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Abstract 

 

Low-area frequency oscillations are one of the major problems in the present 

power systems for smooth and reliable operation where power is essential to 

transfer from one area to another remote area through weak tie-lines. This kind 

of oscillations problem may result into system instability, cascade failure and 

even in blackouts, if they are not damp out quickly. It have been observed that 

local mode of oscillations can be damp out by using Power System Stabilizers 

(PSS) but damping inter-area mode of oscillations using PSS may not be 

possible always. This thesis work deals with the designing of Wide-Area Power 

System Stabilizers (WPSS) to damp inter-area mode of oscillations using wide-

area signals. The Eigen analysis is used to verify the local and inter-area signals 

presented in two area power systems.    Mixed-sensitivity synthesis method 

for robust control is used to design Wide-Area Power System Stabilizer 

(WPSS). It is observed that designed WPSS is able to damp inter-area mode of 

oscillations presented in two area power systems. 
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Chapter 1 

Introduction 

 

In the past few decades damping in power system oscillation remains as one of the main issue 

for smooth and stable operation of power systems. Operation of power systems are always 

driven close to power system limits, because of continuous increase in power demand. This 

all process deals with the transmission capacity of power system. So, to boost up the power 

transfer capability, while maintaining the system stable, is one of the goals for power system 

operators. 

 When we transfer a huge amount of power to a long distance via a relatively weak tie 

lines and high exciters gain, then problem of small signal oscillation occurs. Resulting power 

system oscillations turned power system into instability and blackouts. In this instability 

problem there are different frequency components which are known as modes. In small signal 

stability problems local area mode of oscillation can be reduced by planting a Power System 

Stabilizer (PSS). These controllers use local signals e.g. Rotor Speed Deviation, voltage in tie 

lines as input. But the reliability of PSS to damp inter-area mode of oscillations is quiet less. 

PSS designing is generally based on linearizing the system model variations in generation, 

transmission network switching and load. So, satisfactory performances at an operating point 

are not always possible with PSS. However, changes in operating conditions in the power 

system always occur due to wide variation in system conditions. Local area controllers i.e. 

PSS lack the global observations, so they are not able to damp inter-area oscillations always. 

 So, to damp out the inter-area oscillations we need to design a Wide-Area damping 

controller. In the few research activities it is found that Wide-Area damping controller is able 

to improve transient stability also. 

1.1   Problem Statement: The low frequency oscillations presented in the power systems 

are related to the small signal stability and it could make system unstable. Initially this 

problem is removed by using damper winding on turbines and generator rotors. But power 

system always operates close to their stability limits then problem of weak synchronizing 

torque was observed as the main problem of system instability. By using Automatic voltage 

regulators (AVRs), steady state stability of the power system is improved but it was not able 

to improve transient stability. Another problem in the power system was this, that it is 

required to transmit huge amount of power over a long distance through weak tie-lines. Power 

system stabilizers (PSS) are used in control loop along with automatic voltage regulators 
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(AVRs) to reduce the effect of low frequency oscillations. But it was able to damp only local 

area modes of oscillations presented in the power system while it was unable to damp inter-

area mode of oscillations presented in the system. 

1.2   Thesis Goals: The goal of present thesis is to design the WPSS which is able to damp 

inter-area mode of oscillations presented in two-area, 4-machine power systems. 

Eigenanalysis methodology is used to identify local area and inter-area mode of oscillations 

and mixed sensitivity    based robust controller is designed to damp inter-area modes of 

oscillations and increase the disturbance rejection in the system. 
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Chapter 2 

Low Frequency Oscillations 

 

2.1   Definition: Low frequency oscillation (LFO) is the oscillation presented in generator 

rotor angle. They lie in the range of 0.1-3.0 Hz. By using high-gain exciters, tuning problem 

in generation excitation, HVDC converters or static var compensators are the few reasons of 

LFOs with poor damping. Such problems are known as small-signal stability problem. 

Solution to this problem is addressed by using power system stabilizers. LFOs includes local 

mode of oscillations, torsional modes (due to interaction between the mechanical and 

electrical modes of a turbine-generator system) [1] and inter-area modes of oscillation which 

is because of either high gain exciters or bulk amount of power transfers over long distances 

across weak tie-lines. 

 

2.2   Analysis: Small disturbances are the main reasons of the LFOs in the system, such as 

changes in the load of the power system. These small disturbances create a steady increase or 

decrease in generator rotor angle which leads to lack of synchronizing torque. Lack of 

sufficient damping torque is one of the main problems of low frequency oscillations. With the 

eigenanalysis in upcoming chapters it will be clear that, eigenvectors of the system state 

matrix provide identification of LFOs. 

