
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4.3 Our approach for Risk analysis

flow graph using the following formula:

CyclomaticComplexity(CC) = Numberofedges(e)−Numberofnodes(n) + 2

(4.2)

4.2 Case study

Here we have taken the Library Management System (LMS) case study for our

research work. There are four components in this as user, librarian, member

record(MR), book. User component can issue book, renew book, return book,

reserve book. Librarian manages user, book and member record. Member record

manages member information and their requests. Book information is handled

by the component book. Also, we have used six connectors for communication

between components. The connectors between different components are as follows,

(U L) - Connector between component user and librarian

(L U) - Connector between component librarian and user

(L M) - Connector between component librarian and member record

(L B) - Connector between component librarian and book

(M L) - Connector between component member record and librarian

(B L) - Connector between component book and librarian

The usecase diagram is shown in the Fig 4.1

4.3 Our approach for Risk analysis

In our approach we have considered use case diagram for analyzing the risk of a

system. Each use case in the use case diagram represents some high-level function-

ality. Each use case can represent one or more scenario. Each scenario is realized

using sequence diagrams as shown in Fig 4.3. Sequence diagram represents how

the components of a scenario are interacting with each other and the order of

message exchanged among them. For each scenario, we have calculated the risk

factors of components/connectors. The risk factors are calculated as a product

of the dynamic complexity/coupling and the severity value. These severity values
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are assigned to the component/connector by domain experts using hazard analysis

and failure mode effect analysis. Then we construct concurrent control flow graph

(CCFG) for each scenario according to the sequence diagram to estimate the risk

factor of each scenario. The overall system level risk factor is estimated using an

interaction overview diagram. The algorithm for risk analysis is defined below,

Algorithm 1 The risk analysis process

for each use case do
for each scenario do

for each component do
Calculate the dynamic complexity using information flow complexity
Assign severity based on FEMA and hazard analysis
Estimate the risk factor of component

end for
for each connector do

Calculate the dynamic Coupling
Assign severity based on FEMA and hazard analysis
Estimate the risk factor of connector

end for
Construct the Concurrent control flow graph
Calculate risk factor of scenario

end for
end for
Construct interaction overview diagram and calculate the transition probability
Calculate the overall system level risk factor
Do sensitivity analysis to find most sensitive components, connectors and sce-
narios

4.4 Risk Factor Assessment of Components/ Con-

nectors

We calculate the risk factor of each component and connector involved in each

scenario Sx as a product of the dynamic complexity/coupling and the severity

values of those component and connector. Severity value varies from scenario to

scenario.

For each component i, involved in scenario Sx, risk factor rsfxi is calculated as

rsfxi = DCmx
i × svrtxi (4.3)
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Figure 4.1: Usecase diagram of Library Management System

where DCmx
i (0 ≤ DCmx

i < 1) is the normalized dynamic complexity and svrtxi (0 ≤

svrtxi < 1) is the severity level of component i in that particular scenario Sx .

For each connector between two components i and j, involved in scenario Sx,

the risk rsfxij is calculated as

rsfxij = DCnxi × svrtxi (4.4)

where DCnxi (0 ≤ DCnxi < 1) is the normalized dynamic coupling and svrtxi (0 ≤

svrtxi < 1) is the severity level of connector between two components i and j

involved in scenario Sx.

Then we describe the methods to estimate the normalized dynamic complexity

DCmx
i and normalized dynamic coupling DCnxi for component and connector

respectively along with the severity calculation for component and connector.

4.4.1 Calculation of Normalized Dynamic Complexity

Information flow complexity (IF) is introduced by Henry and Kafura in the year

1981 [12] to measure program complexity. It can also be applied at design level,

and it is defined as :

IF = length× (Fan in× Fan out)2 (4.5)
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where length is the cyclomatic complexity, fan in is the number of components

called this component and the parameters passed to it, fan out is the number of

components called by this component and the parameters passed from it to others.

Cyclomatic complexity (CC) is introduced by McCabe in 1976, it is defined as

CC = e − n + 2 and calculated from the control flow graph. Where e is the

number of edges and n is the number of nodes. Instead of using control flow

graph to calculate CC, we have used state chart diagram of components. State

chart diagram of a component is considered for each scenario which is available at

design level. For each component i the state chart diagram represent the number

of states and transitions among these states which describes the dynamic behavior

of that component. For a component i a subset of all its states and corresponding

transitions are traversed for each scenario. Let the subset of states traversed by

a component i in the scenario Sx is denoted as P x
i and the subset of transitions

traversed by a component i in the scenario Sx is denoted as Qx
i . Then mapping

of the subset of states traversed P x
i and corresponding transitions Qx

i to a control

flow graph is done. Where the number of nodes pxi = |P x
i | (cardinality of P x

i )

and the number of transitions qxi = |Qx
i | (cardinality of Qx

i ). Here the cyclomatic

complexity for a component i in the scenario Sx is defined as,

CCx
i = qxi − pxi + 2 (4.6)

