Analysis and Implementation of
Admissible Heuristics In

8 Puzzle Problem

Debasish Nayak (110cs0081)

N4

% <
{STTrTe 2
[ROURKELA]

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela - 769008, India

1

Analysis and Implementation of
Admissible Heuristics in

8 Puzzle Problem:

Thesis submitted in

May 2014
to the department of
Computer Science and Engineering of

National Institute of Technology Rourkela

in partial fulfillment of the requirements
for the degree of
Bachelor of Technology
in
Computer Science and Engineering
by

Debasish Nayak

[Roll No: 110cs0081]

Under the guidance of

Prof. B. Majhi

Declaration of Authorship

| hereby declare that all the work contained in this report is my
own work unless otherwise acknowledged. Also, all of my work
has not been previously submitted for any academic degree. All
sources of quoted information have been acknowledged by
means of appropriate references.

Debasish Nayak

[ROURKELA]

Computer Science and Engineering
National Institute of Technology Rourkela

Rourkela-769 008, India. www.nitrkl.ac.in

Certificate
This is to certify that the project entitled Analysis and

Implementation of Admissible Heuristics in 8-Puzzle Problem
by Debasish Nayak is a record of his work carried out under my
supervision in partial fulfillment of the requirements for the
award of the degree of Bachelor of Technology in Computer

Science and Engineering.

Bansidhar Majhi

Acknowledgment
| have taken a lot of deliberations in this venture. But it wouldn't

have been conceivable without the help and backing of numerous
people. | want to enlarge my true appreciation and thank them.

| take this opportunity to express my profound gratitude and deep
regards to my guide Prof. B Majhi sir for his exemplary guidance,
monitoring and constant encouragement throughout the course of this
project. The blessings, help and guidance given by him time to time
shall carry me a long way in the journey of life on which | am about to

embark.

| am obliged to all the professors of the Department of Computer
Science and Engineering, NIT Rourkela for instilling in me the basic
knowledge about the field that greatly benefitted me while carrying out

the project and achieving the goal.

Finally, | dedicate the thesis to my parents for their love, support and

encouragement without which this would not have been possible.

Debasish Nayak

Abstract

N-puzzle problem has been one of the basic problem since the beginning of
artificial intelligence. The most popular version of n-puzzle among people is 8-
puzzle problem. It consists of an area divided into 3x3 grid containing 8 numbered
(to identify) tiles and one empty grid. We are given an initial state and we have to
reach the goal state which is also specified. In this project, we have used various
informed search methods like a*algorithm, ida* algorithm to solve the puzzle.
Various heuristic involved in the informed search like number of misplaced tiles,
Manhattan distance were analyzed; Manhattan distance being one of the most

popular ones. Drawbacks of the heuristics are mentioned and an improvement in

Manhattan distance heuristic is implemented.

Contents

Declaration of AUthOrship....ccceeeiiiiiiiiiiiienenennnennnierecsecseceececcceccns
0= 3 ot =
Acknowledgment.......cccoieeeiiiiiiiiiiiiiiinnneeeeetetecececsssnnnncsssssssccenns
Y 1] - Vo
List Of tables..cccciiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinticieiosnnscosnnsconnnss

0 13X 4 T Lot o T o T
1.1 8 Puzzle (The problem).........cooiiiiiiiii e,
1. 20 ECtIVE. . e
1.3Thesis Outline. ... e

2. LiteratUre ROVIBW. e etereereeeeeeeereeeseosessessesssssssssssseasssssssssssssssons

3.Methods and Proposed WOrkK.......cciiiieiinnneeneeieieiecessssnnnsssnssssscaes
3.1Search Spaceand Search Trees..........cooiiiiiiiiiii i,
3.2Informed Search. ...,

3.2 0 HeUrIStICS. .ot
3.2.2 Algorithms of Informed Search.................ccooiiiiiiin..
3.2.2.1 Astar(A*) Algorithm...............cciiiii i
3.2.3 Admissibility of an algorithm.......................l
3.3 Detecting Unsolvable Puzzles.............coiiiiiiii .
3.3.10dd Board Size (when V (n+1)isodd)............ccoovnvnnnn...
3.3.2 Even board size (when \ (n+1)is even)............cc.ccoo.....

