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ABSTRACT 

Feedback control systems, wherein the loops  used  to  control  the  behavior  of  a  plant  are  

closed  through a real time communication network,  are  called  networked  control  systems. 

Networked  Control  Systems  (NCSs)  are  one  type  of  distributed  control  systems  where 

sensors, actuators, and controllers are interconnected by communication networks. The primary 

advantages of an NCS are reduced system wiring, ease of system analysis and maintenance. 

In this thesis, the analysis and design of networked control systems with the communication 

delay and data loss, which are responsible for degradation of the control performance, are 

considered. Model predictive control strategies are applied to compensate the communication 

delay and data loss in the NCS.  Studied about TrueTime Simulator and the control strategies are 

applied to a DC servo system using this TrueTime Simulator with communication delay and data 

packet loss. Also, the stability and the system performance of the close loop networked control 

system are analyzed. 
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1.1 INTRODUCTION 

In many control systems such as spacecraft, vehicles and plants mainly in chemical plants, 

communication networks are employed to exchange information and control signals between 

spatially distributed systems components, like supervisory computers and controllers. In the past 

decade, Communication networks have revolutionized the way facilities are controlled, in the 

industrial area. It has allowed high data transfer rates for more efficient data storage, trending, 

alarming and analysis. The drawbacks that cause continual trouble or distress to the early 

generations of networks have been solved, for the most part, making them reliable enough to be 

used in the most critical of applications. 

Network-based  control  has  emerged  as  a  topic  of  significant  interest  in  the  control 

community.  It  is  well  known  that  in  many practical  systems,  the  physical  plant, sensor,  

controller, and actuator are difficult to be located at the same place,  so we require to transmit the 

signals from one place to another. In modern industrial systems, these components are often 

connected over network media (typically digital band-limited serial communication channels), 

giving rise to the so-called networked control systems (NCSs). Fig.1.1 [1] shows a typical NCS 

setup and its information flows. 

The study of NCSs involves both computer networking and control theory. Feedback control 

systems, wherein the loops  used  to  control  the  behavior  of  a  plant  are  closed  through a 

real-time communication network.  The  defining  feature  of an  NCS  is  that information  is 

exchanged  using  a  network  among  control  system  components. 

NCSs are one type of distributed control systems where actuators, sensors and controllers are 

interconnected by communication networks. The study of NCSs is an interdisciplinary research 

area, combining both network and control theory. The traditional  communication  architecture  

for  control  systems  is  point-to-point,  that  means  a  wire is connected to the  central  control  

computer  with  each  sensor  or  actuator  point.  This change to common-bus introduces 

different forms of time delay uncertainty between sensors, actuators, and controllers. Most NCS 

research has focused on two areas: communication protocols and controller design. 

The issues that needs to be addressed while designing an NCS  include, the  delays induced by 

the network which occurs  while exchanging  data  among  devices connected  to  the  shared  
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medium, and packet losses, because  of  the  unreliable  network transmission path, where 

packets not only suffer transmission delays but also lost during transmission. 

 

Fig.1.1. Typical NCS setup and information flows 

A challenging problem in control of networked-based system is the effects of network delay. The 

time  require to  read  a  sensor  measurement  and  to  send  a  control  signal  to  an  actuator  

through  the network  depends  on  network  characteristics  such  as  their  topologies,  routing  

schemes,  etc. The delay problem is severe when data loss occurs during a transmission. The 

performance of a networked control system is not only degraded, but also can be destabilized by 

the delays. 

In this project, controllers have been designed to maintain stability of an NCS in the presence of 

network-induced delay (controller-actuator delay and sensor-controller delay). Different 

compensation techniques have been proposed to minimize delay’s effect. 
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1.2 BACKGROUND 

In NCS background there are network and controller are present. There are several techniques 

used to transmit information through the network. Nearly all data network systems in use today 

use binary digits (bits), a series of 1s and 0s, to send information. Messages are assembled into 

packets with formatting and addressing information, along with the data. The general form of a 

message packet or frame is a leading header (sometimes called the preamble), the data area 

(called the payload), and the trailer. The header contains addressing and error checking 

information, the data area contains the actual data being transmitted, and the trailer contains 

more error checking and message management information (e.g. parity and stop bits).  Parity is a 

simple error checking method which uses the number of 1s in a byte (even or odd) to determine 

if the byte was received correctly. 

Simplex system provides communication in one direction, all of the time. Half-duplex is 

bidirectional communication allowed in one direction at any given time, and full duplex is 

bidirectional transmission in both directions simultaneously. In addition to this, synchronous 

(clocked) transmissions are timed so that both devices know exactly when a transmission will 

begin and end, whereas asynchronous (un-clocked) transmissions must mark the beginning and 

end of messages. Synchronous transmission is usually faster than asynchronous, but the timing 

issue between two remote machines can introduce problems causing asynchronous transmission 

to be simpler and less expensive, and therefore more widely used. Asynchronous transmission 

does, however, introduce extra control bits into a message, which slows actual data rate. 

