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ABSTRACT

Out of the various seismic hazardsil liquefaction is a major cause of both loss of life and
damage to infrastructures and lifeline systems. Soil liguefaction phenomena have been
noticed in many historical earthquakes after first large scale observations of damage caused
by liquefactionin the 1964 Niigata, Japan and 1964 Alaska, USA, earthquakes. Due to
difficulty in obtaining high quality undisturbed samples and cost involved theresitu

tests standard penetration teSKT) and cone penetration test (CRBrebeing preferred

by geotechnical engineers for liquefaction potential evaluation with limited use of other in
situ tests like shear wave velocity tests and Baker penetration Téssliquefaction
evaluation in thedeterministicframework is preferred by the geotechnicalgameering
professionals because of its simple mathematical approach with minimum requirement of
data, time and effort. However, for important life line structures, there is a need of
probabilistic and reliability methods for taking risk based design decddn recent years,

soft computingechniquesuch as artificial neural network (ANN), support vector machine
(SVM) and relevance vector machine (RVM) have been successfully implemented for
evaluation liquefaction potential with better accuracy compaoce@dvailable statistical
methods. In the recent past, evolutionaoft computing technique genetic programming

(GP) based on Darwinian theory of natural selection is being used as an alsarfhate

computingtechnique.

The objective of the present resda is to develop deterministic, probabilistic and
reliability-based models to evaluate the liquefaction potential of soil usialji-gene

genetic programmingMGGP) based on post liguefaction SPT and CPT database.

Here, the liquefaction potential is dwated and expressed in terms of liquefaction field
performance indicator, referred as a liquefaction indéx&nd factor of safety against the
occurrence of liquefactionF(). Further, the developetl, models have been used to
develop both SPT and CH¥ased CRR models. These develope@RR models in
conjunction with the widely usedCSRs model, form the proposed MG@&ksed
deterministic methods. The efficiency of both the developed SPT andba$ed



deterministic modelfiasbeen compared with that of @lable statistical and ANNased
models on the basis of independent database. Two examples have been solved to show the
use of developed deterministic methods to find out the extent of ground improvement

works needs to be done in termd\ako and gcinusing the adopted factor of safety.

The probabilistic evaluation of liquefaction potential has been performed where
liquefaction potential is expressed in terms of probability of liquefactiyh &nd the
degree of conservatism associated with develapetdrministic models are quantified in
terms of P.. Using Bayesian theory of conditional probability theis related with thd>,
through the developed mapping functions. The developed SPT anth&@Rd probabilistic
models have been compared in termshef rate of successful prediction within different
limits of P, with that of the available statistical and ANds&sed probabilistic models. Two
examples, one from SPT and the other from ®B3ed data, have been illustrated to show
the use of developed gpabilistic methods to take ridhkased desigmlecision for a site
susceptible to liquefaction.

Further reliability analysis followingdirst order reliability method RORM) has been
carried out using high quality SPT and CPT database, which considers bdéh amd
parameter uncertainties. The uncertainties of input parameters were obtained from the
database. But, a rigorous reliability analysis associated with the Bayesian mapping function
approach was followed to estimate model uncertainty of the lintie,stehich has been
represented by a lognormal random variable, sndharacterized in terms of its two
statistics, namely, the mean and the coefficient of variation. Four examples, two from SPT
data (one liquefied and the other Aajuefied case) and thather two from CPT data (one
liquefied and the other neliquefied case), have been illustrated to show the procedure of
reliability-based liquefaction potential evaluation in terms of notional probability of
liquefaction P.) considering the correspondin it r ueo model uncertai

SPT and CPIbased limit state models in the analysis.

The developmenbf compact and comprehensive model equatising deterministic

methodsbased orboth SPT and CPT data will enable geotechnical professionadé it

iv



with confidence and ease. The presentatibprobabilistic methodsn conjunctionwith
deterministic factor of safetfFs) value gives the measure of probability of liquefaction
correspondingo particularFs. The present works also illustratee effect of model and
parametemncertaintiesvhile discussing the reliability analysis. Design charts have been

presented and discussed with examples using both SPT and CPT data.
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Chapter 1
INTRODUC TION

1.1 GENERAL

Natural hazarsllike earthquake, tsunami, flood, cyclone and landslide® severe threat to
human life andits environment There is a huge social aretonomic consequence
immediately after the occurrence of a natural disaster. The adverse effects of disasters are
much more in developing countries where the population is \Jarge and the
socioeconomidactors force the people to live in vulnerable areas. It is estimated, on average
natural disaster claim 1000 lives and cause damage exceedinglioneUs$ each week

Due to natural hazards in the last century around 30Wtalfcasualties and 60% of the total
property loss caused by the various major natural hazards around the world is due to
earthquake only (www.efdat.net/ngdc.noaa.gov). The natural hazards are no more
considered as the curse of God, but can be mitigaiddsuitable identification, evaluation

and analysis of the same.

The advent of high speed digital computers, development of new computational algorithms
and their application to new areas cutting across various disciplines in science and
engineering wetnhand in hand. In recent years such efforts have increased phenomenally. In
the following section an effort has been made briefly to trace the need for evaluation of
seismic hazardnd use oboft computingechniquedor liquefaction susceptibilityanalysis

to decide upon the course of studies to be taken up in the present thesis.
1.2 RECENT TRENDS OF NATURAL HAZARDS

A study was made to observe the recent trends in natural hazards to identify the need of the
present research. Case histories of differaajor natural disasters, occurrddring 1911
2010 around the world as well as in India, are collected from intematiand national

disaster dataases such as en.wikipedia.org, -éat.net, ngdc.noaa.gov, nidm.net, sarc
1



sdmc.nic.in etc. The conflictingatkthave been verifiedonsideringthe authenticityof the
database. The major naturbhzardsinclude earthquake, Tsunami, flood, Cyclone and
landslide. The number adccurrencesof the aforesaid natural disasters as reported, the
casualties and the prape loss caused due to these disasters during the last one century
(1911:2010) are studied thoroughly and presented as follows.

The number obccurrence®f the major natural disasters in the last century is increasing
continuously over the years, wherghere is a decrease in the total numbers of people died
(Fig. 1.1). This shows the better preparedness, implementation of early warning systems and
other preventive measures adopted gradually by the world community has got a positive
impact on preventiof loss of life. However, the property damage caused by the major
natural disasters has been increased duhagsame period of time (Fig.1). This clearly
indicates that the existing disaster mitigation measures are not adequate to protect the
infrastiuctures completely from catasphic nature of the hazards.
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Figs. 1.2a and 1.2b show the variation of human death and property losses,ivespdae

to different major natural hazards during the last century. It can be seen that the causality is
the maximundue to flood but the property lossnsaximizeddue to earthquake. However,
when the datare presentedh terms of quartecentury for luman death (Fig. 1.3) and
property loss (Figl.4), it was observed that in last 50 years the effetiteofloodhasbeen
reduced in terms of human death and property loss. However, the human death and property
damage due to earthquake has steadily isext@verthe same periadThis may be due to

the fact that the prediction models for flood forecasting have become effective in
combination with warning system asdcietyhas become less pronettos disaster. In case

of earthquake due to increase inamlzation and lack cdnadequate mitigation system, its
destructive effect haseenincreased.
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1.3 SOIL LIQUEFACTION

Seismic hazards can be categorized as ground shaking, structural hazards, liquefaction,
landslides, retaining struct failures, lifeline hazards, tsunamis. Out of the apove
seismically induced liquefaction of soil is a major cause of both loss of life and damage to
infrastructures and lifeline systems. The soil liquefaction phenomenon was known in early
stage of develpment of soil mechanics by Terzhagi and Peck (1948) to explain the
phenomenon of sudden loss of strength in loose sand deposit. It was recognized as the main
cause of slope failure in saturated sandy deposit. Though, soil liquefaction phenomena have
beenrecognized since long, it was more comprehensively brought to the attention of
engineers, seismologists and scientific community of the world by several devastating
earthquakes around the world; Niigata and Alaska (1964), Loma Prieta (1989), Kobe
(1995)Kocaeli (1999)and ChiChi (1999) earthquakes (Baziar and Jafarian 2007). Since
then, a numerous investigat®an field and laboratory revealed that soil liquefaction may

be better described as a disastrous failure phenomenon in which saturdtesessiiiength

due to increase in pore water pressure and reduction in effective stress under rapid loading
and the failed soil acquires a degree of mobility sufficient to permit movement from meters
to kilometers. Soil liquefaction can cause ground failureha way of sand boils, major
landslides, surface settlement, lateral spreading, lateral movement of bridge supports,
settling and tilting of buildings, failure ofaterfront structure and severe damage to the

lifeline systems etc.

Soil liquefaction can beclassified into two groups as flow liquefaction and cyclic
liquefaction. The flow liquefaction can occur when the shear stress required for static
equilibrium of a soil is greater than the shear strength of soil in its liquefied state. The cyclic
liquefacion occurs even if static shear stress is less than the shear strength of liquefied soil.
Here, the deformations produced are driven by both cyclic and static shear stress. Generally
the deformations develop incrementally during earthquake shaking. Iproaice large
permanent deformations during earthquake shaking. The cyclic liquefaction occurs under a
much broader range of soil and site conditions than flow liquefaction. But, its effect can
range from insignificant to highly damaging.
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The liquefactiorhazard evaluation involves liquefaction susceptibility analysis, liquefaction
potential evaluation, assessment of effect of liquefaction the extent of ground failure
caused by liquefaction) and study of response of various foundations in ligseifiethese

are the major concern of geotechnical engineers. In the present study, the focus is on
liquefaction potential evaluation, which determines the likelihood of liquefaction triggering
in a particular soil in a given earthquake. Evaluation of idngefaction potential of a soil
subjected to a given seismic loading is an important first step towards mitigating
liquefactiorinduced damage. Though, different approaches like cyclic dtesiad, energy
based and cyclic stregmsed approaches are isey the stress based approach is the most
widely usedmethoddor evaluation of liquefaction potential of soil (Krammer, 1996). Thus,
the focusof present study is on the evaluation of liquefaction potential on the basis of the

cyclic stressbased approach

There are two types of cyclic stress baapgroach available for assessing liquefaction
potential. One is by means of laboratory testing (e.g., cyctaxtal test and cyclic simple
shear test) of undisturbed samples, and the other invtileesseof empirical relationships
that relate observed fieldehaviorwith in-situ tests such as standard penetration test (SPT),
cone penetration test (CPT), shear wave velocity measurementa(d the Becker

penetration test (BPT).

The methods likdinite elenent, finite difference statisticallyderived empirical methods
based on backnalyses of field earthquake case histoalsused for liquefaction analysis
Finite element and finite difference analyses are the most complex and accurate of the above
methals. However, liquefied sediments are highly variable ehert distancesdeveloping
a sufficiently accurate site model for a detailed numerical model requires extensive site
characterization effort. Desired constitutive modeling of liquefiable soil iig déficult,
even with considerable laboratory testingence, in-situ tests along with the post
liquefaction case historiesalibrated empirical relationships haleen used widely around
the world. The cyclic stresbased simplified methods based orsitu test such as SPT,
CPT, Vs measurements and BPT are commonly preferred by the geotechnical engineer to
evaluate the liguefaction potential of soils throughout most part of world.
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The stresdased simplified procedure is pioneered by Seed and 1di8§4)1The SPT

based simplified methodjevelopedby Seed and Idriss (1971), has been modified and
improved through several revisions (Seed and Idriss 1982; Seed et al. 1983; Seed et al.
1985; Youd et al. 2001) and remains the most widely usethodsaround the world.
Robertson and Campanella (1985) first developed a CPT based method for evaluation of
liquefaction potential, which is a conversion frahe SPT based methaging empirical
correlation of SPICPT and follows the same strdsased approach ddeed and Idriss
(1971). Thereatfter, various CH¥ased methods of soil liquefaction potential evaluation
using statistical and regression analysis techniques have been developed (Seed and de Alba
1986; Olsen 1988; Shibata and Teparaksa 1988; Mitchell a@dgT1990; Stark and Olson
1995; Suzuki et al. 1995; Olsen 1997; Robertson and Wride 1998; Youd et al. 2001).
Several \é-based simplified methods have been developed (Dobry #9&l; Stokoe et al.