4. Implementation.......ccccviiiiiiiiiiiiiieneeeitttttteeesesssnnsssssssscceccsssnnns
4.1A* algorithm asimplemented. ...
4.2 IDA*(Iterative Deepening A*). ...ttt
4.3 Solvability Check.........coooi
R o =N |] o ol U
4.4.1 Number of Misplaced Tiles........cccoevvviiiiiiiiiii..
4.4.2 Sum of Manhattan Distances................ccooiiii .
4.5 Algorithm for Calculating the Linear Conflict

7

10
10
10
10

11

13
13
15
15
16
16
19
20
22
23

24
25
26
27
28
28
29
32

Heuristic...............

4.7 Comparing the Performance of the Three Heuristics................. 35
4.8 SCrEENSNOTS. ...ttt e, 36
4.9 Dominating HeUriStiC.ooviiin i, 39
B.CONCIUSION.... ..ottt et s e e b e e s b ae e sabeeereas 41
Bibliography. ... 42

List of Figures

3.1 Fig.1 Search tree for 8-puzzle............cooiiiiiiiiiiiiiia, 14
3.3 Fig.2 Problem with path length 31..................ooii, 20
3.3 Fig.3 Unsolvable puzzle examples.............cooiiiiiiiiiiiinin, 21
3.3.1 Fig.4 Unsolvable puzzle examples.............coccooiiiiiiiiiinin 22
3.3.2 Fig.5 Even board size solvability........................o 23
4.3 Fig.6 Solvability Check screenshot.............c..coooiiiiiiai, 27
4.4.1 Fig.7 Number of misplaced tiles...............c....oooiiiiiial. 28
4.4.2 Fig.8 Sum of Manhattan distance....................coooiiiiiin.. 29
4.4.2 Fig.9 Solving using Manhattan distance............................... 30
4.4.2 Fig.10 Shortcomings of Manhattan distance........................... 31
4.8 Fig.11 Implementation of missing tile heuristic....................... 36
4.8 Fig.12 Sum of Manhattan distance heuristic............................ 37
4.8 Fig.13 Removing Linear Conflict Heuristic............................. 38
4.9 Fig.14 Dominating heuristiCs............cooeiiiiiiiiii e, 40
List of tables

4.7 comparing the 3 heuristics............oooiiiiiiiii

Chapter 1

1.Introduction

1.1 8 Puzzle (The problem)

The 8-puzzle is a sliding tile puzzle that is made up of a square structured frame
area containing tiles in random/irregular order with one tile missing. It is a smaller
version of the 15-puzzle (also called Gem Puzzle, Boss Puzzle, Game of
Fifteen, Mystic Square and numerous other names) . 8-puzzle is basically a frame
area separated into 3x3 grids containing 8 tiles and one void grid. The tiles are
marked in some way so as they can be identified. The tiles are mostly numbered
from 1 to 8. We are given with an initial configuration of the tiles. A desired final
configuration is also given. We have to reach the final state by sliding the tiles

using the empty grid present.

1.20bjective

Solving the 8 puzzle using A*(a star) and IDA* algorithm. Various heuristics
were used and the shortcomings of each were listed. An improvement in the

existing Manhattan distance heuristic is implemented.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 discusses about the literature review
while the various methods and proposed work is outlined in Chapter 3. Chapter 4
shows the implementation and results of the proposed work. Finally Chapter 5

concludes the entire thesis and gives a broad overview of the project.

10

http://en.wikipedia.org/wiki/Sliding_puzzle

Chapter 2

2.Literature Review
N-Puzzle(invention)

The puzzle was invented by Noyes Palmer Chapman, a postmaster in Canastota,
New York, who indicated it to friends and companions, as right on time as 1874, a
previous puzzle consisting of 16 grids that were to be assembled in 4 rows of equal
length, each row adding to 34. Copies of the enhanced Fifteen Puzzle went
to Syracuse, New York by way of Noyes' son, Frank, and from that point, by
means of sundry connections, to Watch Hill, RI, and lastly to Hartford
(Connecticut), when pupils in the American School for the Deaf started fabricating
the puzzle and, by December 1879, offering them both provincially and in Boston,
Massachusetts. Demonstrated to the puzzle, Matthias Rice, who had a fancy and
extravagant carpentry business in Boston, began producing the puzzle in December
1879 and persuaded a "Yankee Notions" fancy products merchant to offer them
under the name of "Gem Puzzle "so is another name of the puzzle. In January
1880, Dr. Charles Pevey, a dental specialist in Worcester, Massachusetts, earned

some attention by offering a monetary reward for a solution to the 15 Puzzle.