Then, we use sequence diagrams of components for each scenario Sx to estimate

the fan in and fan out. For a component i in a scenario Sx fan in FIxi is defined

as the sum of messages and parameters transmitted to it. Whereas fan out FOx
i is

the sum of messages and parameters transmitted from it. Here, we applied IF at

the design level to estimate the dynamic complexity of components. The dynamic

complexity of component i in the scenario Sx is defined as,

dcmx
i = CCx

i × (FIxi × FOx
i )2 (4.7)

For a component i in the scenario Sx the normalized dynamic complexity DCmx
i

is estimated as,

DCmi
x =

dcmi
x∑

kεSx
dcmi

x
(4.8)
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Table 4.1: Normalized dynamic complexity values of components for issueBook
scenario

Component Name Normalized dynamic complexity
User 0.1463

Librarian 0.8468
MR 0.0013

Book 0.0054

The state chart diagram of component user in the scenario issueBook and the

corresponding sequence diagram are shown in the Fig 4.2 and Fig 4.3 respectively

which are used to calculate the dynamic complexity using eq(4.7). Then the

normalized dynamic complexity is calculated using eq(4.8) and shown in Table

4.1

Figure 4.2: State chart diagram of component user in issueBook scenario

4.4.2 Calculation of Normalized Dynamic Coupling

Here we use sequence diagram to estimate the dynamic coupling of connectors by

applying the formulas mentioned in [10]. The dynamic coupling of a connector is

defined as follows,

DCn =

∣∣MSxij
∣∣

|MSx|
(4.9)

where MSxij represents the set of messages transmitted from component i to com-

ponent j in the scenario Sx and MSx represents set of all messages transmitted

among all active components in that scenario Sx. Then the normalized dynamic

coupling for issueBook scenario using the sequence diagram shown in Fig 4.3 is

calculated using eq(4.9) and shown in Table 4.2
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Figure 4.3: Sequence diagram of issueBook scenario
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Table 4.2: Normalized dynamic coupling values of connectors for issueBook sce-
nario

Connector Name Normalized Dynamic Coupling
U L 0.1428
L U 0.4285
L M 0.1428
L B 0.1428
M L 0.7142
B L 0.7142

4.5 Hazard and Severity Analysis

Here we find out the severity of failure of each component and connector for each

scenario to calculate the risk factors of component and connector. Severity or

hazard analysis is the most important step of risk assessment. Hazard is nothing

but the consequences of happening of some undesired events and severity is the

seriousness of that hazard. It is very important because sometimes the complexity

may be very less but the severity of failure is very high. So we have considered the

severity of failure of each component and connector on the basis of their failure

consequences. For estimating the severity we need domain experts, they rank the

severity of failure of each component and connector on the basis of their domain

knowledge and experience. According to MIL STD 1629A, severity takes into

consideration the worst-case consequence of a failure obtained by the degree of

injury, system damage, property damage, and mission loss that could eventually

occur. On the basis of hazard analysis [33], we find out the following severity

classes. The first one is catastrophic, which is defined as a failure that may result

death or entire system loss. Next is critical, which is defined as a failure that

may result severe injury in terms of major property loss or major system loss.

Third one is marginal means a failure may result minor injury in terms of minor

property loss, minor system loss or delay. Last one is minor, defined as a failure

which may result in any type of damage but leads to an unscheduled maintenance

or repair. Each severity class is assigned with a severity value like 0.25 for minor,

0.5 for marginal, 0.75 for critical, 0.95 for catastrophic [28]. On the basis of study

performed by Ammar et al. [34] the severity values for each severity class are taken
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Table 4.3: Analysis of severity for components in the issueBook scenario

Component Accident Severity
User User component malfunctioning Minor

Librarian Interface failure, communication failure between components Marginal
MR Database failure Critical

Book Database failure Critical

Table 4.4: Analysis of severity for connectors in the issueBook scenario

Connector Accident Severity
U L Transmits incorrect command, error message is received Minor
L U Transmits incorrect command Marginal
L M Transmits incorrect command,Component MR fails to update Critical
L B Transmits incorrect command, Component book fails to update Critical
M L Transmits incorrect command Marginal
B L Transmits incorrect command, message received is errorneous Minor

in a linear scale. The severity values of components for the issue book scenario are

shown in Table 4.3 and connectors are shown in Table 4.4. Then the risk factor

of each component and connector as a product of dynamic complexity/coupling

and severity level. The risk factor of each component and connector for issueBook

scenario are shown in Table 4.5 and Table 4.6 respectively.