1988; Tokimatsu and Uchida 1990; Robertson et al. 1B8%en et al. 1992; Lodge 1994;
Andrus and Stokoe 2000uang et al. 2000a; Juang et al. 208idrus et al. 2003) and are

in use. But, very few BP-based simplified methods (Harder and Seed 1986 and Youd et al.

2001) have been developaddprimarily for gravelly soil.

For a given soil resistance index, such as the corrected SPT blow count, the boundary curve
yields liquefaction resistance of a soil, which is usually expressed as the cyclic resistance
ratio (CRR. Under a given seismic loading, which is alty expressed as the cyclic stress

ratio (CSR the liquefaction potential of a soil is evaluated in terms of a factor of s&fgty (
which is defined as the ratio @RRto CSR The approach of expressing liquefaction
potential of soil in terms oF; is referred to as a deterministic method and is very much

preferred by geotechnical professionals due its simplicity for use.

However, due to parameter and model uncertainties, Fs>1 does not always indieate non

liguefaction and also does not necessarily guae zero chance il being liquefied.

Similarly FsOl may not always correspond

chance of beingliquefied (Juang et al. 20@). The boundary surface that separates

liquefaction and noitiquefaction cases in thdeterministic methods is considered as a

perfor mance function or Al 1 mit state fun
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conservative side by encompassing most of lijaified cases. But, the degree of
conservatisms not quantified (Juang et @&00®). Thus, attempts have been made by
several researchers (Haldar and Tang 1979; Lioet al. 1988; Youd and Noblite T&&Ak

et al. 1999) to assess liquefaction potential in terms of probability of liquefa&ipoging
statistical or probabilistic appaches.

The above irsitu testbased models are all dadaiven as they are based on statistical
analyses of the databases of post liquefaction case histories. The calculd®ionsig

these empirical models requires only the mean values of the iapables, whereas the
uncertainty in the parameters and the model are excluded from the analysis. Thus, resulting
P. might be subjected to error if the effect of parameter and model uncertainty is significant.
These difficulties can be overcome by adoptiegiability based probabilistic analysis of
liquefaction, which considers both model and parameter uncertainties. In the framework of
reliability analysis, the boundary curve separating liguefaction andioosfaction is a

limit state. To conduct a though reliability analysis, knowledge of the uncertainties that are
associated with both the input parameters and the limit state model is required. However,
most of the existing simplified methods have not been fully examined for its model

uncertainty, thagh the simplified methods tend to be conservative to some extent.

Soft computing techniquesuch as; artificial neural network (ANN) (Goh, 1994; Juang et

al., 2000; Hanna et al., 2007; Samui and Sitharam, 2011), support vector machine (SVM)
(Pal, 2006; ®h and Goh, 2007; Samui and Sitharam, 2011) and relevance vector machine
(RVM) (Samui, 2007) have been used to develop liquefaction prediction models based on an
in-situ test database, which are found to be more efficient compared to statistical methods.
However, the ANN has poor generalization, attributed to attainment of local minima during
training and needs iterative learning steps to obtain better learning performances. The SVM
has better generalization <c¢compar asiivetoss ANN,
function (U) needs to be fine tuned by the
a comprehensive relationship between the i

boxé system.



In the recent past, genetic programming (GP) baseldarwinian theory of natural selection

Is being used as an alternateft computingtechnique. The GP is defined as the next
generatiorsoft computing ec hni que and also called as a
2007) in which the mathematicalrstture of the model can be derived, allowing further
information of the system behaviour. The GP models have been applied to some difficult
geotechnical engineering problems (Yang et al., 2004; Javaali,e2006; Rezania and
Javadi,2007; Alavi et al.,2011; Gandomi and Alavi, 2012b; Muduli et al., 2013) with
success. However, its use in liquefaction susceptibility assessment is very liklaed (

and Gandomi, 2012andomi and Alavi, 2012bGandomi and Alavi, 2003 The main
advantage of GP and itanant multigene genetic programming (MGGP) over traditional
statistical methods and othsoft computingtechniques is its ability to develap compact

and explicit prediction equatidn terms of different model variables.
1.4 MOTIVATION FOR THE RESEAR CH

From the above discussions, it daseen that different approaches and methodologies have
been used to develop predictive models for evaluation of liquefaction potential over the
years by various researchers. But any improvement to the existing mdtroalssessing
liquefaction potential is considered as a contribution to the field of geotechnical engineering
in mitigating the liguefaction hazards. In recent years, artificial intelligence techniques such

as ANN, SVM and RVM have been successfully iempénted for evaluation liguefaction

potential. Though, GP has been implemented to solve some complex geotechnical problems

its use in liquefaction potential evaluation is very limited. Muduli et al. (2013) observed that
the efficacy of GFbased predictivemodel for uplift capacity of suction caisson
outperformed the othesoft computingtechniquebased (ANN, SVM, RVM) prediction
models in terms of different statistical performance criteria. Now a, dlag performance
based design concepts in earthquakenemging have been receiving wide acceptance. One
of the vital features of performantased design in the perspective of geotechnical
earthquake engineering amn assessmenf liquefaction potential in terms of the probability

of liquefaction. Precise @imation of the probability of liquefaction requires information of

both parameter and model uncertainties. The issue of model uncertainty has been addressed

9
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in the research presented in this dissertation through rigorous genetic programming based
reliability analyses, which is considered to be significant.

1.5. OBJECTIVES AND SCOPE OF THE RESEARCH

The objective of the present research is to develop deterministic, probabilistic and
reliability-based models to evaluatbe liquefaction potentiabf soil usng multigene
genetic programming based on reliable post liquefaction SPT and CPT database.

The scopes of the research are as follows:

I.  To develop deterministic models implementing MGGP on the basis of available post
liquefaction SPT and CPT data base

ii. To develop SPT and CPbased probabilistic models using Bayesian mapping
function approach to relatgto P,

ii. To explore the use of first order reliabilty method (FORM) for assessing
liquefaction potential of soil in terms & on the basis o&vailable SF and CPT
database

iv. ~ To estimate model uncertainties of the developed Mbea&ded models for
liquefaction potential evaluation ugjimigorous reliability analysis

v. To validate developed models by comparing the efficacy of the proposed models

with available modls on thebasis of independent database

1.6 ORGANIZATION OF THESIS

This thesis consists of seven chaptaensl the chapters have beerganizedin following

order.

After a brief introduction the recent trend in natural hazards, the motivatima scopeand
objective of the research wodte presentedn Chapter 1that sets the stage for the entire

thesis.
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A detailed literature review pertaining to liquefaction susceptbisinalysis has been
presentedn Chapter 2 The variousapproache®f liquefacion triggering analysisin-situ
testbasedmethods used for liquefaction susceptibility evalugtimethods ofanalysis and

analysis toolsisedarediscussedn this chapter.

Chapter3 pertains toa detailed descriptionf the methodologyanalysis togl genetic
programming (GR)usedfor development of different models for evaluation of liquefaction
potential. The description and implementation of the GP in general and its variant; multi
gene genetic programming (MGG described citing examples.

In Chapter4, on the basis of post liquefaction SPT and CPT datatssarateleterministic
modelsare developed using thdGGP method The efficiendes of developedmodelsare
comparedwith the existing ANN and SVM models The developed models are also
compmred with other methodssing independent databad#/hile describing GP as an
alternate predictive tool, aspects like the GP parameters, different statistical measures to

compare different methods are also discussed.

The probabilistic evaluation of liquefon susceptibility evaluation is discussed in Chapter
5. This dapter covers implementation ofBayesian mapping functiofor probabilistic
evaluation of liquefaction potential by using the develop@BT and CPJ¥based
deterministic model®f Chapter4. In this chapter efficiency of the developed models are
compared with the available SPT and GBsed probabilistic models using independent

database.

Chapter6 presents the use tiie first order reliability methodFORM) for evaluatinghe
probability of liquefaction in detail, and uncertainties of the developed SPT aneb&std
limit state models are estimated through rigorous reliability analysis. The robustness of the
Bayesian mapping approachalso demonstrateid this chapterin the absence of exigg
model for comparison,edlv e | o p me nt of O b evalidaion methddeid alsau s i n g

discussed in this chapter.
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In Chapter 7, generalized conclusianadefrom various studies in this thes&e presented
and the scope of the future work is irated. The general layout and method of liquefaction
potentialevaluation of soil using different-situ test data andifferent methods arshown

in a flow diagram (Figl.5) for ready reference.

43 » Chapter 1 » Introduction
»| Chapter 2 » Literature Review
Chapter3 Analysis Tool
Chapterd Deterministic Method
Y
SPT- based CPT- based
»| Chapterb »| Probablistic Method
! !
SPT- based CPT - based
| Chapter6 »| Reliability Method
' '
SPT- based CPT- based
»| Chapter 7 »| SummaryandConclusion

D
< Fig.1.5A flow diagramshowing the organization of the thesis
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Chapter 2
LITERATURE REVIEW

2.1 INTRODUCTION

The quefaction haard evaluationinvolvesliquefaction susceptibility analysiBquefaction
potential evaluation, assessment of effect of liquefaction (i.e. the extent of ground failure
caused by liquefaction) and study of response of various foundations in liquefiethssi

are the major concerns of geotechnical engineers. But, in the present study, the focus is on
liquefaction potential evaluation, which determines the likelihood of liquefaction triggering
in a particular soil in a given earthquakiéhis Chapter presgs a review of the various
liquefaction potential evaluation methods. All thesailable research workee presented

in four different partsPart| focuses on different approaches ajukfaction potential
evaluation and &t Il discusses about widelysed stresbased approach in particular with
emphasis on the 4gitu test based methodBhe available methods of analysis within the
frameworkof stresshased approach such @sterministicmethod,probabilistic methocnd
reliability method, whichare n use for assessment of liquefaction potemtialdiscussed in

Part Ill. The variousanalysis tools useth model development for assessing liquefaction

potential aredescribedn the lastpart
2.2 LIQUEFACTION POTENTIAL EVALUATION

Once a particular sbis found to be susceptible to liquefaction on the basis of various
susceptibility criteria as mentioned in Kramer (1996) the next step in the liquefaction hazard
evaluation process is the evaluation of liquefaction potential, which is the main top& of t
present study.The major factors controlling the liquefactiqmotential of a saturated
cohesionless soil in level grounts the intersity and duration of earthquakbaking and the
density and effective coming pressure of the soil. Senal approache are used for

evaluating lgquefaction potential, includingi) the energybased approach(ii) the cyclic
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stressbased apmach and th¢iii) the cyclicstrainbased approaclach of the above three
methods are described briefly in the followssgbsecons

2.2.1 Energy-based approach

The energybased approach is theoreticalgry much appropriate for liquefaction potential
evaluation as the dissipated energy reflects both cyclic stress and strain amplitbdasa

dry soil is cyclically loaded it agses densification at the expense of energy as energy is
required to rearrange the individual soil particles. For a saturated soil densification causes an
increase in pore water pressure undedrained condition as the amount of energy required

to rearrage soil grains decreases due to decrease in contact forces. Using this principle
Davis and Berrill (1982) developed energy based formulation, in which the dissipated
seismic energy at a site is considered responsible for the progressive developmeat of por
water pressure, and also presented an expression as a criterion for liquefaction. Berrill and
Davis (1985)revised their earlier formulation and developed an expression for the pore
pressure increase by taking into account alimear relationship betven the pore pressure
increase and dissipated energy, effect of natural attenuation and reassessing the magnitude

total radiated energy relationship:

DJ _ 120A0.5100.75M
s - erl.SS -00.75 (2.1)

wherue dncrease i n pleeffective eettiairstrepsratedspshwfringerest, @

N; = corrected standard penetration value of the site soil layer under investigation,
material attenuation factoM= earthquake magnitude on the Ricldgeale,r = distance of

the site from the centre of energy release. Law et al. (1990) used the above energy principles

and developed a criterion for liquefaction occurrence in sands as given below.

101.5M
2.28% 10 N *r*?