1.2.1 Network control 

Networked control system is combination of two engineering fields, computer network and 

control. We use wired or wireless computer networks. Because NCSs are implemented over a 

network, a good underlying communication network protocols, such as Token Bus or Token 

Ring, Ethernet is required to analyze and model the system’s characteristic. A Networked 

Control System (NCS) is a control system wherein the control loops are closed through a real-

time network. The feature of an NCS is that control and feedback signals are exchanged among 

the system's components in the form of information packages through a network. 
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1.2.2 Point-to-Point Architecture of a Control System 

Fig.1.2 shows a control system implemented as a point-to-point (P2P) network. It needs huge 

wiring connected from sensors to computer and computer to actuators and more over becomes 

complicated on requirement of setting the physical setup and functionality. 

 

Fig.1.2. Point-to-Point Architecture of a Control System 

To remove the above problems posed by centralized control, Networked Control System (NCS) 

has received considerable attention with advances in control and communication technologies. 

1.2.3 Overview of NCS 

A networked control system (NCS) is a feedback control system where information from the 

sensors and the controllers is sent over an electronic communication network [11, 10, 12]. NCSs 

offer reduced cost and relatively simple implementation, as well as greatly increased flexibility. 

Network protocols have been designed specifically for use in control systems, but other, more 

general network protocols are also widely used [15]. Fig.1.3 shows the block diagram of a 

typical networked control system. 
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Fig.1.3. Block Diagram of a Networked Control System 

NCSs are not without their drawbacks.  At best, communication networks can introduce delays, 

but the network can also introduce time-varying random delays and data packet loss.  

1.3 LITERATURE REVIEW ON NCS 

Networked control systems are control systems comprised of the system to be controlled and of  

actuators,  sensors,  and  controllers,  the  operation  of  which  is  coordinated  via  a 

communication network. These systems are typically spatially distributed, and may operate in an 

asynchronous manner, but operate by coordinating each other to achieve desired overall 

objectives.  Control systems with spatially distributed components have existed for several 

decades.  Examples  include  control  systems  in  chemical  process  plants,  refineries,  power 

plants,  and  airplanes.  In  the  past,  in  such  systems  the  components  were  connected  via 

hardwired  connections  and  the  systems  were  designed  to  bring  all  the  information  from  

the sensors to a central location where the  conditions were being monitored and decisions were 

made on how to control the system.   

The control policies then were implemented via the actuators, which could be valves, motors, 

etc.  What  is  different  today  is  that  technology can  put  low-cost  processing  power  at  

remote locations  via  microprocessors  and  that  information  can  be  transmitted  reliably  via  

shared digital networks or even wireless connections. These technology driven changes are 
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fueled by the  high  costs  of  wiring  and the  difficulty  in  introducing  additional  components  

into  the systems as the needs change. 

Traditional control systems composed of interconnected controllers, sensors, and actuators have 

been successfully implemented using a point-to-point architecture. As an alternative to point-to-

point,  the  common-bus  network  architecture  offers  more  efficient  re-configurability, better 

resource utilization, and also reduces installation and maintenance cost, which is called 

networked control systems. 

In  a  NCS,  various delays  with  variable  length  occur  due  to  sharing  a  common  network 

medium, which are called network-induced delays. The network-induced delay in NCSs occurs 

when actuators, sensors and controllers exchange data across the network. Generally, the 

controlled plant in NCS is assumed to be continuous-time, and thus the  actuator  implements  

zero-order  hold  (ZOH)  holding  the  last  control  until  the  next  one arrives  or  until  the  next  

sample  time.  Since  networks  are  used  for  transmitting  the measurements  from  the  plant  

output  to  the  controller,  the  plant  has  to  be  sampled, which motivates the use of discrete-

time controllers. Zhang et al. [7] investigated the problems of stability and stabilization of a class 

of multi-mode linear discrete time systems. 

Today, NCSs are moving into distributed NCSs [8], which are multidisciplinary efforts whose 

aim is to produce a network structure and components that are capable of integrating distributed 

sensors, distributed actuators, and distributed control algorithms over a communication network 

in a manner that is suitable for real-time applications. The controller may be physically placed in 

a different location from the plant, actuators and sensors, resulting in a distributed control 

system. The controller can be time driven or event driven,  so  it  can  calculate  the  new  control  

signal  at  discrete  time  instants  with  a  constant sample  time  or  it  can  calculate  the  control  

signal  immediately  once  it  gets  a  new measurement from the sensor. In addition, the actuator 

can be time or event-driven. 

The consumer markets have already changed by the networks, mainly the wireless ones. Hand-

held computers  with  wireless  links  through  which  the  computers  can  communicate,  and  

sensors, such as cameras, are all around us. In the industries, the use of wireless technology is at 
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a very early stage, although it would bring obvious benefits, as wireless networking extends the 

possibilities of NCS.  