The puzzle became popular in the U.S.in February 1880, Canadain March,
Europe in April, yet that rage had about dispersed by July. It is thought the
Japanese were not acquainted with the puzzle until 1889.

Noyes Chapman had applied for a patent on his "Block Solitaire Puzzle" on

February 21, 1880. Nonetheless, that patent was rejected, likely in light of the fact

11

http://en.wikipedia.org/wiki/Canastota,_New_York
http://en.wikipedia.org/wiki/Canastota,_New_York
http://en.wikipedia.org/wiki/Magic_square
http://en.wikipedia.org/wiki/Syracuse,_New_York
http://en.wikipedia.org/wiki/Watch_Hill,_RI
http://en.wikipedia.org/wiki/Hartford
http://en.wikipedia.org/wiki/American_School_for_the_Deaf
http://en.wikipedia.org/wiki/Boston
http://en.wikipedia.org/wiki/Worcester,_Massachusetts
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Canada
http://en.wikipedia.org/wiki/Europe

that it was not sufficiently different from the August 20, 1878 "Puzzle-Blocks"
patent (US 207124) granted to Ernest U. Kinsey.

From the beginning days of artificial intelligence the n-puzzle problem has been a
standard problem as a certain amount of intelligence helps when trying to find a
solution. Also the efficiency of the system can be measured using computing the
time and space taken to solve the 15-puzzle problem. Various algorithms were
designed and have been implemented in the computer for providing optimal

solutions using lesser space possible.

12

Chapter 3

3.Methods and Proposed Work

3.1 Search Space and Search Trees
State space search:

Itis a procedure used in computer science, especially in the field of artificial
intelligence where progressive designs or states of a given state are considered,
with the objective of discovering a goal and the path to goal state which has the
required configuration. Problem is often modeled as astate space,
a set of states that into which the problem can be configured. A graph is formed
from the set of states where there is a connection between two states if there is

an operation that can transform the current state to the other state. Important terms

are:-
e A goal state test: Test of a state for equivalence with the goal state.
e A successor function (transition model): Given a state and action,
generate successor state(child node).
Variants:

* Finding a path vs. an optimal path (if each step has a different cost i.e. a “step-

cost™)

* Goal is already specified, we only have to find a path or optimal path — also

called Route planning

» Path doesn’t matter, only the goal has to be found. — 8-puzzle, N-queens.

13

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/State_space
http://en.wikipedia.org/wiki/Set_(mathematics)
http://en.wikipedia.org/wiki/Graph_(mathematics)

Search trees

A search tree:

* Root which is the Start state .

* Child = successor state.

* Edges = actions and step-costs (may be specified alongside edges)

* Path from start state to a node is a “plan to get to that state” .

For most problems, the whole tree can never actually build as the tree would be
very huge consuming high amount of time and memory.

Trivial search methods like depth first search(DFS), breadth first search(BFS)
apply the search tree techniques and are called uninformed search methods.

Search tree for a 8-puzzle problem

[7] 2] 3]
Al4|6|5
1] 8|0
down _— T right
Step 1 e T~ i
[7]2] 3 [7] 2[3]
B4 6|0 C;ybg
1| 8] 5] [1O} 8]
up right
Step 2) dnwn“
2 7| 2{0 70 2|3
Dl 4 (1"5 E|l4 (1_ 3| "il" 6 '{:1 Blank tile
1] 8]l 1/ 8]5 1| 8|5 ~
Step 3 “:‘ "jé"“ __' The last tile moved
71 2[3] [7]Of2
Gl 4| 6|0 H| 4| 6| 3
1| 8]s] [a]8]s

Fig 1.Search tree for 8-puzzle

14

3.2 Informed Search
All of the trivial search algorithms (BFS,DFS etc.) are examples of clueless

(uninformed) search, where the procedure has no concept of the “right direction”
towards goal . So it aimlessly staggers around until it happens to expand the goal
node just by chance. We can improve much if there is a notion of which is the right
way to go. A way to compute this kind of information and provide it to the
algorithm is by using a heuristic, which determines the cost to get from any given
state to a goal state. It is specified at the beginning of the informed search and the

computation for the give start state is done.

3.2.1 Heuristic
» A Heuristic is a function that, when computed for a given state, returns a

value that estimates the demerit of a given state, for reaching the goal state.
Higher the value more is the estimated path length to the goal.