210 (2.2)
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Several other investigators have established relationships between the pore pressure
development and the dissipated energy during ground shdkionge(oaet al. 1994; Ostadan

et al. 199%. The liquefaction triggering can be formulated by commgathe calculated unit
energy from the time series record of a design earthquake with the resistance to liquefaction
in terms of energy based onsiiu soil prgerties (Lianget al. 1995; Di@D00). The energy

based methods, howeves,less commonly usedue to noravailability of quality data for
calibration of these methods

2.22 Cyclic strainbased approach

The cyclic strainbased approactio evaluae of liquefaction potentialis based on
experimental evidence that shows densification of dry samééfactively controlled by

cyclic strain rather than cyclic stress and there exist a threshold volumetric strain below
which densification does not occur. Since tharetendencies of sand tdensitywhen dry

this is directly related to its tendency tievelop excess pore pressure when saturated. This
shows that pore pressure generation is more fundamentally related to cyclic strains than
cyclic stress. In this approach earthquake induced loading is expressed in terms cyclic
strains. The time history dlfie cyclic shear straican be estimated from the ground response

analysis. As it is difficult to predict cyclic strain accuratédgrby et al.(1982)developedca

simplified method for e S¢fc ) from the angplitudenaf the r m
unf orm cyclic stress as originally ¢pisopose
calcul ated it I S Ccompart) e dedwi golporetwatergredswel d s
wi || be generated and t hus b d theioecureeoce ofon ¢

liquefaction is possible. Liquefaction potential can be evaluated in this approach by
comparing the earthquake induced cyclic loading in terms of the amplitude of a seaies of
equivalent numbeof uniform straincycleswith liquefaction esistancewhich is expressed

in terms of the cyclic strain amplitude required to initiate liquefactiaiménsame number

of cycles. Liquefaction can be triggered at depths where loading exceeds the liquefaction
resistance. Dorby et al.(148 developed atorsional triaxial test for measurement of
liguefaction resistance by imposing cyclic strains underdmaimed conditions on a
cylindrical triaxial specimen by strain controlled cyclic torsion. The developed cyclic shear

strain induces excess pore prgssin the specimerlnlike cyclic stress approach cyclic
15



strain approach is not commonly used as cyclic saawplitudes can to be predicted as
accurately agyclic stressamplitude and the cyclic stragontrolled testing equipment is
less readily avéable than the cyclic stres®ntrolled testing equipmentKramer and
Elgamal, 2001)Thus, the focusf this chapter is on the evaluation of liquefaction potential
using the cyclic stredsased methods

2.2.3 Cyclic stresshased approach

In this approals the earthquake induced loading is expressed in terms of cyclic shear stress,
which is compared with the liquefaction resistance of soil expressed terms of cyclic

shear stress. The location at which the loading exceeds the resistance of iheefadtion

is expected to occur. The earthquake loading can be estimated in two iyvaysa detailed
ground response analysis) (by the simplified method as originally proposed by Seed and
Idriss (1971) and its subsequent modificatiortse simplified method arewidely used than

the first method. The uniform cyclic shear stress amplitude due to earthquake loading for
level (or gently slopinggroundcan be evaluated as per the simplified model developed by
Seed and Idriss (197Which is presentedeow.

t, = O.GS%SVI’(, (2.3)

w h e gy e thddaverage equivalent uniform shear stressitotal vertical stress at the depth
under consideratigramax= the peak horizontal ground surface decion, g = acceleration
due to gravity andy = the value of a stress reduction factor at the depth of interest that

accounts for the flexibility of soil column (e.grg= 1 corresponds tdhe rigid body

()

behavio} as illustrated in Fig. 2.1. ang canbe presented adi :ﬁ. The (Ghaya is

the maximum shear stress on soil element considering it as deformable body Wliegeas
is the maximum shear stress on soil element consideringitigisl body The factor 0.65 is
used to convert the peak cyclic shear stress ratio tolia syi@ss ratio that is representative

of the most significant cycles over the full duration of loading.
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Fa = (Tmax )y /(Tmax ),
amax Maximum Shear Stress o ° (Tiar ) /(7max ),

vha

(Tmax ), =
fmax fp T/ max [ \
- [ * max )

I )

Depth

Fig. 2.1Schematic for determining maximum shear stregs, and the stress
reduction coefficientry (Seed and Idriss 1971).
The liquefaction esistance of an element of soil depends on how close the initial state of soil
i's to the state corresponding to Afailureo
soil element from the initial state to failure sta@gclic stress based approastwidely used
and two typesof methods under this approaeie availablefor assessindiquefaction
potential. One is by means of laboratory testing of undisturbed samples, and the other is

based on empirical relationships that relate the field behaatibrthein-situ tests.

2.2.3.1 Laboratory testbased methods:

Liquefaction resistance can be determined generally by two types of laboratory testing of
undisturbed samples: (i) cyclic4aial testand (i) cyclic simple shear testn these tests
liquefactionfailures is defined as the point at which initial liquefaction is reached or at
which some limiting cyclic strain amplitude is reached. Laboratory tests show that number
of loading cycles required to produce liguefaction failure decreases wittase of shear
stress amplitude and withe decreasef density of soil. Cyclic strength is normalized by
initial effective overburden pressure to produce cyclic stress 1@86)( For cyclic simple

shear tes€CSRis taken as the ratio of cyclic she#iress to the initial vertical effective stress

i.e. CSRss od) 0. &or cyclic triaxial test it is taken as the ratio of maximum cyclic shear

stress to the initial effective confining pressure and can be givelCBBwE G205
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w h e g is dyclic deviator stress anig?is the effective confining pressufBhe CSRof the
above two tests are not equivalent as they impose quite different loadingSRwalues of
both tests are related &833Rss=C (CSRw, Where g¢is a correction factor.

Seed and Le€l1966) defined initial liquefaction as the point dtigh the increase in pore
pressure is equal to the initial effective confining pressure from shedy of liquefaction

of saturated sands during cyclic loading. Seed and Idriss (1967) developed an empirical
procedure to evaluate the liquefaction potEntof soil deposits by combining the
development of pore water pressure obtained from laboratory results with the shear stress
time history determined from the seismic response calculations. Seed et al. (1975) developed

a model to determine the number afifarm stress cycled\Neq (at an amplitude of 65% of

the peak cyclic shear stress ildy= 0 . /66that would produce an increase in pore
pressure equivalent to that of irregular time history by applying weighting procedure to a set

of shear stress time histories frahe recorded strong ground motions. Ishihara and Koseki
(1989) showedHat when the plasticity indices were below 10 the fines have little effect on
liquefaction resistance. Chern and Chang (1995) developed a mathematical model for the
evaluation of liquefaction charactew$ soil subjected to earthquake induced cyclic logdin

based on cyclic triaxial test resultésing the developed model and commonly used physical
properties of soil the cyclic shear strength, number of cycles required to cause liquefaction
and generation of excess pore water pressure can be evaluatedt watbmrting to the

complex laboratory cyclic shear teB.r ay and Sancio (2006) C Ol
testing of a wide range of soilwhich werefoundto liquefy in Adapazari duringhe 1999
Kocael i e ar t h q weikesd soilstate astsddpettohligusfactiony. Gmtchev et

al. (2006) examined the validity of the plasticity indéX)(as a criterion for estimating the
liquefaction potential of clayey soils under cyclic loadifpey bund that an increase il

decreased the soil potential liquefy, and soil withPI>15 seemed to be ndni queyabl e,
ynding that is in agreement with the resul
Though, evaluation of liquefaction potential based on laboratory test yields good results
many engineers prefer to adopt the field performance correlatised approach becse of

great difficulty and cost involved in obtaining undisturbed samples from cohesisrsoil
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deposits. Here in thistudyfocus is on irsitu testbased available methods for liquefaction

potential evaluation.

2.2.3.2 In-situ Test based methods:

Sal liquefaction potential can be determined by usingsitn tests such as: (i) standard
penetration test (SPT) (i) cone penetration test (CPT) glig¢ar wave velocity (Y
measurement (iBecker penetration test (BPT).

Due to difficultiesin obtainirg high quality undisturbed samples asdbsequent high
quality laboratory testing of granular soils, useiesitu tests along with case histories
calibrated empiricatelationshipsare generally resorted by the geotechnical engineers for
the assessmeaqtf liquefaction potential of soild-he smplified procedurepioneered by Seed
and Idris (1971) mostly depend on a boundary cuwiich presents a limittate and
separates liquefaction cases from the-hqurefaction cases basing on field observations of
soil in earthquakes at the sites where in situ data are avaiEi#eboundary is usually
drawn conservatively such that all cases in which liquefaction has been observed lie above
it. In this approach th€SRis usually used as earthquake loading patarmand the cyclic
resistance ratioQRR is represented by 4situ test parameters that reflect the density and
pore pressure generation properties of it of the various isitu methodss mentioned
above SPT an@PT-based methods amidely usedfor liquefaction susceptibilitanalysis

of sail.

SPT-based method

It is the most widely used methods among the availabtuntest methods as discussed
above for evaluation of resistance of soil against the occurrence of liquefadidiman
(1971) frst proposedo use liqguefaction case histories to characterize liquefaction resistance
in terms of measured in situ test parameters. Seed and Idriss (i@l pioneer work in
developing a simplified empirical model, using laboratory tests and posfdiction field
observations in earthquakeshich presents a limit state function separating liquefied cases

from the norliquefied case®n the basis of SPT dat8eed et al. (1983) extended their
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previous work in developing a modified model in which u&SR( J  instead of peak
ground acceleration &) as a measure of seismic action andrburden pressurrected
SPT value N;) instead of relative densityD() as the site parameter representing its
resistance to liquefactiohlowever, it has been ddessed bynany researchers that t8€T
hasbeen conventionally conductég using different kinds of hammers in different parts of
the world, with different energy delivery systenwhich also havevarying degrees of
efficiency. Moreover, the borehole aineters and theampling techniques also differ
significantly, which in turrcausea large variability irthe measured values dependangthe
combinations of actual test procedures and equipment used

Seed et al. (1985¢xpressed the measured penetratiesistance Nm) in terms 0fNy,eo

where the driving energy in the drill rod is considered to be 60% of the free fall energy and
correction for overburden effect is applied. Liquefaction resistance curves for sands with
different fines contents are proposeshich is considered to be more reliable than the
previous curves expressed in terms of mean grainGydic stress ratioCSR as proposed

by Seed ah Idriss (1971) and its subsequent modifications in Seed et. al.(1983), Seed et
al.(1985), Youd et al2001), isdefnedas he aver age c ydévelaped®rm e ar
the horizontal surfacef soil layers due to vertically propagating shear waves normalized by
the initial vertical effective stress),Njo incorporate the increase in shear stiernite to

increase in effecte stress and is presented as follows:

CSR= Lo = 06525y (2.4)

\ A\

where(l,° = effective vertical stress at the depth under considerafioe valie of CSRis
corrected to amarthqake magnitude of 7.5, uginthe magnitude correction proposed by
Seed etl. (1985). Seed et al.(1985)0posed a standard blow col,as given below:

N,, =N, (ER/60%) (2.5)

where ER= percenage of the theoretical fredall energy(i.e., estimated rod energy ratio

expressed in percentagahd N,= measured SPT blow coutdrrespading to theER The
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value ofNggis corrected to ra effective stress of 100 kP&hus, the overburden stress and
energycorrected SPT valu®\; gois obtained by using the following relation:

Nl,eo = CN 3 Neo (2.6)

where Cy is the effective stress correction factor andcaculated from the following

relation:

2.2

S =lizes /p) (2.7)

where, Pa = latm of pressuin the same units used faj Fig. 2.2 is a graph otalculating
CSRand correspondingy; o data from sites wherkquefaction was owas notobserved
following pastearthquakes with magnitudes approximately 7.5Liquefaction and non
liguefaction data wereseparated by CycliResistance RatioORR curves. Curves were
developed for granular soils with the fines contenb%f or less, 15%, and 35%. FB2 is

only applicable for magnitude of 7.5 earthquakes.