With increasing real-life applications for NCS, the real-time secured control is an important 

issue. This gives rise to a real-time optimization problem and security threat modeling 

requirement in NCS. Designing a fault-tolerant control (FTC) system for a large-scale complex 

NCS is still very difficult due to the large number of sensors and actuators spatially distributed 

on a network. Modifying the control part of the system depending upon the network delay 

behavior is one way of dealing with the problem. On the other hand, researchers in the field of 

wireless networking and communication are working to build new protocols which will give the 

flexibility to the system and make it time independent [9]. 

A gain scheduler middleware (GSM) is developed by Tipsuwan and Chow to alleviate the 

network time delay effect on the NCS. 

The new information technologies provide great opportunities in control education. The use of 

remote control labs to teach the behavior of control systems through a network is an application 

of this. In 2010, a new approach to create interactive networked control labs is described [3]. 

Two main software tools are used; those are MATLAB and Easy Java Simulations (EJS).  

1.4 THESIS OBJECTIVES     

Various  control  techniques  have  been  developed  for  network control  system but  a 

technique  to  actively  compensation of the  random  network  delay  is not available. Our 

objective is to apply Model Predictive Control (MPC) schemes to compensate the network delay 

in network control systems. In this thesis, different MPC techniques are to design and these 

techniques are applied to a networked control direct current (DC) motor and to simulate with 

TrueTime simulator to illustrate the effectiveness and robustness of the proposed delay modeling 

and control strategies. 

 

 

 



   Chapter 1 INTRODUCTION 

 

MODEL PREDICTIVE CONTROLLERS FOR A NETWORKED DC SERVO SYSTEM  Page 9 
 

1.5 CONTRIBUTION OF THIS THESIS 

The major contributions of this thesis are 

 Review of the Networked Control System (NCS). 

 Study of TrueTime Simulator and its application. 

 Application of Model Predictive Controller (MPC) toolbox to a networked DC Motor. 

 Design and application of Standard MPC for the networked DC Motor in TrueTime 

Simulator. 

 Design and application of Robust MPC for the networked DC Motor in TrueTime 

Simulator. 

 Analyzing the effectiveness of the designed MPCs in avoiding instability arising out of 

delays in the networked control plant (DC Motor). 

 

1.6 THESIS ORGANIZATION 

In Chapter 2, details regarding delays in NCS and different time delay compensation or 

control schemes are discussed. 

In Chapter 3, details about Model Predictive Control (MPC), DC Motor Modeling, MPC 

toolbox and application of MPC toolbox to DC Motor is discussed. 

In Chapter 4, studied about TrueTime Simulator, analysis and design of Standard MPC 

and implementation of this MPC in TrueTime Simulator. 

In Chapter 5, design and analysis of Robust MPC and implementation in TrueTime 

Simulator is discussed. 

In Chapter 6, the thesis is concluded and scope for future work is discussed. 
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2.1 INTRODUCTION 

In networked control system, there are mainly two problems. First one is the networked induced 

delays which are induced in the system due to communication channel. Second one is the data 

packet dropouts due to the node failure and data collision. This chapter contains detail about 

main issues in the networked control system. In a networked control system the main issue is 

delay. The effect of this delay is instability and system performance degradation of NCS. In this 

section many compensation techniques by which delay will compensate are also given. 

2.2 DIFFERENT DELAYS IN NETWORK CONTROL SYSTEM 

Since an NCS operates over a network, data transfers between the controller and the remote 

system will induce network delays in addition to the controller processing delay. Fig. 2 shows 

network delays in the control loop, where r, u and y are reference signal, control signal and 

output signal respectively, T is sampling period, and k is time index. Most of networked control 

methodologies use the discrete-time formulation shown in Fig.2.1 [4]. 

 

Fig.2.1. Block Diagram of Network Control System with Network Delays  

 

Network  delays[4]  in  an  NCS  can  be  categorized  from  the  direction  of  data  transfers  as  

the sensor-to-controller delay sc and the controller-to-actuator delay ca . The delays are 

computed as sc  t tcs sc , tca rs cet    where t sc  is the time instant that the remote system 

encapsulates the measurement to a frame or a packet  to  be  sent, cst  is  the  time  instant  that  

the  controller  starts  processing  the measurement in the delivered frame or packet, cet is the 
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time instant that the main controller encapsulates  the  control  signal  to  a  packet  to  be  sent, 

and rst is  the  time  instant that the remote system starts processing the control signal. In fact, 

both network delays can be longer or shorter than the sampling time T. The controller processing 

delay c and both network delays can be lumped together as the control delay t for ease of 

analysis. This approach has been used in some networked control methodologies. Although the 

controller processing delay c always exists, it could be neglected as it is small compared to the 

network delays.   

Waiting delay ( w ): The waiting time delay is the delay, of which a source (the main controller 

or  the remote  system)  has  to  wait  for  queuing  and  network  availability  before actually 

sending a frame or a packet out. 