Large disturbances (short circuit/loss of generator) normally lead to nonlinear 

oscillations of the power system in addition with the small-signal LFO modes. The LFOs 

(local area and inter-area) are identified by eigenanalysis.  

Real Power Systems are multi machine systems so there will be many modes of 

oscillation and they are classified as- 

1. Local Mode Oscillation: When dynamics of generator oscillates against the rest of 

the elements of the power systems or another generator in the same area then it is 

called Local Area Mode of Oscillations. Typical value of Local Area mode of 

frequency is between 0.3 to 2 Hz. 

2. Inter Area Mode of Oscillation: When the dynamics of one area oscillates against 

the dynamics of the other area then this type of oscillation is called Inter-Area 

oscillation. Typical value of Inter-Area mode of frequency is between 0.1 to 0.8 Hz. 

3. Control Mode of Oscillation 
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For this we should have positive torques (Synchronizing and Damping) to be stable system. If 

any of this torque coefficients become negative then stability gets affected. 

2.3   Control: Power system stabilizer (PSS) is used with the automatic voltage regulator 

(AVR) of the generator in the test system to damp local area mode of oscillations. Damping 

of the LFOs enhances the stability limit of the system leads to higher power transfer through 

the system. The application of PSS to damp local area mode of oscillation by using local 

input signals has been verified previously. However, by using same PSS, it may not be able to 

damp inter-area modes of oscillations. Also, PSS may not able to damp all kind of 

frequencies presented in system. Description of the PSS and AVR related control and design 

is presented in upcoming chapters. 

LFOs can also be controlled by the introduction of active or passive control elements 

other than PSSs into the power system. Thyristor-controlled series capacitors (TCSCs), 

Unified power controllers (UPCs) and thyristor-controlled dynamic brakes are one of them. 

But this thesis contains control using PSS and AVR only. 

  



 

5 
 

Chapter 3 

Power System Stability 

3.1   Power System: It is a network of electrical components used to supply, transmit 

and use electric power [1]. 

It can be broadly divided into three major parts- 

1. Generator: It supplies/generate the power. 

2. Transmission System: It carries power from generating centre to load centre. 

3. Distribution System: It feeds power to nearby homes and industries. 

3.2   Power System Stability Concepts and Definitions: Property of the power 

system that enables it to remain in a state of operating equilibrium under normal operating 

conditions and to regain an acceptable state of equilibrium after being subjected to a 

disturbance, is called as power system stability.[1]. 

 Power system instability may be occurring in many different ways depending on the 

system configuration and operating mode. Initially, the stability problem has been one of 

maintaining synchronous operation. This aspect of stability is influenced by the dynamics of 

generator rotor angle and power-angle relationships [1]. 

 Instability may also be encountered without loss of synchronism. For example, a 

system consisting of a synchronous generator feeding an induction motor load through a 

transmission line can become unstable because of collapse of load voltage. Maintenance of 

synchronism is not an issue in this instance; instead, the concern is stability and control of 

voltage.  

 Different forms of power system instability and concepts are given in following 

points. 
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3.3   Classification of Power System Stability: Power system stability divided into 

two parts: 

3.3.1 Rotor Angle Stability: Rotor Angle Stability is the ability of the power system that its 

machine will be in synchronism after small perturbation [1]. 

This can be further be divided into four parts 

a. Small Signal Stability: Small-Signal Stability is the ability of power system to maintain 

synchronism when subjected to small disturbances [1]. In this context, a disturbance is 

considered to be small if the equations that describe the resulting response of the system 

may be linearized for the purpose of analysis.  Instability that may result can be of two 

forms:  (1) Steady increase in generator rotor angle due to lack of synchronizing torque, 

or (2) rotor oscillations of increasing amplitude due to lack of sufficient damping torque. 

In today’s practical power systems, the small-signal stability problem is usually one of 

insufficient damping of system oscillations [1]. 

 

b. Transient Stability: Ability of the power system to return to a normal operating state 

after disturbance, known as transient stability [1],   

 

c. Mid Term and Long Term Stability: These terms are relatively new; They deals in the  

dynamic response of power system to severe upsets. 

3.3.2    Voltage Stability: This is divided into two parts- 

a. Large Disturbance Voltage Stability: Ability to control voltages following 

large disturbances such as system fault, loss of generation and circuit 

contingencies [1]. 

b. Small Disturbance Voltage Stability: Ability to control voltages following 

small disturbances such as internal changes in system load [1]. 

Note: Voltage instability generally occur with angle stability in the system. It does not occur 

in pure form. 
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Chapter 4 

Excitation System and Power System Stabilizer 
 

 

This chapter provides the brief inside about power system stabilizers and excitation system. 

Excitation system provides direct current to the field windings of synchronous generator. For 

the satisfactory performance excitation system performs control and protective function for 

the power system by controlling field voltage, resulting field current. 