Juang et al.2000 proposedanartificial neural network (ANN}based CRRmodelbased on

SPT dataseand usedayesian mapping functiompproacho relatefactor of safety against

the occurrence of liquefactioRs with probability of occurrence of liquefactioR,. Youd et

al. (2001) published a summary paper of 1996 48688, NCEER workshop in which the
updates and augmentations to the original
Seed et al.1983; and Seed et al (1985) for evaluation of liquefaction potential, are
recommended using SH¥sed methods and islisfollowed asthe current state of the art

on the subject of liquefactiopotential evaluation.Cetin (2000) and Cetin et al. (2004)

proposed new correlations for assessment of liquefaction triggering in soil.
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Fig. 2.2 SPTi basal limit stateboundary curves for Magnitude 7.5 earthquakils
data from liquefaction casestories (Modified fromYoud et al. 2001

These correlations areevelopedon the basis of an expanded and reassessed post
liquefaction SPT database after making screening of field data case histories on a
guality/uncertainty basis, incorporating improved knowledge and understanding of factors
affecting interpretation of SPT data, ugimproved understanding of factors affecting site
specific earthquake ground motion, implementing improved methods for assessment of in
situ CSR and using tgher order probabilistic tos| Bayesian updating techniqudhe
resulting correlations reduce thencertainty associated with the liquefaction potential
evaluation with respect to the existing models and also resolve controversial issues like
magnitudecorrelated duration weighting factors, adjustment of fines content and corrections
for overburden sess in the context of assessmenC8R Idriss and Boulanger (2@) and

Idriss and Boulanger (2006)e-examined the existing semiempirical procedures for
evaluating the liquefaction potential of saturated cohelgies soils during earthquakes and
recommendedrevisedcorrelationsfor use in practiceln this paper the authors discussed
about the parameters, which contribute to @&Rformulation like stress reduction factor,

earthquake magnitude scaling factoverburderncorrection factor, and also tleverburden
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normalizationfactor for penetration resistances and presented the modified relations for
these parameters.

CPT-based method

Although the above SP-based method remains amportant tool for evaluating
liquefaction resistance, it has somevdoacks, primarily due to the variable nature of the
SPT (Robertson an@ampanella, 1985; Skempton, 1986pwadaysthe cone penetration

test (CPT) is becominmore acceptablas it is consistent, repeatable and able to identify a
continuous soil profileThus, CPT is being used as a valuable tool for assessing various soil
properties, including liquefactiopotential of soil. A typical CPT involves pushing a
35.7mm diameter conical penetrometer into the ground at a standard rate of 2cm/sec, while
electronc transducers record (generally at 2cm or 5¢m intervals) the force on the conical tip,
the drag force on a short sleeve section behind the tip, pore water pressure behind the tip (or
sometimesat other locations). The tip force is divided by the crossis®tarea of the
penetrometer to determine the tip resistamgeand the sleeve drag forahvided by the

sleeve surface area to determine the sleeve fridjomhe main advantages of the CPT are

that it provides a continuous record of penetrationstasce and is less vulnerable to
operator error than the SPT. The main disadvantages of the CPT are the difficulty in
penetrating layers that have gravels or very high penetration resistance and need to perform

companion borings or soundings to obtairuatsoil samples.

Zhou (1980) first published liquefaction correlation directly based on case history CPT
database ofthe 1978 Tangshan earthquakde presented the critical value of cone
penetration resistance separating liquefiable fromlmuefiable onditions to a depth of

15m. Seed and Idriss (1981) as well as Douglas et al. (1981) proposed the use of correlations
between the SPT and CPT to convert the available-l&8&d charts for use with the CPT
data.Robertson and Campanella (1985) developed®P@ ®ased method for evaluation of
liquefaction potential, which is a conversion from SBaBed method using empirical
correlation of SPICPT data and follows the same strbased approach of Seed and Idriss
(1971).This method has been revised amblatel by many researche(Seed and délba

1986 Shibata and Teparaksa 1988ark and Olsonl995 Suzuki et al. 19950Isen 1997,
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Robertson and Wride 1998). Most of the CPT based simplified methods are presented in a
chart that defines the limit state fuion (i.e, a boundary curve) separating the liquefied and
nonliquefied cases in a plot ahe cyclic resistance rat{CRR versus corrected CPT tip
resistance @C). These methods also need the knowledge of mean particleDsigeatd

fines content KC) which cannot be obtained from CPT measurements alone. For
determiningDso and FC additional boreholes are required for collecting sampgtshara

(1993) suggested that in case of liquefaction resistance evaluategingyCPT value for

silty sands (>5%ines), the effects of fines could be estimated by adding some tip resistance
increments to the measured tip resistance to obtain an equivalent clean sand tip resistance.
For evaluating liquefaction potential only from CPT measurements, Olsen (1997)mxl/elo

a CRR model using the parameteng, ONjand friction ratio R;). Robertson and Wride

(1998) proposed a separate method using soil behaviour type ihgdewhich was
recommended for use by the 1998, National Center for Earthquake Engineering Research
(NCEER) workshomand is also presented in the summary paper of Youd et al. (E@D1)

2.3s used to determine th@RRfor clean sandsi.k., fines contentEC) O 5 %] from CF

data. This chart (i.e., Fig. 2.% valid forthe magnitude 7.5 earthquagely.

As per Juangt al.(1999a) Robertson and Wride method and Olsen methozlfound to be
quite comparableJuang et al. (2003) also developed ANN-basedsimplified method
using soil type indexi{) for evaluation ofCRRof soil using post liquefactio CPT database
and also use@ayesian mapping functioapproacho relateFs with P.. Moss (2003) and
Mosset al. (2005) presented CPT-based probabilistic model for evaluation of liquefaction
potential using reliability approach and a Bayesian updaé&ognique. Juangt al. (2006)

used first order reliability method (FORM) for probabilistic assessment of soil liquefaction

potential.
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Shear wave velocity } based methods

The use oBhear wave velocitfVs) as ain-situ testindex of liquefaction resianceof soil is
very wellacceptedecausdoth Vsand CRRaresimilar, but not proportionalinfluened by
void ratio, effective cofining stresses, stress hisgpand geologic age.hEe followings are
the main advamages of sing Vs for evaluation of liquefaction potentigi) Vs measurements
are possible in soils that adéficult to penetrate wittSPT andCPT or difficult to extract
undisurbed samples, such as sandy and grawails, and at sites whergorings or
soundngs may not bgermitted; {i) Vs is a basic rachanical property of soil matals,
directly related to smabltrain shear modulus; anii ) the smalstrain shear modulus &
parameter required in anabal procedures for estimating dynamic soil resgmand soil
structure interaction analyseBut, the following disadvantages are also thesen \; is
used for liquefaction resiance evaluations:i)( seismicwave velocity measurements are
made at small strains, whergasrewater pressure build updthe liquefactiortriggering

are melium to highstrain phenomengdi) seismic testing does not pide samples for
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classificationof soils and identification of nehquefiable soft clayich soils;and ii) thin,
low Vs strata maynot be detected he measument interval is too large. There® it is
preferred todrill sufficient boreholes and condt in-situ tests $PT or CPJ to detect and
demarcate thin liquefiable stratagntliquefiable clayrich soils,and silty soils above the
grourd watertable that might becomeuefiable should the water tablse. FewVs-based
simplified methodgDobry et al. 1981; Stwe etal. 1988; Tokimatsu and Uchida 1990
Robertson et all992; Kayen et al. 1992; Lodge 1994; Andrus and Stokoe 1997; Andrus and
Stokoe 20003Juang et al. 2000a; Juang et al. 208ddrus et al. 2003have been developed
and are in useBut as Vs method isf recent origin and has not been verified with the
historical post liquefactiordatabase, V$ based method is hdhat popular ke SPT and
CPTi based method.

BPT-based methods

Liquefaction resistance of negravelly soils has been assed mostly through SPT and
CPT, with rareVs measuremenisSeveral investigators have employed ladgemeter
penetrometers to overcome taafifficulties; the Becker petration test (BPT) in partidar
has become one tiie more effectivand widely used larger tools. ThéB wasdeveloped
in Canada inhe late 1950s and consists df6& mm diameter, dn-long doublewalled
casing driven intdhe gound with a doubl@ding dieseldriven pile hammerThe hammer
impacts are apmd at the top of the casing and thenetration is continuous. Thee&ker
penetration resistancedefined as the number of b required to drive the casing through
an incement of 300 mm.The BPT has not been stiardized, and several differetypes of
equipment and procedures have been used. Thenarrisntly very few liquefetion sites
from which BPT datdave been obtained. ThusetBPT cannot be directly colaged wth
field behaviour, butather through estimating eqaient SPTN-values from BT data and
then applying evaltion procedures based dhe SPT. This indirect methadtroduces
substantial additionauncertainty into the calculat€ RR But, very few BPTbased
simplified methodgHarder and Seed 1986 antbud et al. 200 have been developed

primarily as it is only suitable fogravelly soil.
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2.3 METHODS OF ANALYSIS

The basicanalysiscriterion in liquefaction potential evaluatios to compard¢he regstance
(CRR of soil with the loadng (CSR effects. These liquefaction triggering analyses are

carried out using the followinthreemethodsbased on the importance of the project
Deterministicmethod

Probabilisticmethod

Reliability-based probabilistimethod

A brief description and literature pertaining to above methods are presented separately.

2.3.1 Deterministic method

In deterministic approaclihe Fs, which is defined as the ratio GRRto CSR s calculated

on the basis of prediction ofrgjle values of loaddSR and resistanceCRR as shown in

the Fig. 2.4 without considering the uncertainty associated in prediction of loading and
resistancelt is assumed that there is 100% probability of occurrence of calcul®&ahnd

CSR In determistic approach,Fs>1 corresponds to neiguefaction andFs O 1
corresponds to liqguefaction. Here in this approach, only siaglased on past experience is
used to account for all the uncertainties associated with the load and resistance parameters.
Though, this method of analysis does not provide adequate information about the behaviour
of variables causing liquefaction, is still very much preferred by the geotechnical
professionals due to its simple mathematical approach with minimum requiremené,of da

time and effort.
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* CSR

Margin of safety = CRR-CSR

Probability of occurrence

CSR CRR

Resistance or Load —>

Fig. 2.4Shows deterministic approach imjliefaction potential evaluatigmodified from
Becker 1996).

The most commonly used deterministiethodto assesshe liquefaction potentiadf a site
i s the dAsi mpl i fliydegeloped my@eeddandrideiss (197ds dgdussed in
earlier sectionsThis method has been modified and improved on several occasions for its
use in different irsitu tests (Seed et al. 1983; Seed et al. 1B8bertson and Campanella
1985; Shibata andTeparaksa 1988; Olsen 1997; Robertson and Wride )19@&ional
Center for Earthquake Engineering Research (NCEER) workshop, 1998, published the
reviews of insitu testbaseddeterministicmethods for evaluation of liquefaction potential of
soil (Youd etal., 200). Factor of safetyRs) againstthe occurrence dfquefaction for any

earthquake is given by the following relation (Youd et al. 2001):

Fs = (CRRS,S:l,aZOKS Ka /CSQMSF (2'8)

where CSR= calculated cyclic tsess ratio by using the Eq. (2.4 is the overburden
correction factor andy is static shear stress correction factoRR s is determined from
Fig. 2.2; MSF is the magnitude scaling factor used to adjusCRRvalue to magnitude
smaller or larger than 7.5 and it is calculated bygglifferent formulagSeed and Idriss,
1982; Ambraseys, 1988; Arango, 1996; Andrus and Stokoe, 1997; Youd and Noble,
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1997a).The further design decisionfor mitigation of liquefaction hazardse taken on the

basis ofevaluateds of a site.

2.3.2 Proballistic method

Because othe parameteand model uncertainties, in liquefaction potential evaluatigrl

does not always correspond tonfmuefactionthat it cannotguarantee a zero chance of
occurrence of liquefactioand similarly, FsO 1 does not tliqwedagtien. cor r
This can be explained considering the variabilityfCefRand CSRas shown in thé&ig. 2.5

If Fsis evaluated considering the mean value€BRand CSRthen, Fsis greater thanl.0.