Frame time delay ( f ): The frame time delay is the delay during the moment that the source is 

placing a frame or a packet on the network. 

Propagation delay ( p ): The propagation delay is the delay for a frame or a packet traveling 

through a physical media.  

Generally,  the  controlled  plant  in  NCS  is  assumed  to  be continuous-time,  and  thus  the 

actuator implements zero-order hold (ZOH) holding the last control until the next one arrives or 

until  the  next  sample  time.  Since  networks  are  used  for  transmitting  the  measurements 

from  the  plant  output  to  the  controller,  the  plant  has  to  be  sampled  (sample  time T),  

which motivates the use of discrete-time controllers. 
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    Fig.2.2. Timing diagram of network delay propagation 
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2.2.1 EFFECTS OF DELAYS 

The main problem occurred due to the delays in control loop are widely known to degrade 

system performance and destabilize of a control system by reducing the system stability margin. 

The closed loop proportional-integral (PI) control system with delays in Fig.2.4 is used to briefly 

illustrate system performance degradation by delays in the loop, where R(s),Y(s),U(s) and E(s) 

are the reference signal, output signal, control input and error signal in Laplace domain [4]. 

Where, ( ) ( ) ( )E s R s Y s                                                                              (1.1) 

The transfer function of the controller and the plant are described as given below:      

                                

( ( ))

( )

I
P

P
c

K
s

K
G s

s

 


                                                     

                                0.1701, 0.378P IK K                                                (1.2) 

                                

2029.826
( )

( 26.29)( 2.296)
PG s

s s


   

Where ( )cG s  is a PI Controller,  is the parameter to adjust PK  and IK , IK  is the integral gain, 

PK  is the proportional gain and ( )PG s  is the plant of DC Motor [16]. 

 

Fig.2.3. Closed loop control system with delays 

Solving the above closed loop system with  =1 and with various   where 2ca sc   
          

are constant.
 
As shown in Fig.2.4, system performance degrades with higher overshoot and 
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longer settling time when the delays 2ca sc     are longer and system becomes unstable 

with increasing delays.
 
 

 

    
Fig.2.4. Step response with respect to various   where 2ca sc   

 
are constant. 

There have been many studies to derive stability criteria for an NCS in order to guarantee that 

the NCS can remain stable in certain contain. 

2.3 TIME DELAY COMPENSATION 

The  time  delays  in  the  NCS  may  deteriorate  the  system  performance  and  cause  the  

system instability. Therefore, it is necessary to design a controller which can compensate for the 

time delays and improve the control performance of the NCS. 

Different mathematical, heuristic and statistical-based approaches are taken for delay 

compensation in NCSs. Several advanced techniques have been presented in literature [6] that 

compensate network delays and potentially enough to be used in critical real-time applications.  

The sensor to controller delay can be known when the sensors data is used by the controller to 

generate a control signal. In case of controller-actuator delay, the controller does not know how 

long it will take the control signal to reach actuator. So no exact correction can be made at the 

time of control calculation. 
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An estimator can be used to predict an un-delayed plant state and make it available for control 

calculation. The estimator must estimate all state of the plant using partial state measurements 

and also compensate for sensor delay. This can be implemented by either full state feedback or 

output feedback. 

In  the  NCS  environment  the  main  goal  of  the  control  system  is  to  maintain  Quality  of 

Performance (QoP) of the control system regardless of the delays in the network. The system 

should  be  robust  and  be  able  to  compensate  the  delay  induced  by  the  network.   

2.4 DIFFERENT TYPES OF TIME DELAY CONTROL SCHEMES 

The time delay compensation techniques are used to compensate the time delays causes in the 

feedback loop. Different types of time delay compensation schemes are given below.  

1. Model Predictive Controller 

2. Smith predictor 

3. PID controller 

4. Optimal controller 

5. Fuzzy controller 

6. Robust control 

7. Sliding mode controller 

8. Adaptive controller 

In addition to the above methods there are different network control approaches, different 

software, different platforms and systems are used to control the NCS. These are given below. 

2.4.1 Gain Scheduler Middleware: A gain scheduler middleware (GSM) is developed by 

Tipsuwan and Chow to alleviate the network time delay effect on the NCS. Conventionally, in 

order to control an application over a data network, a specific networked control or tele-

operation algorithm to compensate network delay effects is usually required for controller 

design. So the existing controller has to be redesigned or replaced by a new controller system. 

The replacement process is generally costly, inconvenient, and time consuming. Gain Scheduler 

Middleware [2] is a novel methodology to enable existing controllers for networked control and 

tele-operation. The proposed methodology uses middleware to modify the output of an existing 
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controller based on a gain scheduling algorithm with respect to the current network traffic 

conditions. This approach can save much time and investment cost by utilizing existing 

controller. 