» Currently, the most used heuristic is the sum of Manhattan block distance.

» Also, it is possible to assign a weight to the heuristic, which is a factor
applied to the h-value during the search.

» All types of search engines do not support this feature. The number of states
to be generated can be cut-off at a given value, resulting in the search being
abandoned at that point.

» In constructing heuristics, we regularly face a tradeoff between the exactness

(accuracy) of a heuristic and how expensive it is to compute it.

15

3.2.2 Algorithms of Informed Search

3.2.2.1 A star(A*) Algorithm
It is a state space search algorithm. It is an algorithm that is regularly used

searching of path and traversing of a graph, to plot an optimal path traversable
between states (nodes). As it is efficient and accurate, it revels in boundless
utilization. The A* algorithm integrates characteristics of uniform-cost search and
heuristic based search to proficiently find optimally efficient path. A* algorithm is
a best-first search algorithm in which the cost linked to a state is

f(n) = g(n) + h(n),where

» g(n) is the cost of the path traversed from the initial state to node n.

» h(n) is the estimated path-cost or the heuristic function cost from node n to

the goal node.

» Thus, f(n) shows the lowest total cost possible for any path leading through

node n to goal state when h(n) is the estimated remaining path-cost.

» If f value of various nodes of equal, such a stalemate situation is settled by

taking the node with inferior heuristic estimate h(n) values(node ordering).

» The procedure continues till the node to be expanded is a goal node.

16

Efficiency of A*

A* is the fastest search algorithm. There is no algorithm that can find a

solution expanding lesser number of nodes than a* for a given heuristic.
How quick is the algorithm?
» relies upon the heuristic function chosen.

« If it is a not at all useful heuristic (h(n)evaluates to zero or negligible
value compared to the path length), the algorithm degenerates to a

uniform cost search algorithm. (simple search like dijkstra’s algorithm).

« Ifitis an ideal heuristic function, there is no real search, it is just a walk

through the tree along the shortest path to the goal state.

» Even if we can find an ideal heuristic, finding it would require finding the
solution first. We always use heuristics that are between the ideal and the
useless case. The length of the path and the time taken to find the solution

depends on the exactness of the heuristic.

» A* algorithm expands the lowest number of nodes than any other search

algorithm for a given heuristic.

» Some experimental results reported in Russell & Norvig (2002):
A* with heuristic of sum of Manhattan distances performs up to 36,000
times better than a classical uninformed search algorithm (such as dijkstra’s

algorithm).

17

ANALYSIS of A*
» A* is optimally efficient. i.e. if there exists a path from start to goal node

then a* guarantees to find the optimal path.
» Itis complete i.e. if a solution exists then it is found.

» Complexity-As the algorithm is optimally efficient so other algorithm can

guarantee to examine fewer nodes. However
« Time complexity —exponential O(b”d)
where b=branching factor
d= depth of the tree.
unless h(n) is logarithmically accurate. The condition to be satisfied is
IN(n) — h’(n)|<=O(log(h’(n))
Here h is our estimate and h’ is the optimum path.
In real world all heuristics have a proportional error.
. space complexity- exponential O(b”d)
It stores all the nodes generated in the open list.

So we run out of memory even before time possesses a problem.

18

SHORTCOMINGS OF A*

» The primary drawback of A* algorithm as in case of most best-first search is

its space requirement.

» Since the algorithm saves an entire open list in any case, A* algorithm is
severely space-restricted in practice, and so is of very less practically use

than other best-first search algorithms in present machines.

» For instance, it runs effectively when implemented for the 8- puzzle, while it

accessible memory is exhausted in few minutes for the 15 puzzle.

3.2.3 Admissibility of an algorithm

» A graph search algorithm is admissible if it always provides a least cost

path, i.e. an optimal solution, if a solution exists at all.

» However, an informed or educated search algorithms is admissible only if

the heuristic used h(n) never overestimates the path-length to the goal state.

» For instance if a heuristic h’ is known which always evaluates to the same
value as that of the distance to goal-state, then for a heuristic h to be

admissible it’s computed value must be less than or equal to h’.
(A star)’s admissibility ...

P A*is admissible only if the heuristic we used h(n) never over-estimates the

path-length to the goal.

19

3.3 Detecting Unsolvable Puzzles

>

There are 9!(362880)(permutation of 9 grids and 8 tiles) total states

possible.