Excitation system performs control of reactive power flow, voltage and improvement 

of system stability. Protective functions works as a limiter function. 

This chapter described the modelling and characteristics of synchronous generator 

excitation system. 

 

4.1   Excitation System Requirements: Different types of excitation system 

requirements are determined by consideration of synchronous generator and power system. In 

this thesis work we have used AC excitation system. 

 

4.1.1   Generator Consideration: Main function of excitation system is the, supply and 

automatically adjusts the field current of synchronous generator to maintain the terminal 

voltage. Normally, the rating of the exciter varies from 2.0 to 3.5 kW/MVA generator rating. 

The generator capabilities in this regard are limited by several factors such as rotor 

heating due to high field current, rotor insulation failure due to higher field voltage, stator 

heating due to high armature current loading, core end heating during under excited 

operation, and heating due to excess flux (volt/Hz) [1]. Thermal limits have time-dependent 

characteristics and the short-term overload capability of the generator may extend from 15 to 

60 seconds. To ensure the best utilization of excitation system, it should be capable of 

meeting the system needs by taking full advantage of the generator’s short term capability 

without exceeding their limits [1]. 

4.1.2   Power System Consideration: In the power system, the function of 

excitation system is to control of field voltage and improve the system stability. It should 

respond quickly in case of any disturbance so as to improve transient stability, also updating 

the generator field to improve small-signal stability hand by hand. 
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 Excitation systems were used to control manually to maintain the machines terminal 

voltage and reactive power loading in early days. These days voltage control was very slow 

but in 1920s by using continuous and fast-acting regulators, small-signal and transient 

stability were enhanced. In 1960s, terminal voltage error signals were used to control the field 

voltage to damp LFOs.. This excitation control is called as power system stabilizer. 

 To fulfil the above roles satisfactorily, the excitation system must satisfy the following 

requirements: 

 Meet specified response  criteria 

 Providing protective and limiting functions as required preventing damage to itself, 

the generator and other equipment. 

 

4.2   Excitation System Elements: Given figure shows the block diagram of a typical 

excitation control system for synchronous generator. It is described as follows:  

4.2.1   Exciter: Exciter supplies dc power to the rotor of synchronous machine [1]. 

4.2.2   Regulator: Regulator process and amplifies control signal to required level and 

convert it into a form for control of the exciter. This includes both excitation and regulating 

system stabilizing function (rate feedback or lead-lag compensation) [1]. 

4.2.3   Terminal Voltage Transducer: It is a sensor which measure generator terminal 

voltage, filters and rectifies it to dc value and compares it with a reference value which 

represents the desired terminal voltage [1]. 

4.2.4   Power System Stabilizer: PSS supplies an extra input signal in form of electrical 

damping to the regulator to damp oscillation present in the system. Few of the commonly 

used input signals are rotor speed deviation, acceleration power, frequency deviation and 

stator voltage. The details about the power system stabilizer will be discussed in this chapter 

later [1]. 

4.2.5   Limiters and Protective Circuits: These circuits include control and protective 

functions which ensure that the limits of exciter and machine are not exceeded. The 

commonly used functions are field-current limiter, maximum excitation limiter, terminal 

voltage limiter, volts-per-Hertz regulator and protection and under excitation limiter [1]. 
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Figure 4.1:  Block Diagram of Synchronous  

                     Generator Excitation Control System 

 

4.3   Power System Stabilizer: Controller design using power system stabilizer, method 

of combining PSS with automatic voltage regulator (AVR), many input feedback signal to the 

PSS and tuning of the parameters to make system oscillation free are all parts of the PSS 

topic. The PSS uses auxiliary stabilizing signals to control the excitation system so as to 

improve the power system dynamic performance. Commonly used input signals to the power 

system stabilizer are shaft speed, terminal frequency and power. To provide damping, the 

stabilizer must produce a component of electrical torque in phase with rotor speed deviation. 

Power system dynamic performances are improved by damping of system oscillations. It is 

very effective way to enhance the small signal stability performance. 

 Since the purpose of PSS is to introduce a damping torque component, a logical signal 

to use for controlling the generator excitation is the speed deviation    . 

4.4   PSS Design and Control Action: The function of a PSS is to provide electrical 

damping to a synchronous machine of the power system to upgrade the angular stability 

limits through the generator excitation. This electric torque applied should be in phase with 

rotor speed deviation. By this, local area mode oscillations are damped. This control 

Limiters and 

Protective Circuits 

Terminal Voltage 

Transducer 

Generator 

Power System 
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Ref 

To Power 

System 
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technique is very useful during huge amount of power transfers over a remote area. Power 

system instabilities may occur due to negative damping effects of the PSS on the rotor. 