4.6 Estimation of Scenario Level Risk factor

We have introduced an analytical estimation approach for calculation of scenario

level risk factor using CCFG. We considered the failure of both component and

connector in contrast to [32] where only component failure is taken into considera-

tion. A component or connector can fail at any point of time during the execution

of a scenario. Due to this, we have considered the risk factor of each component

and connector after every step of execution in the scenario while calculating the

Table 4.5: Risk factor of components of issueBook scenario

Component Name Severity Risk factor
User 0.25 0.0363

Librarian 0.5 0.4211
MR 0.75 0.00101

Book 0.75 0.0040

37



4.6 Estimation of Scenario Level Risk factor

Table 4.6: Risk factor of connectors of issueBook scenario

Connector Name Severity Risk Factor
U L 0.25 0.0357
L U 0.5 0.2142
L M 0.75 0.1071
L B 0.75 0.1071
M L 0.5 0.0357
B L 0.25 0.0178

Table 4.7: Component and connector involved in each node in CCFG of issueBook
scenario

Node Name Sender Component Receiver Component Connector
l u Librarian User L U
u l User Librarian U L
l u Librarian User L U
u l User Librarian U L
l b Librarian Book L B
b l Book Librarian B L
l m Librarian MR L M
m l MR Librarian M L
l u Librarian User L U
l m Librarian MR L M
l b Librarian Book L B
l u Librarian User L U
l u Librarian User L U
l u Librarian User L U

scenario level risk factor.

For each scenario, CCFG is modeled from the sequence diagram of that sce-

nario [14]. In CCFG, each node represents the message transmitted between the

components. CCFG is used to analyze the concurrent flow in the sequence dia-

gram. The CCFG of issueBook scenario is shown in the Fig 4.4. We used a table

to keep track of the sender and receiver component and the connector between

them for each message as shown in Table 4.7. We then calculated the risk factor

at each stage of execution by taking the risk factors of component and connector.

By using the following formula, we have calculated the risk factor (Mi) of each

scenario.

Mi =

nop∑
j=1

n∑
i=1

Ri =

nop∑
j=1

(R1 + R2 + R3 + .........) (4.10)
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Figure 4.4: Concurrent control flow graph of issueBook scenario

39



4.7 Estimation of System Level Risk Factor

Table 4.8: Normalized risk factor of each scenario
Name of Scenario Risk Factor Normalized Risk Factor

issue book 2.9217 0.3072
Renew book 0.9892 0.1040
Reserve book 2.9221 0.3073
Return book 0.9583 0.1007
invalid card 0.7955 0.0836
valid card 0.9217 0.0969

where,

Ri = R(Ti) + (1−R(Ti))×R(Ti, Di) + (1−R(Ti))× (1−R(Ti, Di))×R(Di)

In this case nop represents the number of paths in CCFG

n represents the number of nodes in a path

R(Ti) represents risk factor when sender component Ti fails (calculated using

eq(4.3))

(1− R(Ti))× R(Ti, Di) represents risk factor when connector between sender

component Ti and receiver component Di fails (calculated using eq(4.4))

(1 − R(Ti)) × (1 − R(Ti, Di)) × R(Di) represents risk factor when receiver

component Di fails.

Then normalized risk factor of each scenario is calculated as follows,

NM i =
Mi∑ns
i=1M i

(4.11)

Where ns represents the number of scenarios in the system. The normalized risk

factor of each scenario is shown in Table 4.8

4.7 Estimation of System Level Risk Factor

For estimating the overall system level risk factor, we use the scenario-based speci-

fications. Scenario specification is the collection of a set of scenarios [35] , [36]. To

describe the behavior of an application, scenario specification is extensively used

in industry. Scenario specification can be modeled through Interaction Overview

40



4.7 Estimation of System Level Risk Factor

Diagram (IOD) [35]. It pictures the cooperation among different interaction dia-

grams, as its nodes, to elucidate a control flow between them in terms of logic and

process-flow. In other way, we can say it provides an overview of the relationship

between two more specialized UML diagrams like sequence diagrams, communi-

cation diagrams, timing diagrams. Here, we have taken the sequence diagram as

nodes which are placed in a specific order. The transition from one node to an-

other has some transition probability TPij which represents the scenario j will be

executed after executing the scenario i. We have used the operational profile [22]

to find the transition probability. System reliability is affected by the reliability of

components and the transition probability of scenarios [35]. On the basis of this

we estimated the risk factor of the overall system as follows:

R (Sym) =

nop∑
m=1

nod∑
j=1

NMj × Tij (4.12)

The overall system risk factor is 0.513438. The IOD of LMS system is shown in

Fig 4.5.