The 8-puzzle if solvable can be solved in less than 31 single-tile moves or 24
multi-tile moves for every configuration of puzzle. (here for 8 puzzle 2 tiles

moved at once).

The lengths of optimal solutions ranges from 0 to 80 single-tile moves or 43

multi-tile moves for the 15-puzzle,.

For higher versions of the n-puzzle, the solution may be found easily, but the

generally quest is to find the shortest solution which is NP-hard.

The state given below represents a worst case: transforming this state into
the state on right (considered goal state) requires at least 31 actions, which is

the maximum path length possible.

Fig.2 Problem with path length 31

» Only half of the initial positions of the 8-puzzle are solvable for a given goal

state. There are 181440(9!/2) states possible from a given state

20

D All the initial board configurations cannot be transformed to goal board by
an order of possible moves. Example is from the states in left to states in

right.
4 5 6 4 5 6
8 7 I 8

INENENEE ENENENDE
5 6 7 8 5 6 7 8

9 10 11 12 9 10 11 12
13 15 14 13 14 15°

Fig.3 Unsolvable puzzle examples

Board configurations are classified into two parts based on their reachability to the
goal state:-

» (i) Board configurations that can lead to the goal configuration.

» (ii)Board configurations that cannot lead to the goal configuration..

21

A board can be classified into one of the two parts without trying to find the
solution. One important term is-

Inversion — It is any pair of numbered tiles m and n where m < n but m appears
after n when reading the board conf. in row-major order (row 0, followed by row 1,

and so forth).

3.3.10dd Board Size (when / (n+1) is odd)

» An allowed move changes the inversions count by an even number.

» Thus, if a board has an odd number of inversions, then it cannot lead to the
goal board by a sequence of legal moves because the goal board has an even

number of inversions (zero).

The converse is also true: If a board has an even number of inversions, then

it can lead to the goal board by a sequence of legal moves.

INENEE [NENEE IEEEES
4 2 5 4 5 4 5

7 8 6 7 8 6 7 8 6
Inv=4 inv=2 inv=2

4 5 6

/ 8

Inv=0 goal state reached.(defined earlier)

Fig.4 Counting number of inversions for odd board size

22

3.3.2 Even board size (when V (n+1) is even)
» If the board size Nis an even integer, then the parity of the number of

inversions is not invariant.

» However, the parity of the number of inversions plus the row of the blank

square is invariant.
» Each legal move changes this sum by an even number.

» If the sum is even, then it cannot lead to the goal board by a sequence of
legal moves; if this sum is odd, then it canlead to the goal board by a

sequence of legal moves.

Il-Elﬂ EEENED EEENE
6

5 il [N 70 S 5 bl 48

9 a 7 b 9 a b 9 a b

d e |(f ¢ d | el e d e f |¢
Blank=1,inv =6 blank=2 ,inv=3 blank =2 ,inv=3 Sum=7
sum=5 sum=5

Fig.5 Even board size solvability

23

Chapter 4

4.Implementation

The A* and the IDA* algorithm have been implemented.

Heuristics used are number of misplaced (out of order) tiles and sum of Manhattan

distance.

The flaws of the heuristics are discussed and an improvement in Manhattan

heuristic is done.
Performance of all the 3 heuristics used was compared.

Solvability check is implemented which prevents the program into going to run
time error due to lack of memory when an unsolvable is generated as the puzzle is
generated by using rand() function. It also prevents the time of the system in which

it tried to solve the unsolvable puzzle.

All the implementations are done in ¢ programming language. The screenshots of

the output are included for all the heuristics.

24

4.1A* algorithm as implemented

There are two list maintained OPEN and CLOSED. This is to ensure a particular
state does not get expanded more than once.

CLOSED: contains already expanded nodes.
OPEN: nodes on the frontier of the search tree.
Initially CLOSED is blank and OPEN has only the start node.
OPEN = <s,nil> nodes and paths lengths are represented by lower case alphabets.
Algorithm: a star
1. while OPEN contains a node do{
delete from OPEN the node <j,p> with lowest f value.
place <j,p> on CLOSED.

if ‘j” is goal state ,return goal(path p).

2
3
4
5. for each edge e connecting ‘j” and ‘k’ with cost e do{
6 iIf <k,g>is in closed and {p|e } is cheaper than q

7. delete ‘k’ from CLOSED.

8. put<k,ple >in OPEN. End of if.