But, as per the distribiains of CSRand CRRshown in theFig. 2.5there is some probability

that theCRRwill be less tharCSRas indicated by the shaded region of the figure, which

will yield Fs< 1, proving the previous prediction wrong and a-4fiquefied case may turn

out tobe a liquefied case. Thus fecent years a lot of wotkas beerdone to assess the

liquefaction potential in terms of probability of liquefactigh).

Distribution of load CSR

Shaded region Distribution of
CRR<CSR resistanceCRR

Probability of occurrence

Resistance doad (CRR, CSR)

Fig. 2.5Shows the possible distribution GRRandCSRin liquefaction potential
evaluaton.
Haldarand Tang (1979) carried out second moment statistical analyses of tHeaSE&IT
limit state introduced by Seed and Idriss (1971) to estimat®thEardis and Veneziano
(1981) usedBayesian regression techniquedivelop a modebr evaluation of liquefaction
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potential of sands using the results of 192 published cyclic simple shear tests taking into
account the uncertaintiesaused by the effect of sample preparation, effect of system
compliance, and stress nraniformities The developed modies only applicable to uniform

and medium clean sand=ardis and Veneziano (198presented a probabilistic method of
liquefaction analysis of horizontally layered sand deposits subject to vertically propagating S
waves. The method was able to predictl whe probability of liquefaction on the basis of

post liquefaction case history of SPT ddtmo et al. (1988) developed logistic regression
based models using post liquefaction field performance database to quantify the probability
of liquefaction asa function of parameters such as distance to earthquake, peak horizontal
acceleration athe ground surfagcenormalizedCSR depth of ground water tabléotal
vertical stress, effective vertical stress, corrected field 8PR&lue, fines content, clay
cortent, gravel content, and grain size at 50% pasditwgang and Lee (1991)ised a
liguefaction potential probability matrix and a fragility curve based tb@ moment
magnitudeto determine probability of no, minor, moderate, and major liquefaction. They
corsideredthe uncertaintiesn both siteparaneters and seismic parametersditermine
various earthquaksite models. The Fourier Acceleration amplitude spectrum-linear

site response analysis) was used to determine ground motions for eachA ¢aser of

safety based on SPN¥-values iscalculatedto evaluate a probability of liquefaction index,
which measures the severity of liquefactidhe shear stresses calculated by this method are
close to those obtained by using simplified stigssed methogbioneered by Seed and
Idriss (1971).Youd and Nobble (1999 and Toprak et al. (1999) used logistic regression
analyses of post liquefaction field performance data to develop empirical equations for
assessindg®.. Juang et al. (20 proposed a Bayesianapping function based on SPT
dataset to relatEs with P.. Juang et al. (20@ found that the Bayesian mapping function
approach is better than logistic regression approach for the site specific probability of
liguefaction evaluationThe equation for detmining liquefaction probability established
through logistic regression has nothing to do with any deterministic methods whereas
Bayesian mapping function preserves the characteristics of a particular deterministic method
under consideration and provides easy transition fronf<-based design td? -based

design, thus it is the preferred approaghang et al.(2008) comparedthree CPT based
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simplified methods, the Robertson method, the Olsen method, and the Juang onethed
basis of developed Bayerianapping functions for the corresponding deterministic methods
within probabilistic frameworkusing the case histories obtained from the 1999;CDini
Taiwan earthquakeé hey siowed that the Juang methisdnore accurate than the other two
methods in preicting the liquefagbn potential of soilsJuang et al. (2003) developed a
simplified CPT-basedmethod using the Bayesian mapping function approach to rfelate
with P.

2.3.3 Reliability-based Probabilistic method

The probabilistic models as discussadbove are all datadriven as they are based on
statistical analyses of the databases of post liquefaction case histories. Calculd&ion of
using these empirical models requires only the mean values of the input variables, whereas
the uncertainty in theggameters and the model are excluded from the analysis. Regulting
might be subjected to error if the effect tfe parameterand model uncertainty is
significant. These difficulties can be overcome by adopting reliability based probabilistic

analysis ofiquefaction, which considers both model and parameter uncertainties.

Juang et al. (199 used advanced first order second moment (AFOSM) method to find out
the reliability index( b ) f oedand romiquefiéd casef the databasend developed
arelationshi p Pbusingwee Bagesiab magppind function based on post
liquefaction CPT datzase They used ellipsoid method (Low and Tang 1997) to carry out
the minimizationanalysis inreliability index calculation. For the reliability analysisthors
assumed the coefficient of variation (COV) of the soil and seismic parameters. But, model
uncertainty was not considereduang et al. (20@) used AFOSM method with Monte
Carl o simulation techni quedand nliquéfieddasesand mi n
also proposed B, -F relationship based on a Besjan mapping functioapproachwithout
consideringmodel uncertaintyCetin (2000) and Cetin et al. (2004) developed -BR3ed
probabilistic models for evaluation of liguefaction potentiaingsfirst order reliability
method (FORM) and a Bayesian updating techni@irailarly, Moss (2003) and Moss et al.

(2005) presented a CH¥ased probabilistic model for evaluation of liquefaction potential
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using a mean value firsbrder second moment (M\SM) reliability approach and a
Bayesian updating technigudwangand Yang(2004) developeda modelusing MVFOSM
reliability analysis to calculate the relation among the probability of liquefaction, the factor
of safety and the reliability indexluang etal. (2006) used first order reliability method
(FORM) along with the Bagsian mapping function approach for probabilistic assessment of
soil liquefaction potential and carried out extensive sensitivity analyses to characterize
uncertainties associated twiheir developedCRRmodel

24 ANALYSIS TOOLS USED FOR LIQUEFACTION POTENTIAL
EVALUATION

As discussed in the previous section, due to difficulty in developing analytical models for
liquefaction ssceptibility analysis of soilbecause of complex cstitutive model for
liquefied soil, various empirical methods have been developed based eiqpefsiction
database of laboratory andsiiu tests. Latersoft computing techniquese found to have
better efficiency in developing the empirical modetsmpared to traditionategression
techniquesA brief literature on the above techniques and its applications are presented

below.

2.4.1 Regression technique

The shtistical regression techniques have been used to develop different soil liquefaction
evaluation. Seed and Idriss (1971), Seed et al. (1984), Seed et al. (1985), Robertson and
Campanella (1985),Shibata and Teparaksa (1988), Olsen (1R6Bgrtson and Wride
(1998, Juang et al. (2000a), and Juang et al. (2003) used statistical regregsiquesdor
development of theirempirical models for evaluation of liquefaction potential using

laboratory and isitu test data.

2.4.2 Soft computingtechniques
The soft computingtechniguessuch as artificial neural network (ANN), support vector

machines (SVM), relevance vector machineVM) etc. have beenused recently for
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liguefaction susqatibility analysis with success and found to have better performance
compared to the statistical method. A brief description on application of the abéve
computing techniques the liquefaction evaluation is presented below.

2.4.2.1 Artificial neural network (ANN)

The ANN is a problem solving algorithm modelled on the structure of the human brain.
Neur al net work technol ogy olwngrpioeessThe ieeronbr ai n
are described as processing elements or nodes in mathematical model of the ANN. A
network with an input vector of elemenf = 1 ,N) ié transmitted through a connection

that is multiplied by weighty to give the hiddemnitz(j= 1 ,Ny) é ,

Ni
Z;=aWw, X +by 2.9)

WhereN;y, is the number of hidden units anl is the number of input units. The hidden

units consist of the weighted input and a bigg.(A bias is simply a weight with constant

input of 1 that serves as a constant added to the weight. These inputs are passed through a
layer of transfer function/activation functiérvhich produces:

"= & W % +b'°u (2.10)

The activation functios are designed to accommodate the nonlinearity in the-ipptt
relationships. Some common activation functions used in ANN are: (a) stepped (b) linear (c)
logistic sigmoid and (d) hyperbolic tangent sigm{izhs 2013). The outputs from hidden

units pas another layer of filters, and are fed into another activation funéttonproduce

outputy (k = 1.): ¢€, N

_ €l
yk_F( ) F@aW f WJIXI b]0u+h<0 (2.11)
This way it continues depending upon the number of hidden layers and finally the output
layer. Ths multilayer (hidden layer and output layer) with the nonlinear transfer function

gives rise to a highly nonlinear function with a number of unknown parameters in terms of

weights. Fig. 2 showsthe typical architecturef a three layer ANN.
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Input layer

Hidden layer Output layer
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Fig.2.6 Typical architecture of a neural network (Reproduced from D&3)20

Studies dealing with various engineering applications indicate that the ANN models are not
significantly different from a number of statistical models. However, there has been little
interaction between the neural network and statistical communities. In general, the problems
dealt by ANNs are more complex, and as such, the dimensionality of the models tends to be
much higherThe 6l earningd or Otrainingolnegar oces
optimization of an error function. The processaoutoptimizing the connection weight.

This is equivalent to the parameter estimation phase in conventional statistical models.
Steepest descent algorithmhich is known as gradient descent algor is mostly used in
geotechnical engineering. The Levenb&tgrquardt (LM) algorithm is the other
optimization used ithe implementatiof ANN in Geotechnicaéngineering.

As the characteristic of traditional nonlinear programming based optimizagbmoch are

the initial point dependent, the results obtained using back propagation algorithm are
sensitive to initial conditions (weight vector) (Shahin et al. 2002). The use of global
optimization algorithms like genetic algorithfGA) are also in use in geotechnical
engineering (Goh 2002). Goh (2002) used GA to find out the optimum spread of

probabilistic network for liquefaction analysis.
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Goh (1994) first investigated the feasibility of use of ANN to moithel relationship
between soil and seismic paraers, and the liguefaction potential. He used a simple back
propagation neurak et wor k al gor i t hm. The fAbest o mode
corrected SPT valueN( 0, fines conter(FC), the mean grain sizeD§y), equivalent
dynamic shear stregsU0 §, G, 00 M, andamax From the parametric studies, the most
important input parameters have been identifieN;as andFC. The results obtained by the
neural network model were compared with that of the statistical method of Seed et al.
(1985). The liquefaction classification accuracy of the neural network model was found out
to be 95% compared to 84% of Seed et al. (1985). Goh (1996) developed five neural
network models to assess liquefaction potential using a post liquefaction CPT datélease

sites were from sand and sandy silt deposits in Japan, China, United States and Romania
representing the earthquakes that occurred during the period11968 3 . The fAbest ¢
consists of five input variables: measured cone tip resisgnéed Dso, My, andamax The
efficiency of the developed model in terms of rate of successful prediction has been
compared with that of the existing statistical method of Shibata and Teparaksa (1988), and
found thatthe rate of successful prediction by btite models are equally good (i.e., 97%).
From the parametric studies, the most important input parameter has been identified as
Najjar and Ali (1998) used ANN to characterize the soil liquefaction resistance using post
liguefaction CPT data obtaineflom various earthquake sites around the world. They
presented a liquefaction potential assessment chart, which can be used by geotechnical
professionals for liquefaction potential evaluation. Juang et al. (1999a) developed two ANN
based models to approxate the two existing CRbased statistical methods: the Robertson
method and the Olsen method using the same database. Based on the developed ANN
models the rate of successful prediction of both liquefied andliqoefied cases by
Robertson method (89%y)as found to be better than that of Olsen method (77%). Juang
and Chen (2004 used Levenberiylarquardt neural network (LMNN) to a large database of
shear wave velocity measurements to establish a limit state boundary that séparztes

of liquefacton from the zone of neliguefaction.Juang et al. (2000c) developed an ANN
basedCRRmodel using 225 cases of post liquefaction CPT data. The developetased

limit state function forms the basis for the development oflability-based method for
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assessing cyclic liquefaction potenti&oh (2002) used probabilistic neural network (PNN)

to develop two separate models for evaluating seismic liquefaction potential based on CPT
data and shear wave velocity data, respectively. It was observed thatetiadl cate of
successful prediction of both liquefied and Aiquefied casesvere100% for CPT data and