 

 

 

 

 

 

 

 

Figure 4.2:  Lead-Lag PSS 

 

 

The PSS comprise of a washout block which minimizes the over-response of the damping 

during occurrence of any fault. PSS should produce a component of electrical torque in phase 

with the input signal which is used as speed deviation in this thesis work, phase lead-lag 

compensators are used to compensate the effect of input and output signals. Damping 

provided by the PSS increases if gain K increases up to a certain critical gain value, after 

which the damping begins to decrease.  

 

4.5   Input Signal to PSS: There are different input signals that we can use for PSS. The 

signals that are mostly used are identified as rotor speed deviation   , electrical power, 

accelerating power, rotor angle deviation and voltage in the tie line. Since the main action of 

PSS is to control the rotor oscillations so rotor speed deviation has been used frequently as 

input signal. Controllers focused around speed deviation would in a perfect world utilize a 

differential-sort of regulation and a high gain. Since this is unreasonable in all actuality, the 

beforehand said lead-lag structure is regularly utilized. Notwithstanding, one of the 

confinements of the speed input PSS is that it may energize torsional oscillatory modes. 

 A power/speed PSS configuration was proposed as an answer for the torsional 

communication issue endured by the speed input PSS. The power signal utilized is the 

generator electrical power, which has high torsional weakening. Because of this, the gain of 

the PSS may be expanded without the resultant loss of steadiness, which prompts more 

excellent oscillating damping. 

 

4.6   Tuning and Control: The clashing requirement of local and inter-area mode 

damping and stability under both small signal and transient conditions have prompted 

numerous diverse methodologies for the control and tuning of PSS. The distinctive sorts of 

control and tuning techniques researched are state space/frequency domain technique, root 

KStab 

   
     

 
     
     

 
     
     

 

 

VPSS Input 



 

11 
 

locus of lead-lag controller, pole placement of PID controller. Every technique has its own 

particular benefit and weakness. This is solution for the issue of LFO damping by the 

provision of PSS.  

 In this thesis we did not provide the analysis for each of the technique rather the 

improvement of the oscillation damping using PSS. Through the analysis performed here it is 

found that PSS is able to damp local area of oscillations and WPSS has damped the inter-area 

mode oscillations. 
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Chapter 5 

Modelling of Two-Area Power System & State Space 

Representation 

 

This unit comprise of two area power system modelling and state space representation of the 

modelled system, its linearization and mode identification presented in the power system 

oscillation. We have chosen synchronous generator for case study.  

 

5.1   Dynamical Modelling of Two Area Power Systems: The case study has been 

carried out on 4 machines, 11 buses system as give in fig. 1. The system parameters are given 

as follows [1]. 

 
              Fig. 5.1 A Simple Two-Area System 

 

 

The system consists of two similar areas connected by a weak tie. Each area consists of two 

coupled units, each having a rating of 900 MVA and 20kV. The generator parameters in per 

unit on the rated MVA and kV area as follows: 
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Each step-up transformer has an impedance of          per unit on 900 MVA and 20 kV 

base, and has a nominal ratio of 1.0. 

 

The transmission system nominal voltage is 230 kV. The line lengths are identified in fig.2. 

The parameters of the line in per unit on 100 MVA, 230 kV base are  

 

                                                                                            
 

All the generators are on manual excitation control with following dynamics: 

Thyristor exciter with high transient gain: 

                                                                       

 

Power System Stabilizer (PSS) Dynamics are as follows: 

                                                                                                  

 
 

     

 

                                                                 
  

           

                                                                                                                                                         

                                            

                    Terminal Voltage Transducer                                 Exciter 

      

                                                  

 

Fig. 5.2 Excitation System 

 
 

 

       
 

 

                                                             

Fig. 5.3 Power System Stabilizer (PSS) 

           

 

In order to simulate this problem we have simulated it once, without employed any PSS and 

again with PSS to calculated different modes with their corresponding frequency and 

damping. Since the created power system is non-linear so we have to linearize it for the 

concern of stability analysis. 
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Given system is modelled on Simulink in Matlab 2012 a using simpower system toolbox. 

Every element of the given system model is modelled with utmost care and then linearized 

around an operating point. 

 

5.2   Model linearization without PSS: Power system is a nonlinear system. For 

measurement and control signal selection, a linearized model of the system is used. The 

system is linearized around an operating point by the command ‘linearize’ in MATLAB.   

 lin=linearize(‘sys’) command takes a model name sys and 

returns a linear time-invariant state-space model. 

The dimension of state-space matrices A, B, C, and D without PSS is given: 

          ,          ,           ,          . 

There are four machine sets in this model and each machine (with exciter) contains 14 states. 

. 