9. elseif<k,g>isin OPEN and {ple} is cheaper than q
10. replace <k,ple > on OPEN. End of else if

11. else if k is not on OPEN

12. put <k,ple> on OPEN. End of else if. End of for

13. end of while

14 .return failure

15. end of algorithm

25

4.2 IDA*(Iterative Deepening A*)

It is like iterative DFS (depth first search). Only the depth bound is modified to f-
limit.
The algorithm-

» 1.start with the f(limit)=f(start)

» 2.Prune any node if f(node)>f(limit). Do a DFS.

» 3.Next f-limit=minimum of any node pruned . Go to step 1 and repeat the

whole process until the goal node is found.

It is implemented using heuristic of misplaced tiles.

26

4.3 Solvability Check
A solvability check was implemented which checks if the random puzzle generated
Is solvable or not. This check is done at the beginning of the execution to avoid
unnecessary run time errors and crashing of the program. If this is not done then in
1 out of two cases during the start of execution there will be a run time error. The

program will crash and output screen will be as shown below.

Fig.6 Solvability Check Screenshot

27

4.4 Heuristics

4.4.1 Number of Misplaced Tiles

In this heuristic, a tile from any position may be taken out and moved to any
required position. The evident algorithm for finding a solution is basically moving
each tile from its present spot to the spot in its goal configuration. Thus, the path-
length of the least cost-path is the count of tiles that are not present in its desired

positions.
IHEE BN
4 2 5 4 5 6
/7 8 0 7 8

Fig.7 Number of misplaced tiles

Here tiles 2,5,6 are not in correct positions . so h(n) =3

Drawbacks: It assumes that a misplaced tiles can simply be removed and placed in
its goal positions. But we only can slide the tiles to get to correct position and
cannot take the tiles out of the board. It does not consider that.

28

4.4.2 Sum of Manhattan Distances

Manhattan Distance- It is the linear distance the tile has to cover from initial
position to reach the goal position. According to this heuristic, a tile may be moved
into any horizontally or vertically adjacent position, with stacking allowed.
Obviously, the optimal solution to this puzzle is found by moving each tile along a
shortest path between its initial and goal state. For anyone tile, the length of this
shortest path is the grid distance (horizontal plus vertical distance) between its
current and goal positions. Therefore, the total solution length is merely the
summation of these grid distances for each tile.

Example-

In the figure given below, only the “3”,” 8” and “1” numbered tiles are, away from
their goal state by 2, 3, and 3 squares respectively. So the heuristic function
evaluates to 8(2 + 3 + 3). It means the heuristic signals that the goal state can be

reached in just 8 moves.

fig.8 Sum of Manhattan distance

3 2 8 1 2 3
4 5 6 4 5 6
7 1 7 8

Initial state Goal state

29

In the figure below, solution to the 8-puzzle is found using the heuristic sum of
Manhattan Distance.

11213
4|8 5
71615
112 11213
418|316 |4,8|51]14
7161|5 716
11213
418|513
7 6

[HEN
N
w

N D NP
(oc NGV} ~ (00N
(e} w o |01 | W

~

(o¢]

(@)

11213 1 3
1 415013 412|543
718|686 7/18|6

1123 1|2

415|6|]0 415|312

7|8 7/8|6

Fig.9 Solving a 8-puzzle using Manhattan distance

30

Shortcomings of the Manhattan Distance Model

It states that the puzzle can be solved by displacing each tile along the taxi-cab
linear path to its position in goal state. All the more particularly, the shortest path-
length solution in the Manhattan Distance heuristic is a set of sub goal solution
functions, one for each tile. A sub goal solution is any shortest path for a given tile
from its current to its goal position. In many cases, there is a single, unique shortest
path: the tile is already in its correct row (column) and need only move within that

row (column).

2 1
3 / 5
6 4 8

Let this be the goal state.

Fig.10 Shortcomings of Manhattan distance

Let this be the initial configuration of 5 and 3.manhattan distance due to 5 and 3
will be 4 but we know that to reach their correct positions either one of the tile has

to take 2 extra path lengths along the top or the bottom row.

31

4.5 Algorithm for Calculating the Linear Conflict
Heuristic

Definition of linear conflict:

2 tiles t,, and t,, are said to be in linear conflict if t,, and t, stand in the same line
(row or column) as the goal positions of t,, and t, ,t, is to the left/ right of t,, and

the goal position of t, is to the right/ left of that of t,.

We now define some variables used by the algorithm:
S is the current state.
Cn(tm,rm) is the number of tiles in row r, with which t, is in conflict(defined

above). Similarly we get Cn(t,,,C,) for columns.