2.4.2 Easy Java Simulations: In 2010, a new approach to create interactive networked control 

labs [3] is described. This is described by two main software tools that are MATLAB and Easy 

Java Simulations. MATLAB is a widely used tool in the control community, whereas Easy Java 

Simulations is a powerful tool, which is used to build interactive applications in Java without 

special programming skills. The remote labs created by this approach give to students the 

opportunity to face the effects of network delays on the controlled system and also to specify on 

the fly their own control algorithm. 

EJS is a platform to control NCS with externally connecting MATLAB/Simulink. EJS is a free 

software tool for rapid creation of applications in Java with high-level graphical capabilities and 

with an increased degree of interactivity. The applications created by EJS can be standalone Java 

applications or applets. The source files of the EJS applications are saved in a customized xml 

format. EJS is different from most other authoring tools in that EJS is not designed to make life 

easier for professional programmers but has been conceived for science students and teachers. 

EJS structures the application in two main parts, the model and the view. The model can be 

described by means of pages of Java code and ordinary differential equations or by connecting to 

external applications (such as MATLAB). The view provides the visualization of the application 

and also the user interface elements required for user interaction. These view elements can be 

chosen from a set of predefined components to build a treelike structure. Model and view can be 

easily interconnected so that any change in the model state is automatically reflected by the view, 

and vice versa. 
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3.1 INTRODUCTION 

Model Predictive Control (MPC) is a type of control in which the current control signal is 

determined such that a desirable output behavior results in the future. Thus we need the ability to 

efficiently predict the future output behavior of the system. This future behavior is a function of 

past inputs to the process as well as the inputs that we are considering to take in the future.  

All MPC systems are based on the idea of generating values for process model and other 

measurements.  In  MPC  structure  there  is  a  feedback  or  feed  forward  path  to  compute the 

process  measurements.  

There are different forms of MPC are available to make model predictive controller: 

 GPC(Generalized Predictive Control) 

 Standard MPC 

 Modified MPC 

 Robust MPC 

3.2 MODEL PREDICTIVE CONTROL STRUCTURE 

There are mainly three components are available in MPC structure 

1.  The process model  

2.  The cost function  

3.  The optimizer 

The information about the controlled process and prediction of the response of the process values 

according to the manipulated control variables are done by the process model. Then the error is 

reduced by the minimization of the cost function. 

In the last step various types of optimization techniques are used and the output gives to the input 

sequence for the next prediction horizon. The general structure of Model Predictive Controller is 

shown in Fig.3.1. 
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Fig.3.1. General Structure of Model Predictive Controller 

3.3 CHARACTERISTICS OF MPC 

The main features/characteristics of MPC are [17] 

 Moving horizon technique implementation with Control horizon, Prediction horizon and 

Receding horizon control concepts. 

  Performance based time domain formulation. 

 An explicit system model is used for prediction of future plant dynamics. 

 Constraints values can be taken in to consideration. 

3.4 ADVANTAGES OF MPC 

There are many advantages of MPC are available, due to which we prefer MPC as a controller in 

many applications. 

 Structural changes are available in this method 

 In this, we can predict how far we wish the future to be predicted for. 

 Also the number of parameters used to capture the future control trajectory can be 

predicted. 
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 In this tuning method is easy 

 We can handle unstable system and non-minimal phase by this method. 

 

3.5 APPLICATION OF MPC TO NETWORKED DC MOTOR   

There are various applications of MPC such as in spacecraft, vehicles, plant mainly in chemical 

plant and in servo mechanism. In this, MPC is applied to networked DC Servo system. 

MPC toolbox: Model Predictive Control Toolbox provides functions, an application, and 

Simulink
 
blocks for systematically analyzing, designing, and tuning model predictive controllers. 

We can set and modify the predictive model, prediction horizons, control, input and output 

constraints as well as weights. The toolbox enables us to diagnose issues that could lead to run-

time failures and provides advice on changing weights and constraints to improve performance 

and robustness.  

The MPC control strategy was simulated using MPC toolbox which is a MATLAB-based 

toolbox. The Cost function is given as 

 

Where      

      = number of controller sampling intervals in the scenario 

       = number of controlled outputs 

      = number of manipulated variables 

       = set point (or reference) tracking error i.e. the difference between output j and its set point 

at time step i 

        = deviation of manipulated variable j from its target value at time step i 

        = change in manipulated variable j at time step i 

        = performance weight for output j 

        = performance weight for manipulated variable j 

        = performance weight for change in manipulated variable j 
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3.6 DC MOTOR MODELLING 

 
The equation for the electrical circuit of the DC motor is  

                 

a
a a b

di
e L Ri K

dt
                                                                          (2.1) 

and the mechanical torque is 

            l a

d
J B T Ki

dt


                                                                    (2.2) 

where ae  is the armature input voltage, L is the armature inductance, 
ai is the armature current, 

R is the armature resistance, J is the system moment of inertia, B is the system damping 

coefficient, K and bK  are the torque constant and the back emf constant, respectively, 
lT  is the 

load torque and ω is the angular velocity of the rotor. The DC motor has a driven load that can be 

a robot arm or an unmanned electric vehicle. Using u = ae
 
as the control signal for the DC motor 

and introducing two state variables, the armature current and the angular velocity of the rotor, 

that is 

                     1 ax i                                                                                             (2.3a) 