5.3   Verification of Oscillatory Modes without PSS: Eigen value analysis helps in 

identifying poorly damped or unstable modes in power system dynamic models. Power 

systems are highly nonlinear; however, under normal operating conditions, it can be assumed 

that these systems behave linearly, thus linearization around an operating point can be 

applied. Eigen value analysis is a well-established approach for studying the characteristics of 

inter-area modes. The approach has several attractive features: each individual mode is 

clearly identified by the Eigen values, and mode shapes are readily available. Eigen value 

analysis is commonly used to investigate the properties of inter-area oscillations in multi-

machine power system models. In addition, the analysis also provides valuable information 

about sensitivities to parameter changes.  

 

 The eigenvector associated with a mode indicates the 

relative changes in the states which would be observed when that mode of oscillation is 

excited. It enables us to confirm that mode 43 & 44 is an inter-area mode, since generators 1 

and 2 are oscillating against generators 3 and 4. However, the largest components of the 

eigenvector are those associated with the second exciter state. This means that the inter-area 

mode may be most easily observed by monitoring those states. It does not mean that these 

states are necessarily good for controlling the inter-area mode. 

 

Local Area and Inter-Area modes of oscillation without PSS are given in table. 
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No. Eigen Values Frequency (Hz) Damping Ratio Modes/ Remark 

1,2 -0.7519 ± 6.9945i 1.1132 0.1069 Local Area 

3,4 -0.7479 ± 7.2177i 1.1487 0.1031 Local Area 

5,6 0.0569 ± 3.9397i 0.6270 - 0.0144 Inter-Area 

7,8 -19.1109 ±14.4025i 2.2922 0.7986 - 

9 -32.0976 - 1 - 

10,11 -19.3945 ±10.1064i 1.6085 0.8868 - 

12,13 -11.8662 - 1 - 

 

Table 5.1 System modes without PSS and manual excitation 

 
From the table we see that system is stable. There are four Rotor Angle modes of oscillation. 

Their mode shapes (normalised eigenvector components corresponding to rotor angles of the 

four machines) are shown in figure bellow. 

5.4   Plot of Rotor Angle Terms of Local-Area Mode Eigen Vector: When 

dynamics of generator oscillates against the rest of the elements of the power systems or 

another generator in the same area then it is called Local Area Mode of Oscillations. Typical 

value of Local-Area mode of frequency is between 0.7 to 2.0 Hz. 

 

 Eigen Value:   -0.7519 ± 6.9945i 

 

Fig 5.4 Local Area Mode Eigenvector Shape 1 (Without PSS) 
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Eigen Value: -0.7479 ± 7.2177i 

 

Fig 5.5 Local Area Mode Eigenvector Shape 2 (Without PSS) 

5.5   Plot of Rotor Angle Term of Inter-Area Mode Eigen Vector: When the 

dynamics of one area oscillates against the dynamics of the other area then this type of 

oscillation is called Inter-Area oscillation. Typical value of Inter-Area mode of frequency is 

between 0.1 to 0.8 Hz.  

 Inter-Area modes can be identified as the Dynamics of the Generators of one area will 

oscillate against the dynamics of the Generator of second area at a phase difference of     .  

Eigen Value: 0.0569 ± 3.9397i 

 

Fig 5.6 Inter-Area Mode Eigenvector Shape (Without PSS) 
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5.6   Model linearization with PSS: Plant consists of total 8 outputs, 4 for rotor 

mechanical angle and 4 for rotor speed deviation by each of the generators. We have 

employed rotor speed PSS in the plant as a feedback and rotor speed deviation is taken as 

input to the PSS. The output of PSS is stabilization signal       which is input of plant as 

feedback signal. 

 The system is linearized around an operating point by the command ‘linearize’ in 

MATLAB.  lin=linearize(‘sys’) command takes a model name ‘sys’ and returns a linear time-

invariant state-space model. 

The dimension of PSS state-space matrices Apss, Bpss, Cpss, and Dpss also given: 

             ,             ,              ,              

 

The dimension of state-space matrices A, B, C, and D with PSS is given: 

          ,          ,           ,           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.7: Feedback Configuration of PSS to the Plant 

 

5.7   Verification of Oscillatory modes with PSS: The eigenvector associated with a 

mode indicates the relative changes in the states which would be observed when that mode of 

oscillation is excited. It enables us to confirm that mode 53 & 54 is an inter-area mode, since 

      Plant 

PSS 

    Vref  Theta 

         Vstab 
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generators 1 and 2 are oscillating against generators 3 and 4. Also states (45&46), (49&50) 

are identified as Local Area mode. 

  

Local Area and Inter-Area modes of oscillation with PSS at gain 20 are given in table. 