Icn(s, ry) is the number of tiles that must be removed from row r,, in order to
resolve the linear conflicts in that row. Similarly, Icn(s,c.,) is the number of tiles

that must be removed from column C,, in order to resolve the linear conflicts.

m(s, t;) is the Manhattan Distance of tile t ;.
L is the number of tiles in a line (row or column) in the puzzle.
L =V(N + 1).

LCN(s) is the least number of moves necessary to resolve the linear conflicts in s.

M(s) is the sum of the Manhattan Distances of all the tiles in s.

32

Algorithm:linear_conflict

For each row r; in the state s, one accounts for the conflicts local to that row

Icn(s,ri) as follows:

* len(s,rj) =0
For each tile tj in ri determine Cn(tj,ri)
While there is a non-zero Cn(tj,ri) value, do

» Find tk such that there is no Cn(tj,ri) greater than Cn(tk,ri). (As tk is the tile

with the most conflicts, we choose to move it out of ri).
* Cn(tk,ri) = 0.
» For every tile tj which had been in conflict with tk
Cn(tj,ri) = Cn(tj,ri)-1 Icn(s,ri)=lc(s,ri)+ 1.

Check similarly for linear conflicts in each column Cj computing len(s, cj), Then

calculate the estimate of the Linear Conflict alone:
LCN(s) = 2[{lcn(s,r1)+ ... +len(s,rL) }+{lcn(s,c1)+---+lcn(s,cL)}]

Determine, for each tile tj in state s, its Manhattan Distance m(s,tj), and sum these
to get the overall Manhattan Distance

M(s) =m(s,t1) + ... +m(s,tN). Calculate the total Linear Conflict heuristic

estimate. h(s) = M(s) + LCN(s).

33

End {Algorithm}

Complexity of removing linear-conflict:
Calculation of M(s) requires O(N) operations.

Calculation of LCN(s) requires O(N) operations in the worst case, for each line of
tiles.
As there are V(N + 1) lines, it needs O (N”1.5) operations.

So computational complexity is O(N/1.5).

4.6 Checking for Admissibility

1. Misplaced tiles:

It is admissible as anyhow the misplaced tiles are to be shifted to their desired

positions.so it can never overestimate the path length.
2. Sum of Manhattan distances:

It is admissible as anyhow the tile has to take the shortest taxicab distance (no

diagonal move allowed) to reach to its goal position.
3. Linear Conflict:

It is also admissible as we have implemented it from the shortcomings of the

Manhattan distance and extra path length of 2 has to be covered when linear

conflict is there.

34

4.7 Comparing the Performance of the Three

Heuristics

Comparison of the memory used by the three heuristics is done as per results of the

implemented program:

| Misplaced tiles

| Manhattan distance

| Linear conflict

Path Open | Closed | Path Open | Closed | Path Open | Closed
length | list list length | list list length | list list
20 1719 1230 |20 268 313 20 55 74
20 1485 | 2515 |24 614 968 22 114 184
28 2871 | 4112 |18 411 645 18 49 82
24 4521 | 7534 |22 856 907 14 17 21
18 1317 | 2259 |16 683 774 24 136 186
16 1221 | 1345 |21 765 876 22 77 116
18 1986 |2118 |29 564 878 19 43 89
19 4117 |5609 |13 455 643 22 34 47
21 2334 | 2674 |19 761 963 26 55 78
20 2856 | 3177 |19 438 567 17 98 148
15 1104 | 1407 |21 384 529 19 34 69
23 4703 | 4854 |23 738 879 22 54 94
22 4194 | 4462 |19 414 564 20 137 165

All of the three heuristics provide optimal solutions as they are admissible. In our

observation Average path length of:

1. Misplaced tiles = 264/13 = 20.307

2. Sum of Manhattan distance = 263/13 = 20.23

3. Linear conflict =285/13=21.9

35

4.8 Screenshots
Screenshots of the output using the various heuristics are shown.

Missing Tiles Heuristic

is not »eachable

for the naxt rasdomissd puzzle

2 the goal state is reachable

Fig.11 Implementation of missing tile heuristic

36

Sum of Manhattan Distance Heuristic

a
b=
A

=

Fig.12 Sum of Manhattan distance heuristic

37

Removing Linear Conflict Heuristic

Fig.13 Removing Linear Conflict Heuristic

38

4.9 Dominating Heuristic
Between two heuristics hl and h2, h2 dominates hl if the value of

h2(n) >= h1(n) for any node n.
a* algorithm will expand less number of nodes if implemented using h2 than h1.