                    2x                                                                                              (2.3b) 

The dynamics of the DC motor can be described by the following continuous-time state space 

description 

 ( ) ( ) ( )c cx t A x t b u t                                                                               (2.4a) 

            ( ) ( )cy t C x t                                                                                          (2.4b) 

Where 1 2( ) ( )Tx t x x is the system state, ( )u t  is the system input, 2( )y t  is the system 

output, 

b

c

KR

L L
A

K B

J J

 
  

  
  
 

, 

1

0
cb L

 
 
 
 

and 
1 0

0 1
cC

 
  
 

are the system matrices. 
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3.7 RESULTS AND DISCUSSION 

The DC motor control system was simulated using Model Predictive Control (MPC), a simulator 

developed in MATLAB where the values of the parameters used in simulations are given in 

Table 1. Here DC motor control system was simulated using MPC with considering network 

delay effects.  

Table.1. DC Motor parameter values 

Symbol Value Measure unit Description 

J         
642.6    

       

2kgm   
inertia 

L         
3170              H inductance 

R           4.67           Ω terminal resistance 

B         
647.3       N m s/rad damping coefficient 

K 
        

314.7         N m/A torque constant 

  
        

314.7        V s/rad back-EMF constant 

lT  
             0        N m load torque 

min

ae   
          −15         V minimum armature voltage 

max

ae   
            15          V maximum armature voltage 

min

ai   
           −5          A minimum armature current 

max

ai  
             5          A maximum armature current 

min

   
         -400         rad/s minimum angular velocity 

max

   
          400         rad/s maximum angular velocity 

 

With the application of MPC toolbox to the DC Motor, the Fig.3.2 shows the Angular Velocities 

with respect to various delays   where 2ca sc     are constant. The reference taken is 

staircase signal. In this figure, it is shown that with MPC, the reference is reached in a short time 

and with very less overshoot for the first delay. For the second and third delay, performance 

degrades with increasing settling time with increasing delays but the system is stable using MPC 

bK
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with all the delays taken which is given in this figure, but the system is unstable without MPC 

for these delays shown in Fig.3.3. 

Fig.3.2. Angular Velocities with respect to various delays with reference to staircase signal using 

MPC toolbox 

 

Fig.3.3. Angular Velocities with respect to various delays with reference to staircase signal without 

any controller 
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The result shown in Fig.3.4 shows the Armature Currents of DC Motor with respect to different 

delays without any controller with reference to staircase signal. In this figure, it is shown 

degradations of performance and overshoot of system is increasing with increasing delays. 

 

Fig.3.4. Armature Currents with respect to various delays with reference to staircase signal 

without any controller 

After applying MPC controller to this, the figure shown in 3.5 shows that Armature Currents 

reached the reference in a short time with less overshoot compared to without MPC and in above 

both cases, the time delay is compensated with better performance with MPC. 
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Fig.3.5. Armature Currents with respect to various delays with reference to staircase signal using 

MPC toolbox 

In above Fig.3.2 to Fig.3.5, the results shown is taken with respect to various delays   where 

2ca sc     are constant. 
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4.1 DESIGN OF STANDARD MPC 

After conversion of Continuous model given in equation (2.4) to Discrete model 

( 1) ( ) ( )m m m mx k A x k B u k  
                                                                              (3.1)

 
( ) ( )m my k C x k

                                                                                                   (3.2) 

( 1) ( ) ( ( ) ( 1)) ( ( ) ( 1))m m m m m mx k x k A x k x k B u k u k       
 

                            ( 1) ( ) ( )m m m mx k A x k B u k                                                 (3.3)     

Where 

( 1) ( 1) ( )m m mx k x k x k    
 

( ) ( ) ( 1)m m mx k x k x k   
 

( ) ( ) ( 1)u k u k u k     

                        ( ) ( ) ( )
T

T
x k

mx k y k  
                                                        (3.4)

 

Also    

( 1) ( ) ( ( 1) ( )) ( 1)m m m m my k y k C x k x k C x k       
 

                       
( ) ( )m m m m mC x k C u k     

                                                      (3.5) 

From (3.3) and (3.5), 

( 1) ( )
( )

( 1) ( )1

T

mm mm

m m
m m

Bx k x kA
m u k

C By k y kC A

O        
       

        

                                (3.6a) 

 
( )

( ) 1
( )
m

m

k
y k O

y k

x 
  

 
                                                                                  (3.6b) 



Chapter 4 DESIGN AND ANALYSIS OF STANDARD MPC FOR NCS 

 

MODEL PREDICTIVE CONTROLLERS FOR A NETWORKED DC SERVO SYSTEM Page 29 
 

Where   0 0 0mO    

Equation (3.6) is called augmented model. 