 
No. Eigen Values Frequency (Hz) Damping Ratio Modes/ Remark 

1,2 -17.2067 ± 8.0526i 1.2816 0.9057 Local Area 

3,4 -1.6745± 9.9160i 1.5782 0.1665 Local Area 

5,6 -1.0654± 4.0453i 0.6438 0.2547 Inter-Area 

7,8 -1.7367±9.5210i 1.5153 0.1795 - 

9,10 -17.5350±12.9422i 2.0598 0.8046 - 

11 -90.4950 - 1 - 

12 -92.2651 - 1 - 

 

Table 5.2:  System modes with PSS and manual excitation 

 
From the table we see that system is stable. There are four Rotor Angle modes of oscillation. 

Their mode shapes (normalised eigenvector components corresponding to rotor angles of the 

four machines) are shown in figure bellow. 

 

5.8   Plot of Rotor Angle Terms of Local-Area Mode Eigen Vector: 

 
Eigen Value:   -17.2067 ± 8.0526i 

 

 

Fig 5.8 Local Area Mode Eigenvector Shape 1 (With PSS) 
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Eigen Value:  -1.6745 ± 9.9160i 

 

Fig 5.9 Local Area Mode Eigenvector Shape 2 (With PSS0 

5.9   Plot of Rotor Angle Terms of Inter-Area Mode Eigen Vector: 

Eigen Value:  -1.0654± 4.0453i 

 

Fig 5.10 Inter-Area Mode Eigenvector Shape (With PSS) 

From the above table it is confirm that PSS is able to damp the Local-Area oscillations as 
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Chapter 6 

Wide-Area Controller Design for Two-Areas 

Power System 
 

Once the system is modelled, linearized and oscillatory modes (inter-area and local area) have 

been identified, we could look forward to design wide-area damping controller i.e. WPSS to 

damp inter-area oscillations, since local area mode of oscillations has been already damped 

using PSS which uses local signals. This chapter comprise of wide-area control loop 

selection, model order reduction of plant because created model is of 68
th

 order and it could 

pose a formidable computation burden and a robust controller design to damp inter-area mode 

of oscillations. 

6.1   Control Loop Selection for Wide-Area: Wide-Area control loop selection is 

essential for damping inter-area oscillations. For choosing wide-area control loop we need to 

choose best available input-output channel for efficient decentralised control unlike to 

centralised control in which input and output considered altogether. To choose wide-area 

control loop we have chosen Loop Selection Index (LSI) method base on geometric approach 

as it is unaffected by scaling by eigenvector. LSI approach is based on how good a 

combination of input and output vectors are aligned to the corresponding eigenvector for a 

particular mode [6]. 

The LSI can be calculated as given formula [6]: 

      
   
          

                   
         

Where,       is Loop Selection Index corresponding to     input and    output 

combination,    is the input vector corresponding to     input    is the output vector 

corresponding to      output.    and    are the left and right eigenvector corresponding to 

inter-area mode [6]. 

Loop Selection Index for the two areas, four machine system using above formula has been 

calculated and shown in table given bellow. 
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Input/output                     

   1.0048e-004 6.3058e-005 - - 

   - - 0.0022 0.0020 

   5.0633e-005 - 2.2159e-006 - 

   - 7.2396e-007 - 5.6179e-005 

 

Table 6.1: Loop Selection Index Corresponding to I/O Pairs 

(- sign represents the I/O pairs that are not wide-area loop) 

Where    are the generators and      is loop selection indices for the corresponding loops. 

Here from above table we can judge that LSI associated with inputs at area-1 (either at 

generator        ) is comparatively high to the inputs at area-2 (either generator (       ). 

Since area-1 is supplying electrical power to area-2, so it is very genuine as expected to have 

LSI associated with area-1 is high. It might likewise be noted that utilizing the WPSS at 

generators closer to tie-line (   or   ) enhances the LSI since they have immediate control on 

the buses closer to tie-line as compared to generators away from the tie-line. 

 Here for this case, the wide-area signal      when utilized as input to additional 

controller at    yields the most elevated LSI, resulting the input-output pair     used as a 

wide-area signal to damp the inter-area oscillations in present work. 

6.2   Model Order Reduction: In electrical power systems, the order of the model may 

effectively arrive at around large number of state variables like control, trajectory affectability 

and dynamical simulation and so on. This sort of investigation brings a complex computation. 

Full order plant has higher number of states with limited number of input and output so they 

are rarely controllable and observable. To address this issue we need to reduce model order in 

a way such that frequency response of reduced model nearly matches with the full order 

model and holds critical modes of oscillation. Model order reduction is the supplanting of the 

original system with one of the much more diminutive dimensional order system in the 

accompanying way. 

 The frequency response of both reduced and original system should be nearly same. 