A node where f(n) < f*(n) when * is the optimal path will be expanded. Thus n is

expanded whenever

h(n)<f*(n) - g(n)

given h2(n) value greater than h1(n) if a node is expanded by h2 then it will surely

be expanded using hl.

Let this be the goal state of the Eight Puzzle((0 12 3456 7 8))

1 2
3 4 5
6 7 8

If initial state is

2 1
/ 4 5
6 3 8

Misplaced Tiles = 4
Manhattan Distance = 6
Linear Conflict =8
Optimal Solution = 22
(021745638)

39

Another example

2 1
5 4 3
6 7 8

Misplaced Tiles = 4
Relaxed Adjacency = 6
Manhattan Distance = 6
Linear Conflict = 12
Optimal Solution = 20
(021543678)

Fig.14 Dominating Heuristics
So we conclude that in dominance

Linear Conflict >Manhattan Distance >Misplaced Tiles

40

Chapter 5

5.Conclusion

An approach for solving the 8-puzzle problem has been proposed which minimizes
the memory required while achieving optimum results. All the heuristics have been
applied to a* algorithm to bring uniformity and the results were shown.
Comparison of memory used makes sense only in a star algorithm. At last memory
use of all the heuristics are compared. Ida* algorithm was implemented but only

with one heuristic i.e. number of misplaced tiles.

A solvability check was implemented at the beginning of every program to avoid

unnecessary run time errors and crashing of the program.

41

Bibliography

[1] Othar Hansson Andrew E. Mayer Mordechai M. Yung “Generating

Admissible Heuristics by Criticizing Solutions to Relaxed Models” Information
Sciences, 19920915.

[2] peter e. hart,Nils j. nillson, member IEEE, “A formal basis for the heuristic
determination of Minimum cost paths”.

[3]Alexander reinfeld .”Complete Solution of Eight-Puzzle and the Benefit of
Node Ordering in IDA*”Paperborn Centre for Parallel Computing Warburger
Str. 100. D-33095 Paperborn,Germany.

[4] A. Reyes®, H. Yu™, G. Kelleher®, S. Lloyd® ” Integrating Petri Nets and
hybrid heuristic search for the scheduling of FMS” Computers in Industry
Volume 47, Issue 1, January 2002 .

[5] Michael Katz and Carmel Domshlak Faculty of Industrial Engineering &
Management Technion, Israel “Optimal Additive Composition of Abstraction-
based Admissible Heuristics”, Proceedings of the Eighteenth International
Conference on Automated Planning and Scheduling (ICAPS 2008).

[6] Bellmore, M. and Nemhauser, G.L. "The Traveling Salesman Problem: A
Survey". Operations Research 16 (1968), 538-558.

[7] Doran, 1. and Michie, D. “Experiments with the Graph-Traverser
Algorithm” Proceedings of the Royal Society, 294 (A), 1966, pp. 235-259.

[8] Sudip Roy. "Artificial intelligence approach to test vector reordering for
dynamic power reduction during VLSI testing”, TENCON 2008 IEEE Region
10 Conference, 11/2008

[9]https://www.cs.princeton.edu/courses/archive/fall12/cos226/assignment/.

[10]https://courses.cs.washington.edu/courses/cse473/12au/slides/lect3.pdf.

[11] http://en.wikipedia.org/wiki/15 puzzle.

42

http://www.sciencedirect.com/science/article/pii/S0166361501001245
http://www.sciencedirect.com/science/article/pii/S0166361501001245
http://www.sciencedirect.com/science/article/pii/S0166361501001245
http://www.sciencedirect.com/science/article/pii/S0166361501001245
http://www.sciencedirect.com/science/article/pii/S0166361501001245
http://www.sciencedirect.com/science/article/pii/S0166361501001245
http://www.sciencedirect.com/science/journal/01663615
http://www.sciencedirect.com/science/journal/01663615/47/1
https://www.cs.princeton.edu/courses/archive/fall12/cos226/assignment/
https://www.cs.princeton.edu/courses/archive/fall12/cos226/assignment/
https://courses.cs.washington.edu/courses/cse473/12au/slides/lect3.pdf
http://en.wikipedia.org/wiki/15_puzzle