98% for shear velocity measurement data. Rahman and Wang (2002) developed fuzzy
artificial neural network models for assessment of liquefaction paterfta site using SRT

based post liuefaction case histories. The results from the developed models were
compared with actual field observations and misclassified cases were identified. The models
are found to have good predictive ability and can be bgethe geotechnical professionals

for preliminary evaluation of liquefaction potential of a site for which the input parameters
are not well defined. Juang et al.(2003) used a large-t2B&d database to develop an
artificial neural network (LMNN) model fopredicting the occurrence and roocurrence

of liquefaction in terms of a liquefaction field performance indicatdy based on derived

soil (Qein, le, U 0) and seismic parameteil8$R 5). Further, using this ANMased model a
simplified CRRmodel was developed. The develog@@Rmodel in conjunction with the
existing CSRs model forms the deterministic method for evaluation of liquefaction
potential where factor of safety is used for taking design decisi@usand Tak (2006)
developed a back propagation ANN model to predict @GRR of sands using the data
obtained from usdrained cyclic triaxial and cyclic simple shear tests. It was found that the
predicted CRR values are mostly sensitive to the variations in relative density thus
confirming the ability of the developed model to identify the dominant dependence of
liquefaction susceptibility on soil density already known from field and laborékasgd
experimental observationBaziar and Jafarian (2007) developed an artificial neural network
(ANN)-based model to establish a correlation between soil parameters and the strain energy
required to trigger liquefaction in sands and silty samlsg a relately large database of

the results of cyclic triaxial, torsional shear and simple shear lestha et al. (2007)
developed a general regression neural network (GRNN) model based on 620 cases of post
liquefaction SPT data from earthquakes of Turkey anavdia 1999 using 12 soil and
seismic input parametemepth of soil layer), N; 60, FC, depth of ground water tabld,f,

Gy, 00 threshold acceleratiora), CSRshear wave velocityV) , internal friction angle of
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soil (9, My, andamax From sesitivity analysis it was observed thl o was the most
Important parameter anlfs is the least significant parameter. Lee and Hsiung (2009)
developedan MLP neuralnetworkmodel based on reliable Shased case history data to
classify the cases of ligfaction and non liquefaction. Excellent performance and good
generalizatiorwere achieveavith overall 96.6% success rate. Using this model sensitivity
analysesvas madeandamaxwas found out to be the masgnificant parameter. Juang adt

(2006) deviopedan ANN-based reliability model using a post liquefaction CPT database.
The model uncertainty of the developed limit state model was estimated. Samui and
Sitharam 2011) developed a SPdased ANN model for classification of liquefaction and
nonliquefaction cases using post liquefaction database of 1999, Chi Chi Taiwan earthquake.
The performance of the developed ANN model in terms of rate of successful prediction of
liquefied cases and ndiguefied cases based on an independent database was found out
be 70.58%.

2.4.2.2 Support vector machine (SVM)

Support vector machine (SVM) is an emerging machine learning technology where
prediction error and model complexity are simultaneously minimized. Unlike ANN
modeling, which is based on biological inspiralgorithm, the SVM is based on statistical
learning theory. The support vector machine is becoming more popular due to its high
generalization ability (Vapnik 1998). However, application of SVM to liquefaction
triggering analysis is very much limitedgP2006; Goh and Goh 2007; Samui and Sitharam

2011), but it is found to have better generalization capability compared to ANN modeling.

Support Vector Machine (SVM) has originated from the concept of statistical learning
theory pioneered by Boser et al9@R). For liquefaction analysishe SVM is usedas a
regression t echni-igsensitivelgss functiom. ¢ndhiscsectiog, a driefU
introduction on SVM for regression problem is presented. More details can be found in

literature (Boser et al. 1992; Cortes and Vapnik 19¥)nsidering a sebf training
data{(xl,yl),....,(xI Y| B, xi Rn,yl r. Where x is the input, y is the outpuf) B the N

dimensional vector space and r is the-dimeensional vector space.
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T h einsdhsitive loss function can be described in the following way
Lefy) =0 for [f(x)- y| < C otherwise Lefy) =[f(x)- y|- U (2.12)

This defines am tube so that if the predicted value is within the tube the loss is zero, while
if the predicted point is outside the tube, the loss is equal to the absolute value of the

deviation minuse. The main aim in SVM is to find a functiofr(x) tha gives a deviation of

e from the actual output and at the same time is as flat as possible.

The final equation of SVM can be written as (Vapnik, 1,998stianini and Shwadaylor
2000; Smola and Scholkopf 2004).

f(x):.a qa. - ai* SK%( X, 8+b (2.13)

where a;, L“Jiik are the Lagrangian Multipliersnsv is the number of support vectors and

K(x.x) is kernel function. Some common kernels have been used such as polynomial
(homogeneous), polynomial (nonhomogeneous), radial basis function, Gaussian function,

sigmoidetc.for nonlinear cases.

Pal (2006) developed SVMased classification models using post liquefaction case
histories based on reliable SPT and CPT database and observed that prediction accuracy was
96% and 97% respectively. Goh and Goh (200AQekped SVM model using CPT
database and found that the overall liquefaction classification accuracy waSaduiand

Sitharam (2011) developeé&tPT-based SVM model for classification of liquefaction and no
liquefaction using post liquefaction databasel®899, Chi Chi Taiwan and found that the
classification accuracy based on an independent dataset was 77.5%, which is better than that
of their developed ANN model (70.58%).
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2.4.2.3 Relevance vector machin®kyM)

The relevance vector machin®YM) is a evised SVM tool. It isintroduced by Tipping
(2001)and is a sparse linear modehich is based on Bayesian formulation of linear model.
Samui (2007) developed RVM model using reliable €R$ed liquefaction case history
dataset for liquefaction potentiatsessment and revealed that overall performance was good
in prediction, more accurate than ANN model. Das and Samui (2008) examined the potential
of RVM-based classification approach to assess the liquefaction potential from the reliable
CPT data by deveping two models. The liquefaction prediction accuracyMmrdell and

Modetl Il was 100% and 97.14%, respectively.

2.4.2.4 Genetic programming (GP)

In the recent pasgeneticprogramming GP) based on Darwinian theory of natural selection

is being uséd as an alternateoft computingtechnique. The GP is defined as the next
generain soft computingechnique. Accordingo the classification of modelingchniques
basedon colours (Giustolisi et al. 2007), whose meaning is relatedthe three levels of

prior information requiredwhite-, black, and greybox models are in use, each of which
can be explained as follows. Blabkx models (e.g., ANN, SVM etc.) are datdven or
regressive systems in which the functional form of relationships between waoiddles is
unknown and needs to be estimated. Blaock models depend on data to map the
relationships between model inputs and corresponding outputs rather than to find a feasible
structure of the model inpautput relationships. But, grdyox modelsare conceptual
systems in which the mathematical structure of the model can be derived, allowing further
information of the system behavior to tesolved. Whitdbox models are systems that are
based on first principles (e.g., physical laws) where modeablas and parameters are
known and have physical meaning by which the underlying physical relationships of the
system can be explained. GP and its variant rgeltie GP (MGGP) can bdassified as

grey box technigue Fig. 2.7 is a pictorial repreentatbn ofthe aboveclassification where

higher the physicaknowledge used during éhmodel development, the bettee physical

interpretation 6the phenomenon that the mod#lbws the user.

39



T ‘N White box

Grey box

Physical knowledge

g

Black box

/

W

Interpretability of the models for the user

Fig. 2.7Graphical classifications @oft computingnodelling techniques (modified from
Giustolisi et al. (2007)

The models developed using GP and its variants have been applied to some difficult
geotechnical engineering problems (Yang et al., 2004; Javadi et al. 2006; Rezania and Javadi
2007; Alavi et al. 2011; Galomi and Alavi 2012b) with success. The main advantage of GP
and its variant mukgene genetic programming (MGGP) over traditional statistical methods
and othersoft computingtechniques is its ability to develop a compact angblicit
prediction equatio in terms of different model variables. However, its use in liquefaction
susceptibility assessment is very limited (Gandomi and Alavi, 2012b). Gandomi and Alavi
(2012b) developed a liquefaction classification model using post liquefaction CPT database.
The overall classification accuracy of their model is 91.6%, which is considered to be very
good. But, the performance of the developed model has not been compared with that of the
existing models based on othesft computingtechniques. The developed modws not

also been tested with independent dataset other than testing data.
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2.5 CONCLUSION
The following conclusions are drawn from the above literature study.

Vi.

Vil.

Though conceptually & energybasedapproach is more appropriate for
liquefaction potentiakvaluation, it isless commonly used than the cyclic
stressbased approach due to ravailability of quality data for calibratioof

the developed models.

The cyclic strairfbased approach is less commonly used than the cyclic
stressbased approacéas te cyclic strain amplitudes cannot be predicted as
accurately as cyclic stress amplitudes, duad tounavailability ofequipment

for cyclic straincontrolled testing

Though, evaluation of liquefaction potential based on laboratory test yields
good results many geotechnical engineers prefer to adopt the field
performance correlatichased approach because of great difficulty and cost
involved in obtaininghigh quality undisturbed samples from cohesiess

soil deposits.

Out of the various #situ methodsSPT and CPT-based methods are widely
used for liquefaction susceptibilitgnalysis ofsoil due to availability of
sufficient post liquefaction database of these methods.

Though, deterministic method of liguefaction potential is preferred by the
geotechnical pfessionaldut, probabilistic evaluation is very much required

in actual practice, which helps in taking Fisksed design decisions.

For making an unbiased evaluation of liquefaction potential, the uncertainty
of the limit state boundary surface is te betermined for which rigorous
reliability analyses are required.

Though, varioussoft computingtechniqguessuch asANN, SVM, and RVM

are in use and performing well in predicting the liquefaction susceptibility of
soil the ANN has poor generalation The SVM has better generalization
comparedt o ANN, but the parameters 0C©O

needs to be fine tuned by the user. Moreover, these techniques will not
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produce acomprehensive relationship between the inputs and output and are
also called as 6black boxdé system.
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Chapter 3
GENETIC PROGRAMMING AS AN ANALYSI STOOL

3.1 INTRODUCTION

In the present studynulti-gene genetiprogramming MGGP), the variant of5Pis used to
developdifferent prediction models for evaluation of liquefaction potential of soil within the
framework of determinisic, probabilistic and reliabiliypased approachAs discussedn
previous chapterGP and its variant, MGGP have been used in limited geotechnical
engineering problems and are not very common to geotechnical engineering professionals,

hence, aletaileddescription is presented as follows.
3.2 GENETIC PROGRAMMING

Genetic Programming is a pattern recognition technique where the model is developed on
the basis of adaptive learning over a number of cases of provided data, developed by Koza
(1992). It mimics logical evolution of living organisms and makes use of the principles of
genetic algorithms (GA). In traditional regression analysis the user has to specify the
structure of the model, whereas in GP, both structure and the parameters of the mathematical
model are evolved automatically. It provides a solution in the form of a tree structure or in
the form of a compact equation using the given dataset. A brief description about GP is

presentedherefor the completeness, but the details can be found in Kk842).

GP model is composed of nodes, which resembles a tree strantuthus, it is also known

as GP tree. Nodes are the elements either from a functional set or terminal set. A functional
set may include arithmetic operators (+, x, +;)pmathemtcal functions §in (), cos(.),

tanh (.) or In(.)), Boolean operators (AND, OR, NOT, etc.), logical expressions (IF, or
THEN) or any other suitable functions defined by the user. The terminal set mclude

variables (like x, X, X3, etc.) or constantdike 3, 5, 6, 9, etc.) or both. The functions and
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terminals are randomly chosen to form a GP tree with a root node and the branches
extending from each function nodes to end in terminal nodes as shown3d Fige GP

tree as shown in Fig. 3.1 presemtsmathematical expression: té8.5%/x;). Here the
variables: x, X;, and constant: 6.5 constitute the terminal nodes and the arithmetic operators:
x, / and the mathematical function: tan, constitute the functional nodes. The starting
functional node (tanfrom which the branching of other nodes begirith the GP tree is
calledthe root node

Initially a set of GP trees, as per user defined population size, is randomly generated using
various functions and terminals assigned by the user. The fitnes®aorie calculated by

the objective function and it determines the quality of each individual in the population
competing with the rest. At each generation a new population is created by selecting
individuals as per the merit of their fitness from the iahitpopulation and then,
implementing various evolutionary mechanisms like reproduction, crossover and mutation
to the functions and terminals of the selected GP trees. The new population then replaces the
existing population. This process is iterated lutite termination criterion, which can be
either a threshold fitness value or maximum number of generations, is satisfied. The best GP
model, based on its fitness value that appeared in any generation, is selected as the result of
genetic programming. A laf descriptionof various evolutionary mechanisms in GB

presented below.