 The cost of creating the reduced model from the original model must be less than the 

cost of performing the analysis using the original model.  
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Most of the methods of model order reduction based on the linear systems which provides an 

exact description of the original system. The schmr bases model order reduction technique is 

used in this thesis work to obtain reduced order model from original model in MATLAB that 

uses schur based model order reduction technique. This function performs schur method 

model reduction on G(s) such that the infinity norm of the error is less or equal to smaller 

Hankel Singular Values [4]. 

 Here we first reduced the 68
th

 order original system to 10
th

 order reduced order system 

and it is found that the reduced order model holds these three low-frequency oscillatory 

modes which were in full order model and it is also observed that reduced order plant is 

controllable and observable. It has also been observed that the frequency response of both 

original and reduced order model is found to be nearly same.

  

Fig. 6.1: Frequency response of full and reduced order plant 

Figure given above shows the bode plot of original and reduced order plant and it is observed 

that frequency response of reduced 10
th

 order model is almost matches with the original 

model in desired frequency range of 0.1 to 10 Hz. 

T.F. of the reduced order plant       is given as: 
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6.3   Wide-Area Control Configuration: With the wide-area control loop selection and 

plant model order reduction we have applied WPSS to generator    along with AVR and 

local PSS as shown in given figure. 

 

 

 

 

 

 

 

 

Fig. 6.2: PSS and AVR Structure at Generator    

WPSS is applied to AVR control loop as an additional controller through feedback to damp 

inter-area mode of oscillations and Local PSS is applied as a supplementary controller to the 

AVR loop to damp local area mode of oscillations. In this thesis work, wide-area controller 

design is performed using robust controller design method. 

6.4   WPSS/   Controller Design: A traditional power system regularly subjected to 

instabilities and system transforms so it is necessary to design a robust controller that can 

cope with uncertainties and related problems in the model while without affecting the system 

performance. Robust control methodology is used to design WPSS in this thesis work. 

 For two areas, four machine power systems, the adapted control configuration is 

shown in figure. 

 

     
 

Local PSS 

WPSS 

   

     

        

      

         

    

∑ 

∑ 

Exciter Gain 
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Fig.6.3: Block Diagram Representation of Close Loop System 

 

Where G is the linearized plant, K is wide-area feedback controller (WPSS Transfer 

Function), y system is output.  Another signal d is disturbance input to the output/system, and 

signal n is represented as noise in output measurement. The output of the system can be 

chosen as power in the tie-lines, rotor angle deviation and speed deviation between two 

generators from each area of the system [2]. By choosing these parameters from both the 

areas, inter-area oscillations can be identified from output measurement. We have chosen 

speed deviation as output in present work. 

 The output and input of given close loop system can be written as: 

 

                                        (6.1)   

                                       (6.2) 

Let us define:                      &                           (6.3) 

 

Where   is called sensitivity function, which represents the measure of relative change in the 

closed loop transfer function   to relative change in the plant model  .   is called 

complementary sensitivity function. It can be observed from equation (1) that   is the transfer 

function from disturbance to output.  

 Here, we need to design a robust controller in such a way that effect of disturbance 

and noise in the output is minimised. For disturbance and noise rejection   and   should be 

minimised. These kind of problem known as multi-objective problem. We have solved this 

problem by summing them together and made it a single objective. But, there will be trade-off 

to achieve the both since      . Considering    performance in the sense that    norm 

of the function is to be minimized [3]. 

y 

n 

d 

∑ 

∑ Plant G 

-K 
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 Hence the controller design problem is defined as: 

     
 
 
 
 

                        (6.4) 

  Where,      represents    norm of the respective function. 

It has been observed that disturbance is of low frequencies and noise is of high frequencies, 

generally. To cope up with this problem we have considered weighted sensitivity 

minimization so that disturbance can be minimising at low frequencies and noise at high 

frequencies [16-18]. It is also beneficial if the control input can be constrained in the design 

so that actuator saturation does not arise and less control effort is used. We have considered 

this as another objective criterion, so a weighted term      is used. So the new multi-

objective mixed sensitivity problem for controller design can be defined as [3]  

     
   
    
   

 

 

                   (6.5) 

Here,   ,    and    are weight functions to minimise the effect of sensitivity function  , 

input sensitivity function    and complementary sensitivity function   respectively. 

 Weight functions are frequency dependent and it can be chosen to meet design 

requirement from robust stability requirement due to unstructured uncertainties. Applying 

small gain criterion on (6.5) one can get necessary and sufficient condition for    design [5].  

Design based on (6.5) imposes difficulty in the selection of this weight function [3]. If the 

combination of (i) S and KS or (ii) S and T are used for designing such    controllers then 

the selection of weight functions become easier.    is chosen as high gain LPF, whereas 

other weight functions are chosen as HPF. 