Figure 4.5: Interaction overview diagram (IOD) of Library Management System
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4.8 Implementation

4.8 Implementation

In this section, we discuss our implemented approach and prove its correctness.

We have used Java to implement our proposed method. First, we draw the state

chart and sequence diagrams using MagicDraw [37]. Next, we export the xml file

of the diagram which is given as input to our program. As an outcome, we obtain

the normalized risk factors of the components and connectors. The normalized

risk factors of the components and connectors are shown as in Fig 4.6 and Fig 4.7,

respectively.

In the next step, we used the result obtained in the previous step to calculate

the scenario level risk factor. The normalized risk factors of the scenarios of LMS

are shown in Fig 4.8

Figure 4.6: Normalized risk factor of each component for issueBook scenario

4.8.1 Sensitivity Analysis

Sensitivity analysis is a simple and effective way to calculate the uncertainty in

results obtained for a system. It tests the robustness of the results obtained while

there is an uncertainty in the inputs. Fig 4.9 shows the sensitivity of overall system

risk to the risk factors of the components. The component librarian, MR and user
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Figure 4.7: Normalized risk factor of each connector for issueBook scenario

Figure 4.8: Normalized risk factor of each scenario

Figure 4.9: Sensitivity of overall system risk factor to risk factors of components
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Figure 4.10: Sensitivity of overall system risk factor to risk factors of connectors

are almost certainly affecting the overall system risk because these components

are having high execution probabilities in all scenarios. The book component is

less likely to affect the overall risk of the system. In Fig 4.10, we have shown the

sensitivity of overall system risk to the risk factors of the connectors involved. The

connectors L M, M L,U L and L U have most influence on the risk of the overall

system as they are the mostly used connectors in the scenario. Similarly, we have

done sensitivity analysis for components and connectors in different scenarios.

4.9 Comparison with Related Work

Popstojanova et al. [28] introduced a methodology to estimate the risk factor of

the overall system using dynamic complexity of component and connector. To

compute the dynamic complexity of a component they have considered cyclo-

matic complexity of the component which does not consider the data flow com-

plexity. But in our case, we used the information flow metric which considers

data flow complexity. For scenario level risk estimation they used Markov model.

And they considered the failure of components/connectors only once during the

execution of a scenario. But in our case we have taken all possible failure of com-

ponents/connectors during the execution of each step of a scenario using CCFG.
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Figure 4.11: Sensitivity of invalid card scenario risk factor to risk factors of con-
nectors

Figure 4.12: Sensitivity of invalid card scenario risk factor to risk factors of com-
ponents
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Along with this in our approach parallel execution is also considered. In our ap-

proach in addition to this different use case dependencies are also considered [22].

Yacoub and Ammar [27] used the severity and complexity to estimate the risk

factor of component and connector. They used component dependence graph for

each scenario to represent the component, connector and transition probability.

Then overall system risk factor is estimated using the risk factor of consisting

components and connectors and the the aggregation algorithm. But they have not

considered the scenario level risk factor which we have estimated using CCFG. By

this, we can also find the scenario that is of high-risk.

Sadi et al [38] proposed a method to minimize the risks of soft errors in mobile

and ubiquitous systems, where they only considered the criticality of components.

But in our case, we have considered both component and connector risk factors.

Connector is responsible for transmission of any information. So the system will

be affected if it fails.

Cheung [32] proposed a user-oriented reliability model to measure the relia-

bility of a software system with respect to a user environment. A simple Markov

model is formulated to determine the reliability of a software system on the basis

of reliability of each individual module and the measured inter-modular transi-

tion probabilities as the user profile. Sensitivity analysis techniques are developed

to determine modules most critical to system reliability. They have considered

only component reliability while calculating the system level reliability. But in

our approach we have considered both component and connector risk factor while

calculating system level risk factor.
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Chapter 5

Conclusion

We have proposed a method for early assessment of risk using UML diagrams

like use case, state chart, sequence diagram and interaction overview diagrams.

Initially we estimated the risk factor of component and connector using state

chart diagram and sequence diagram. Then CCFG is used for scenario level

risk factor estimation. Finally the system level risk factor is estimated using

scenario level risk factor and transition probability of scenario. We have used the

operational profile of the system to know the transition probability. Next, we

have done the sensitivity analysis of component and connector risk factors with

respect to scenario and system level. By this, we have found out highly sensitive

components and connectors that need careful analysis, design, implementation

and extra testing effort.

Our future work will focus on developing a performance based risk assessment

methodology and generalization of our approach. Another one is to analyze the

risk at requirement phase.
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