3.2.1 |Initial Population
In the first step of genetic programming a number of GP trees are generated by randomly

selecting user defined functions and terminals. These GP treethiinitial population.

3.2.2 Reproduction

In the second stage of the GP, a proportion of the initial population is selected and copied to
the next generation and this procedure is called reprodudtienreproduction mechanism

does not produce any wepopulation. Thegenerated GP trees of initial populatiane
evaluated based on the fitness function and less than average populations are replaced by

copies of the above average population thereby keeping the population size c&asthet.
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GP treewith high fitness enter the mating pool and the remaining ones die off. There are
different operatorsof reproduction like: (1) Tournament selection, (2) Roulette wheel
selection 8) Ranking selection.The number of the population taking part in the selectio

procedure is guided yprobabilityconstant B

Fig.3.1Typical GP tree representimgmathematicaéxpression tan (6.5x%/x;).

3.2.2.1Tournament selection

In this selection procedure, tournaments are played between a speoifierof GP tree.
The tournament size represents the numbébfreestaking part in the tournament. The
winner survives and gets more number of copies and the looser dbgs to the next

generation.
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3.2.2.2Roulette Wheel Selection

Parents are selected acdagito their fitness. The better ti&P treesare the more chances

they have, to be selected. This procedure is explained taking exampRoofeite wheel

where all theGP treedn the population are placed. The size of the section ifRthdette

wheelis proportional to the value of the fitness function of ev@Ry tree- the bigger the

value is, the larger the section is as shown in Fig. 2.2. A marble is thrown in the roulette

wheel and theGP treewhere it stops is selected. Clearly, B® treewith bigger fithess

valuewill be selected more times.

This process can be described by the following steps.

Step 1Calculate the sum of aBP treditness in population; sumS:

Step 2Generate random numbefrom the interval0, S

Step 3Go through he population and sum the fitness frorto sumS. When the surfyis
greater them, stop and return th&' GP tree

Step 4. Repeat step 2 and 3

Of course, the stepis performed only once for each population.

GP Tree 2
2%

GP Tree

80% P Tree 3

P Tree 4
2%

Fig.3.2 Roulette wheel showing the area of fithess of diffekeRttrees
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3.2.2.3Ranking selection

The Roulette wheel selection will have problems when there are big differences between the
fitness values. For example, if the b&dR treefitness is 90% of the so of all fithess then

the otherGP treesawill have very few chances to be selected. Ramiselection ranks the
population first depending upon their respective fitness, and then @&®ainges isassigned
revised fitness value determined by this rankifibe worst will have the fitness, the
second worse etc. and the best will have fitnelgnumber ofGP trees in population). Fig.

3.3 shows an example of the ranking selection procedure in which the initial fitness of the
GP treesare 80, 12, 6 and 2spectively. So the ranks assigned to @t treesare 4, 3, 2

and 1 respectively. So the average ranking value is 2.5 and the revised fitnessPtibes

are obtained by dividing the ranks by the average ranking value (2.5) as 1.6, 1.2, 0.8 and 0.4
comresponding to 80, 12, 6 andr2spectively The final GRree as per ranking selection is
shown in Fig 3.3 Now all theGP treeshave a chance to be selected. However this method
can lead to slower convergence, because theG#esteedoes not diffeso much from other

ones.

GP Tree 2
30% GP Tree 3

GP Tree 1
40%

Fig.3.3 The area of fithess of differe@P treess perankingselection
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3.2.3 Crossover

In crossover operation, tw@P trees(Parentl and Parentd)e selected randomly from the
population in the mting pool Koza 1992. One node from each tree is selected randomly,
the subtrees under the selected nodes are swapped and two off¢Qrfsgpringl and
Offspring 2) are generatedAn example of crossover operation is shown in Fig. 3.4.

3.2.4 Mutation

In mutation operation &P tree is first selected randomly from the population in the mating
pool and any node of the tree is replaced by any other node from the same function or
terminal set. A function node can replace only a function node and the sewipl@ is
applicable for the terminal nodesn example of mutation operation is shown in Fig. 3.5 in
which the functional nodefyo of the GP tree representing a mathematical expression:
tan(x/x2) is replaced by another functional nodeo and thusa new GP tree representing a

mathematical expression: tag€x,) is produced.

Parentl Parent2 Offspringl Offspring2

Fig. 3.4A typical crossoveoperationn GP
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Fig. 3.6 shows a typical flow diagram MGGP procedure in whicNgen is thenumber of
generation Ps, P;, and P, are the probability of reproduction, crossover and mutation
respectively.

Fig. 3.5A typical mutatioroperationin GP
33 MULTI -GENE GENETIC PROGRAMMING

MGGP is a variant of GP and is designed to develop an empirical mathematical model,
which is a weighted linear combination of a number of GP trees. It is also referred to as
symbolic regression. Each tree represents lower ordefimear transformations of input
variables and isgeaé¢dbedenengene Otthede hdndsh € ar
Fig. 3.6 shows a typical flow diagram MGGP procedure in whicNgen is the number of
generation,Ps, P;, and P, are the probability of reproduction, crossover and mutation,

respectively.

Fig. 37 shows an example of MGGP model where thepouis represented as a linear
combination of two genes (Gefleand Gene 2) that are developed using four input
variables i1, %, X3, Xs).Each gene is a nonlinear model as it contains nonlinear tésims)
/log(.)). The linear coefficients (weightsf Genel and Gene (c; andcy) and the biasch)

of the modelare obtained from the training data using statistical regression analysis

(ordinary least square method).

In MGGP procedure, initial population is generated by creating individuals that rcontai

randomly evolved genes from the user defined functions and variables. In addition to the
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standard GP evolution mechanisms as discussed earlier there are some special MGGP
crossover mechanisms (Searson et al. 2010), which allow the exchange of genes betwe
individuals and brief descriptions of them @resented as follows.

3.3.1 Two point highlevel crossover

Two point high level crossover operation allows swapping of genes between two parent
individuals in the mating pool and can be explained throamglexample, where the first
parent individual is having four genesi|&,, Gs, G4] and the second contains three genes
[Gs, Gs, G7] with Gpaxas 5. Two crossover points are selected randomly for each parent and
genes enclosed by crossover points areehby {...}.

[Gl1 {621 G31 G4}]1 [G 5, GG’{G7}]

The genes enclosed by the crossover points are swapped and thus, two offspring individuals

are created as shown below.

[G1, {G7}], [Gs, Ge, {G2, Gs, G}

If swapping of genes results in an individual corntajrmore genes tha@mnaxthen genes are

randomly selected and removed until the individual coni@jns genes.

3.3.2 Low-level crossover

Standard GP sutvee crossover is referred to as low level crossover. In this operation, first a
gene is randomly setted from each of the parent individuals (any two) in the mating pool
and then swapping of sttbees under arbitrarily selected nodes of each gene is performed.
The resulting trees replace the parent trees in the otherwise unchanged parent individuals,
which go on to produce offspring individuals for the next generation without any deletion of
genes.

Similarly, MGGP also provides six methods of mutation for genes (Gandomi and Alavi
2012a): (i) suHree mutation, (i) mutation of constants using additivaussian

perturbation, (iii) substitution of a randomly selected input node with another randomly
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selected input node, (iv) substitute a randomly selected constant with another randomly

generated constant (v) setting of randomly selected constant tovzgseti{ing a randomly
selected constant one.

Start

Y
Assignpopulation size, number of
generationsmaximum number of

genes and maximum depth of geng

\4

Create initial population randomly

A 4

=\Termination criterion satisfi@&» Output

No

i=0 End

\4

Calculate fitness of the
individuals in the population

A\ 4

Yes )
Gen=Geni <—qun? i=i+1

No
A 4
Prm Select genetic operato Ps
based on probability
P
\ 4 \ 4 \ 4
Select onendividual Select tvo individuals Select one individual
based on fithess based on fitness based on fithess
\4 \ 4 \4
Perform mutation Perform crossover Perform reprodction
P of individuals
\ 4
Add new individuals into new

population

Fig. 3.6A typical flow diagram for a mulkigene genetic programming procedure
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Fig. 3.7 An example of typical mukgene GP model.
The probabilities of the each of thegembinative processes (evolutionary mechanisms) can
be set lg the users for achieving the best MGGP model. These processes are grouped into
categories referred to as events. Therefore, the probability of crossover, mutatite and
direct reproduction everare to be specified by the user in such a way that theo§timese
probabilities is 1.0. The probabilities of the event subtypes can also be specified by the user.
For example, once the probability of crossover event is selected, it is possible to define the
probabilities of a two point higlevel crossover antbw-level crossover keeping in mind

that the sum of these event subtype probabilities must be equal to one.

Various controlling parameters such as function set, population size, number of generations,
maximum number of genes allowed in an individu@h4{), maximum tree depthd(ay,
tournament size, probabilities of crossover event, high level crossover, low level crossover,
mutation events, sutvtee mutation, replacing input terminal with another random terminal,
Gaussian perturbation of randomly selectedistant, reproduction, and ephemeral random
constants are involved in MGGP predictive algorithm. §baeralizatiorcapability of the

model to be developed by MGGP is affected by selection of these controlling parameters.
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These parameters are selectedeldaon some previously suggested values (Searson et al.
2010) and after following a trial and error approach for the problem under consideration.
The function set (arithmetic operators, mathematical functions etc.) is selected by the user
on the basis oflpysical knowledge of the system to be analysed. The number of programs or
individuals in the population is fixed by the population size. The number of gendsatien
number oftimes the algorithm is usdakfore the run terminates. The proper populasiae

and number of generations often depend on the complexity of the problems. A fairly large
number of population and generations are tested to find the best model. The inc@&ase in
anddnax value increases the fitness value of training data whemnea#ness value of testing

data decreases, which is due to the dieng to the training data. The generalisation
capability of the developed model decreases. Thus, in the MGG development it is
important to make a tradeoff between accuracy anupiexity in termsGmax and dmax

There are optimum values @max and dmax Which produce a relatively compact model
(Searson et al. 2010). The success of MGGP algorithm usually increases by using optimal

values above of controlling parameters.

In the MGGP procedure a number of potential models are evolved at random and each
model is trained and tested using the training and testing data respectively. The fitness of
each model is determined by minimizing the root mean square &K$8H between the

predcted and actual value of the output varialilp @s the objective functior)(

n

-,y
RMSE= f =2 (3.1)

n
where n = number of cases in the fitness group. léthars calculated by using Edt.p) for
all the models in the existing population do not satisfy the termination criteria, the evolution

of a new generatioaf the populatiorcontinues till the best model is developed as discussed

earlier.
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The general form ahe MGGP based modef the pesent study can be presented as:

n
Llp:i lF[X’f(X)'Ci]"'CO (3.2)
where Ll, = predicted value of liquefaction field performance indicatior),(F = the
function created by the MGGP referred herein as liquefaction index funitiowector of
input; ¢ is a constant,f are the functions defined by the useiis the number of terms of
target expression anth= bias. The MGGP as per Searson et(2010) is used and the

presentmodels are developed and implemented using Matlathi{IWork Inc. 2005).