    Performance provides minimum gain reduction i.e. disturbance rejection. This 

method known as    mixed sensitivity synthesis method for robust control design. By which 

designed controller stabilizes the Two-Area power system and minimizes the    cost 

function. 

 With these design criteria only we may not improve damping for inter-area mode of 

oscillation. For this we need to place the closed loop poles in the left side of the complex 

plane so that damping can be improve.  

 The controller is designed using the performance criteria (6.5) along with pole 

placement in the left half of complex plane so that damping can be improved. For this we 

need to choose appropriate bandwidth for selecting weight function   . 

 Bandwidth is tightly defined as the frequency range within which our system is stable 

[3]. So it is important to select suitable weight functions for such a controller design. 
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Since the low frequency oscillation (local area and inter area oscillations) are bellow 10 

rad/sec, so we have chosen bandwidth for the selection of    and    as 10 rad/sec.    is 

chosen as LPF and    is chosen as HPF and weight on control gain    is chosen as BPF in 

the frequency range of interest. 

 The selected weight functions are given as follows: 

 

   
  

    
 ,      

    

           
   and            

 

    
 

 

 The mixsyn of robust control tool box of Matlab is used to design the WPSS controller 

with above design configuration [4]. Obtained controller is of the order of 14
th

 (10 order for 

the plant and 4 for the weights). Designed controller yields the order of the plant and order of 

weighting functions. High order of controller imposes difficulty in computation, 

implementing control gains on the system. To cope up with this problem controller order is 

reduced so that its frequency response matches with the full order controller in the desired 

frequency range and it holds the important oscillatory modes in the system. 

 The designed controller is further reduced 5
th

 order for ease of computation using 

schmr command in Matlab. 

 

Fig. 6.4: Frequency response of full and reduced order controller 

 

The T.F. of the reduced order controller       is given as: 
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6.5   Simulation Result: With the designed wide-area power system stabilizer/    mixed 

sensitivity robust controller low frequency oscillations in the two areas power system is 

studied and the simulation results are given bellow: 

 

Fig. 6.5: Rotor Speed Deviation without WPSS 

The above result shows the response of rotor angle deviation         of two area power 

systems without WPSS. Here rotor speed deviation is varied with respect to the      and it is 

find that the rotor speed deviation         is increasing as time is increasing. Its response 

is found to be oscillatory and system is unstable because it lacks the global observation and 

no WPSS is used to damp inter-area mode of oscillation present in two area power system. 

However, local area mode of oscillations was damped out using local PSS previously. 

Bellow figure present the simulation result of rotor speed deviation with WPSS. 

 

Fig. 6.6: Rotor Speed Deviation with WPSS 

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5
x 10

-5

Time(sec)

D
if
fe

re
n
c
e
 o

f 
R

o
to

r 
S

p
e
e
d
 D

e
v
ia

ti
o
n
 (

G
2
 &

 G
3
)

Rotor Speed Deviation With WPSS



 

28 
 

Above result shows the response of rotor angle deviation         of two area power 

system with WPSS. It is observed that with the use of WPSS the inter-area mode of 

oscillation present in two-area power system is reducing because WPSS uses global 

observation to damp inter-area mode of oscillations. The weight functions are selected to 

improve noise disturbance margin present in two area power system and mixed sensitivity    

controller is designed to damp inter-area mode of oscillations. 
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Chapter 7 

Discussion and Conclusion 

In this thesis, effect of low frequency oscillations presented in two-area power system has 

been discussed. After modelling two area power systems it is liberalized around an operating 

point and local and inter-area mode of oscillations is verified, its frequency and damping has 

been studied. For the designing of controller it is required to reduce model order to reduce the 

computation effort and assure about controllability and observability. The full order model is 

reduced from 68th to 10th order. The designed controller order is also reduced for less 

computation effort and wide-area power system stabilizer (WPSS) /mixed sensitivity H_∞ 

controller is designed using robust control so that disturbance rejection is improved and inter-

area mode of oscillations present in the two area power system has been damp out. The 

designed controller is able to damp the inter-area mode of oscillations presented in this two-

area power system and disturbance rejection is improved. However, local area mode of 

oscillations was damp using PSS using local signals. 

7.1   Conclusion: Mixed sensitivity    controller/WPSS for two area power system has 

been design to inter-area mode of oscillations present in two area power system. However, 

local area mode of oscillations presented in this system was damped out using PSS, which 

uses local signals.  

7.2   Future Scope: Present work has been carried out on two areas, 4 machine power 

systems. The same work could be done on more than two area power systems. Also, using 

wide-area signals, there is some delay present in this. We can address this issue later in future.   
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