The augmented model is calculated from the discrete model. 

Assuming that at the sampling instant 
ik , 

ik > 0, the state variable vector ( )ix k  is available 

through measurement, the state  ( )ix k provides the current plant information. The future control 

trajectory is denoted by 

, ( 1)..., ( 1)i i i cuk u k u k N     
 

Where cN  is called the control horizon. 

Let us define  

[ ( ), ( 2 ),... ( )]
T

Y
i i i i i P iy k k y k k y k N k     

                                                      (3.7)
 

[ ( ), ( 1),... ( 1)]
T

U
i i i cu k u k u k N       

                                                      (3.8) 

Where in the single-input and single-output case, the dimension of Y is pN and the dimension of 

ΔU is cN . 

We can write compact matrix form as 

( )iY Fx k U                                                                                                        (3.9) 

Where, 
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2

23

1 2

0 0 . . . 0

0 . . . 0

. . . 0

. ., ..

. ..

. ..

. . .p p p cp
N N N NN

CA CB

CAB CBCA

CA B CAB CBCA

F

CA B CA B CA BCA
  
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   
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   

     
   
   
   
   
     

 

Assuming that the data vector that contains the set-point information is 

 1 1 . . . 1 ( )T
s iR r k

 

The cost function is defined as 

( ) ( )T T
s sJ R Y R Y U R U    

                                                                            (3.10) 

Where   ( ) ( )T
s sR Y R Y  is objective of minimizing the errors and TU R U  is consideration 

given to the size U . 

            R


 = diagonal matrix 
c cw N Nr I   

             wr   Tuning parameter. 

To find the optimal ΔU that will minimize J, by using (3.9),  

2 ( ( )) 2( ) 0T T
s i

J
R Fx k R U

U


        

  

from which we find the optimal solution for the control signal as 

1( ) ( ( ))T T
s iU R R Fx k     

                                                                             (3.11) 

And
 

   
1

[10...0]
p

T T
y N sK R R  



 
                                                                           (3.12)
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1[10...0] ( ) ( )
p

T T
mpc NK R F   

                                                                          (3.13)
 

mpc x yK K K                                                                                                        (3.14) 

Equations (3.11) to (3.14) are implemented through MATLAB and TrueTime Simulator and the 

desired outputs are obtained, which are discussed in next sections. 

4.2 SIMULATION ENVIRONMENT 

Using the values of the parameters given in Table.1 and the state space model given in equation 

(2.4) for DC Servo system, the MPC control strategy was simulated using TrueTime simulator. 

4.2.1 TRUETIME SIMULATOR 

 TrueTime Simulator is a very powerful MATLAB-based network simulation toolbox that can 

effectively simulate real-time NCSs. There are two primary Simulink blocks in the TrueTime 

package: the computer block and the network block, both being easy to customize in order to 

obtain a practical NCS. 

In the designed NCS simulation platform (see  Fig.4.1 and Fig.4.2), the sensors, controller and 

actuator are implemented using computer blocks and the Ethernet communication network is 

realized using a network block in which the Media Access Control (MAC) protocol is specified 

as Carrier Sense Multiple Access with Collision Detection  (CSMA/CD). 
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Fig.4.1. TrueTime Simulink diagram with interfering node 

Fig.4.1 shows the TrueTime Simulink diagram with interfering node where the controller used is 

MPC Controller and Fig.4.2 shows TrueTime Simulink diagram with constant delay.       

 

Fig.4.2. TrueTime Simulink diagram with constant delay 
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4.3 RESULTS AND DISCUSSION 

Fig.4.3 shows the output of Angular Velocity and Armature Current without any interfering node 

 

Fig.4.3. Angular Velocity and Armature Current without interfering node  

and Fig.4.4 shows the output with the percentage of the network bandwidth occupied by the 

interfering node was set to 30% and also the simulation was done by taking bandwidth 10% and 

20%.It is observed that the outputs are very less effected up to 39% of network bandwidth 

occupied by interfering node. But when the bandwidth occupied is increased to 40% (shown in 

Fig.4.5) and more the system outputs become unstable.  

 

Fig.4.4. Angular Velocity and Armature Current with 30% of network bandwidth occupied by 

interfering node 
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Fig.4.5. Angular Velocity and Armature Current with 40% of network bandwidth occupied by 

interfering node 

We also simulated the model by giving constant delay in place of interfering node (shown in 

Fig.4.2). 

 

Fig.4.6. Angular Velocity and Armature Current with constant delay  =0.0232 
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The Fig.4.6 shows the Angular Velocity and Armature Current with constant delay  =0.0232, 

where the overshoot is increased and by increasing delay that is  =0.0627 which is shown in 

Fig.4.7 the overshoot is increased and it is stable but it is unstable with close loop system with 

the same delay without MPC. 