As discussed in previous chapter, though GP has been used in some limited application in
geotechnical engineering, there are only two applications of MGGP in geotechnical
engineering (Gandomi and Alavi 2012a, 2012b). In this studyiaal attempt was made to
compare the efficiency of the MGGP with ANEYM (Muduli et al. 2013 The efficacy of
MGGP-based predictive model for uplift capacity of suction caisson outperformed the other
soft computingechniquebased (ANN, SVM, RVM) pediction models in terms of different

statistical performance criteria
3.4 CONCLUSIONS

The MGGP, a variant of GP is [@ologically inspired algorithm with different operators
like, reproduction, crossover and mutation. Unlike ANN and SVM, it haadkantage of
obtaining a comprehensive expression for the output from the inputs for further analysis. A
trade off is to be made between the complexity and accuracy of the method. Teheesyis
limited applicationof MGGP in Geotechnicakngineering. Basd on preliminary study on
application of MGGP to uplift capacity of suction pile, it has been observed that the
performance of MGGP model is better than ANN, SVM and RVM models. Hence, in this
thesisan attempt has been maidethe following chapterso develop models for evaluation

of liguefaction potential within the frame work of deterministic, probabilistic and reliability
based methods using MGGP
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Chapter 4
DETERMINISTIC MODELS FOR E VALUATION OF

LIQUEFACTION POTENTIAL

4.1 INTRODUCTION

Though, different approaches like cyclic strbssed cyclic strairbased, and emgy-based
approach are in use, the strbssed approach is the most widely used method for evaluation
of liquefaction potential of soil{rammer 1996) The SPT isthe most widely usedn situ
testbasedsoil exploration methodor liquefaction potentiakvaluation but,t has some
drawbacks, primarily due to the variable nature of the 888d around the world.dw a

days cone penetration test (CPT) #&so becoming more acceptable as it is consistent,

repeatable and able to identify continuous soil jofi

Soft computingechniquessuch asrtificial neural network (ANN), support vector machine
(SVM), and relevance vector machine (RVM) have been used to develop liquefaction
prediction models based on-situ test database, which are found to be mofieiesit
compared to statistical methods. The advantages and disadvantages of the above techniques

have already been discussed in Chapter

In the present studyan attempt has been made using MGGP to present a deterministic
model based on post liquefamti SPT databaséHwang and Yang 2001) A limit state
function that separates liquefied cases from the-liquefied cases and also represents
cyclic resistance ratioQRR of soil is developed by using MGGP. The develo@RIR
model in conjunction with widg used CSR s (Juang et al. 2000} used to evaluate
liquefaction potential in terms &%. Using an independent SPT dataset, a comparative study
among the present MGGP model, available ANN and statistical models is also made in

terms of rate of successfprediction of liquefaction and ndiquefaction cases based bg
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Similarly, an attempt haalsobeen made to predict the liquefaction potential of soil in terms
of liquefaction field performance indicator referred as liquefaction indBx (Juang eal.
2003) on the basis o large database consisting of post liquefaction CPT measurements
and field manifestations using MGGP. Twlfferent MGGP model¢Modell and Model

[I) are developed for predicting occurrence and-omocurrence of liquefactioraking
different combinatiorof input parametersThe parameters d¥lodell are kept same as that

of ANN model(Juang et al2003)to compare the efficacy dfoth the modelsn terms of

rate of successful prediction of liquefaction and+ntiquefaction. These parameters are
further used for development oyclic resistance raticQRR modelusing MGGPsimilar to

the most widely used statisticaodelof Robertson and Wride1998)and ANN-basedCRR
modelof Juang et al(2003).In Modekll, the primary sé and seismic parameters of the
CPT database are used to present a simple nioaletan easilyoe used by the practicing
engineersGoh and Gol{2007)have used the same parametdrthe abovelatabas€Juang

et al. 2003)for prediction of liquefactiorsusceptibility using SVM. Hence, liquefaction
classification accuracies of the developed Modlelare compared with that of the SVM
model of Goh and Go{2007) Performances of the proposed MGGP based m¢kieide}

| and Modelll) in terms of rates of swessful prediction of liquefaction and nron
liquefaction as per predictdd valuesare also verified using an independent CPT database
(Juang et al. 2006)he developedMGGP-basedCRR model in conjunction with widely
usedCSR s (Juang et al. 2000} usedto evaluate liguefaction potential in terms ff
Similarly as mentioned abovesing an independer€PT dataset(Juang et al. 2006)a
comparative study among the present MGGP model, available ANN and statistical models is
also made in terms of rate siiccessful prediction of liquefaction and Haquefaction cases
based offs.

4.2 DEVELOPMENT OF SPT-BASED DETERMINISTIC MODEL

The general form of MGGBased modefor LI, based on SPT databasan be presented

hereas:

Lt, = "F[x, f(x)c]+c, (4.1)
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where, Ll,= predicted value of liquefaction indeklf, F = the function created by the
MGGP process referred herein as liquefaction index funckienyector of input variables =
{N160, CSR s} where,N1go= corrected ldw count. Here in the prest study, the general
formulation of CSRas presented b8eed and Idriss (1971) and by Yoedal. (2001) is
adopted with minor modification, i.eCSR is adjusted to the benchmark earthquake
(moment magnitudévl,,, of 7.5)by using the parameter, matyde scaling factor (MSF).

o
o

CSR, = o.es%&%&d ) /MSF (4.2)

¢ov=E

whereama= peak horizontal ground surface acceleration, g = acceleration due to gravity
= shear stress reduction factor which is determined as per Yold28(Gi):

ry =1.0- 0.007652,f o r z O 9.15m

=1174- 00267z, for 9. 15 O (43 O 23
wherez is depth under consideration.

The adopted MSF equation is presented belowording to Youd et al. (2001).

2.56
(4.4)

QOO

MSF—aMﬂ
B ?7.5

G is aconstant,f is MGGP function defined by the useris the number of terms of model
equationand ¢; is the bias|t is pertinent to mention here that Juang et al. (2000) also
followed the aboveCSRformulation for development of theANN-basedCRRmodel. The
MGGP as per Searsoet al. (2010) is used and the present model is developed and
implemented using MatlaMathWorks Inc. 2005).
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4.2.1 Database and preprocessing

In the present stugdySPT-baseddataset of post liquefaction casehistories of Chi Chi,
Taiwan, earthquake, 1999 is us@dwangand Yang 2001)It contains information ahd

soil and seismic parameterseasured SPT blow couriilf), corrected blow countN; o),

fines content EC),clay size contentdC), mean grain siz€Dsg), peak horizontal ground
surface acceleratiorafay and CSR s, which areobtained from the BT measurements at
different sitesof Taiwanalong with field performance observationid)( The soil in these
casesranges from sand to silty sand sand/ and clayey silt The depths at whicBPT
measurements are repatten the database range from h.320.3n. TheN,, values range

from 01to 50 and theN; gpvalues range fror.93to 49.29.The FC and CC values are in

the range o#-65% and 0-23% respectiely. Theanax and CSR svalues are in the range of
[0.055, Ig] and P.041 0.822] respectively. Thenoment magnitudeM,, of the 1999 Chi

Chi, Taiwan, earthquakeas7.6. The database consists of total 288 cases, 164 out of them
are liquefied cases and eth124 are notiquefied cases. Out of the above data 202 cases
are randomly selected for training and remaining 86 data are used for testing the developed
model. Samui and Sitharaf@011)also used the above databases witdabove number of
training andtesting data while developing ANN and SMbased liquefaction classification
models. Here, in the MGGP approach normalization or scaling of the data is not required

which is an advantage over ANN and SVM approach.

4.2.2 Results and discussion

In this sedion, the result of deterministic model based on post liquefaction SPT database is
presentedA limit state function that separates liquefied cases from thdiauefied cases

and also represents cyclic resistance rafiBR) of soil isalsodeveloped byising MGGP.

The developedCRR model in conjunction with widely use@SR s (Juang et al. 2000

used to evaluate liquefaction potential in termsFgfand the results are presented in

following sequence.
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4.2.2.1 MGGP Model for Liquefaction Index

The MGGP-based modefor liquefaction indexs developed takingl = 1 for liquefaction

andLl = O for nonliquefaction field manifestations. In the MGGP procedure a number of
potential models are evolved at random and each model is trained and tested aising th
training and testing cases respectively. The fitness of each model is determined by
minimizing the RMSEbetween the predicted and actual value of the output variahlag

the objective functiomr the error functiofE),

(4.5)

where n = number of cases in the fithess group. If the errors calculated by us{ddbiEqr

all the models in the existing population do not satisfy the termination criteria, the evolution
of a newgeneratiorof the populatiorcontinues till the best model is developed as discussed
earlierin Chaptetlll.

The selection of controlling parameters (as mentioned in ChHptaffects the efficacy of

the model generated by the MGGP. Thus, optimumegabf the parameters are selected for
the development ofl, model based on some previously suggested values (Searson 2009;
Searson et al. 2010) and after following a trial and error approach and are preséatad in

4.1

Using the optimum values of caotling parameters as given in tiable 4.1different LI,
models were developed running the MGGP code several tifiesse models are analyzed
with respect to physical interpretation lof, as well as their rate of successful prediction
capability and th b&sb LI, model wasselectedThe developed model is presented below as
Eq. (4.6)
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ACSR, 0@
LI, =2.824tanH8.2CSR,)- 5.152tan|'§C—N Rs 9

N.__ &

0.089N

Q 1,60 -+

280 - 0.964

+1.53 105%:
G

SR8~ oxplCSR.)

(4.6)

Table 4.1Controlling parametesettings for MGGPbased.l, model development.

Parameters Ranges Resolution | Selected
optimum
values
Population size 10004000 200 3000
Number of generations 100-300 50 150
Maximum number of gene$fay) 2-4 1 3
Maximum tree depthday) 2-5 1 4
Tournament size 2-8 1 7
Reproduction probability 0.01-0.07 0.02 0.05
Crossover probabilt 0.750.9 0.05 0.85
Mutation probability 0.050.15 0.05 0.1
High level cross over probability 0.1-0.4 0.1 0.2
Low level cross over probability 0.50.9 0.1 0.8
Subtree mutation 0.60.9 0.05 0.85
Substituting input terminal witl 0.050.2 0.05 0.05
another random termiha
Gaussian perturbation of randon; 0.050.2 0.05 0.1
selected constant
Ephemeral random constant [-10 10] - -
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The developedl, model has been characterized by the Figs. 4.1, 4.2, 4.3. Fig. 4.1 shows the
variation of the best fitess (log values) and mean fitness with with number of generations.

It can be seen from this figure, the fithess values decrease with increasing the number of
generations and its decrements. The best fitness was found at fhegeisation (fitness
=0.2466).The statistical significance of each of the four genes of the developed model is
shown in Fig. 4.2. As shown in the Fig. 4.2a the weight (coefficient) of the theZgisne
higher than the other genes and bias. The degree of significance of eachingpevakies

is also shown in Fig. 4.2b. It can be noted that the contribution of all the genes towards

prediction ofLI(i.e., Llp) is very high except the Geize as their correspondingvalues are



very low, whereas the GetZcontribution is the leasEig. 4.3 presents the population of
evolved models in terms of their complexity (number of nodes) and fitness value.The
developed models that perform relatively we
less complex (having less number ofnodes) an t he fAbest o model i n
i dentified in this figure as green circles

with a red circle.

Best fitness: 0.24660 found at generation 143

7 "1 ' '
£
S
r o i
(@]
o
-
25 1 L
m "0 50 _ 100 150
§0.5- Generation
E | --------- Mean fitness (+ - 1 std. deI\/)
0 : ' '
0 50 i 100 150
Generation

Fig. 4.1 Variation of the best and mean fitness with the number of generatio
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Fig.4.2 Statistical properties of the evolved MG®RBsed_l, model (on training data
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Fig 4.3 Population of evolved models in terms of their complexity and fitness.

Table 4.2 Comparison of results of developed MGGP bdsgdanodel with ANN and SVM
models of Samui and Sitharg@011)

Model Input

_ Performance in terms of successful prediction (%)
variables

MGGP | ANN | SVM | MGGP| ANN | SVM
Training data Testing data

LI N1,60 CSRy 5 94.55 9455 | 96.04 | 94.19 | 88.37 | 94.19

A prediction in terms oLl is said to be successful if it agrees with field manifestation (

of the database. As pdmable 4.2 the successful prediction rates of liquefied and-non
liquefied cases are compdnle, 94.55% for training and 94.19% for testing data, showing
good generalization of the developed model. The overall success rate of the trained model
in predicting liquefaction and neliguefaction cases is 94.44%.Thus, it is evident from the
results hat the proposed MGGP baséd, model is able to establish the complex
relationship between the liqguefaction index and its main contributing factors is déran

model equation with a very high accuracy. In comparison, the classification accuracy of the

ANN model was 94.55% and 88.37% for training and testing data respectively for the above
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