 

Fig.4.7. Angular Velocity and Armature Current with constant delay  =0.0627 
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5.1 INTRODUCTION 

Robust MPC is a controller where the MPC is designed by solving Linear Programming and 

taking uncertainties or disturbances and constraints into consideration. It compensates the time 

varying delays introduced by the communication networks and disturbances. 

5.2 DESIGN OF ROBUST MPC 

Consider the discrete time constrained non-linear system of the form 

1 ( , )k k k kx x u w  
 

        
: ( ) ( ) ,k k k kf x g x u w  

      
k 

                                                                      (4.1) 

Where 
n

kx  X
 

is the state, 
m

ku  U  is the control input and
n

kw  W  is an 

unknown disturbance at the discrete-time instant k. , ,f g  are arbitrary nonlinear functions with 

(0,0,0) 0, (0,0) 0, (0) 0f    and (0) 0g  .  

Let W  be a convex hull of the vertices ew , 1,...,e E  and let , ,e

k k  be optimization 

variables associated with each vertex ew . Let 1( ,..., , )E
k k kJ     be a strictly convex radially 

unbounded function and let 1( ,..., , ) 0 0E eJ       for all 1,...,e E  and 0  and

(0,...0,0) 0.J   

Problem 1: At time k   measure the state kx  and minimize the cost 1( ,..., , )E
k k kJ    over 

1, ,..., E

k k ku  
 
and k .  

In this, the cost function to be minimized is given as
 

1( , , , ) : ( , ) ( , )k k k k MPC k k k kJ x u J x u J      

                           : ( ( ) ( ) ) ( , )x k k k x k k k kP f x g x u Q x Ru J  
  

                           (4.2) 
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Where the cost optimization variables 1: ,...,
T

E
k k k   

 
and k  is defined as

( , ) :k k kJ M   


   , where   is full column rank matrix of appropriate dimensions and 

0M  .The matrices xP , xQ and R are full-column rank matrices of appropriate dimensions 

2 2 20.5 , 0.1 , 0.2, 0.1x xP I Q I R I      and 0.1M  . 2I  is the identity matrix of dimension 2. 

The cost function (4.2) is subjected to the following constraints 

min max

ku u u 
 

ku u u    
 

min max

1kx x x 
 

Problem 1 which includes minimizing the cost function (4.2), can be reformulated as the  

problem given below.
 

Problem 2: 

      
,

1 2 3 4

,
min ( )
k k k

k k k k
u  

   

 

Subject to 

 1[ ( ( ) ( ) )] , 1,2...x k k k j x k kP f x g x u Q x j n


     

                                                (4.3a) 

2 ,k kRu 

                                                                                                                    (4.3b) 

3 ,k k 

                                                                                                                    (4.3c)                            

4
k kM 

                                                                                                                      (4.3d)  

Problem 2 is a linear program, all constraints are linear in the unknowns , ,k k ku    and
1,2,3,4
k . 
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The algorithm for this MPC can be summarized as follows; 

Algorithm: At each sampling instant k  , 

Step 1: Measure the current state kx . 

Step 2: Solve the Linear Programing problem 2 and peak feasible control action *( )ku x . 

Step 3: Implement *:ku u  as control action. 

This algorithm is used for designing of Robust MPC. 

5.3 RESULTS AND DISCUSSION 

After applying this Robust MPC to the DC Servo system given in section 3.6 by adding an extra 

affine term 

0

c l
f T

J

 
 
  
 

 to the state space model and the values of the parameters given in Table.1 

using TrueTime Simulator shown in Fig.5.1, the desired output obtained is shown in Fig.5.2. 

 

Fig.5.1. TrueTime Simulink diagram 
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Fig.5.2. Angular Velocity with reference to staircase signal 

This figure shows that the desired output that is angular velocity is reaching the reference input 

in a short time with very less overshoot that is negligible. 
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6.1 CONCLUSIONS 

This thesis presents study on Network Control System and different type of delays associated 

with it and also different Network Control Approaches, different Software, Platforms and 

Systems used for NCS. As observed, communication network introduces time delays in the 

control loop. These delays have effect on system stability and performance. 

The objective of the present work is to study delay compensation schemes in the feedback loop. 

Here different Model Predictive Control schemes have designed and studied to compensate the 

network delays in network control systems. 

In Chapter 4, the Standard MPC is designed and in Chapter 5, Robust MPC is designed and 

analyses are done. From these, it is concluded that Standard MPC and Robust MPC both 

compensating the delays but in Standard MPC there is some overshoot where as in Robust MPC, 

overshoot is very less which is negligible compare to Standard MPC .The Robust MPC is 

compensating the delays along with disturbances and constraints. 

Also studied about TrueTime simulator and by using this TrueTime simulator the MPCs are 

simulated and observed the outputs. 

6.2 SUGGESTIONS FOR FUTURE WORK 

In this thesis, Model Predictive Controllers are designed and applied to DC motor with the help 

of TrueTime simulator which is a virtual model of real time network controlled system but it is 

not applied in real time environment. Future work in this direction would involve application of 

MPC in real time. 
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