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ABSTRACT 

Out of the various seismic hazards, soil liquefaction is a major cause of both loss of life and 

damage to infrastructures and lifeline systems. Soil liquefaction phenomena have been 

noticed in many historical earthquakes after first large scale observations of damage caused 

by liquefaction in the 1964 Niigata, Japan and 1964 Alaska, USA, earthquakes. Due to 

difficulty in obtaining high quality undisturbed samples and cost involved therein, in-situ 

tests, standard penetration test (SPT) and cone penetration test (CPT), are being preferred 

by geotechnical engineers for liquefaction potential evaluation with limited use of other in-

situ tests like shear wave velocity tests and Baker penetration tests. The liquefaction 

evaluation in the deterministic framework is preferred by the geotechnical engineering 

professionals because of its simple mathematical approach with minimum requirement of 

data, time and effort. However, for important life line structures, there is a need of 

probabilistic and reliability methods for taking risk based design decisions. In recent years, 

soft computing techniques such as artificial neural network (ANN), support vector machine 

(SVM) and relevance vector machine (RVM) have been successfully implemented for 

evaluation liquefaction potential with better accuracy compared to available statistical 

methods. In the recent past, evolutionary soft computing  technique genetic programming 

(GP) based on Darwinian theory of natural selection is being used as an alternate soft 

computing technique.  

The objective of the present research is to develop deterministic, probabilistic and 

reliability-based models to evaluate the liquefaction potential of soil using multi-gene 

genetic programming (MGGP) based on post liquefaction SPT and CPT database.  

Here, the liquefaction potential is evaluated and expressed in terms of liquefaction field 

performance indicator, referred as a liquefaction index (LI) and factor of safety against the 

occurrence of liquefaction (Fs). Further, the developed LIp models have been used to 

develop both SPT and CPT-based CRR models. These developed CRR models in 

conjunction with the widely used CSR7.5 model, form the proposed MGGP-based 

deterministic methods. The efficiency of both the developed SPT and CPT-based 
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deterministic models has been compared with that of available statistical and ANN-based 

models on the basis of independent database. Two examples have been solved to show the 

use of developed deterministic methods to find out the extent of ground improvement 

works needs to be done in terms of N1,60  and  qc1N using the adopted factor of safety. 

The probabilistic evaluation of liquefaction potential has been performed where 

liquefaction potential is expressed in terms of probability of liquefaction (PL) and the  

degree of conservatism associated with developed deterministic models are quantified in 

terms of  PL. Using Bayesian theory of conditional probability the Fs is related with the PL 

through the developed mapping functions. The developed SPT and CPT-based probabilistic 

models have been compared in terms of the rate of successful prediction within different 

limits of PL, with that of the available statistical and ANN-based probabilistic models. Two 

examples, one from SPT and the other from CPT-based data, have been illustrated to show 

the use of developed probabilistic methods to take risk-based design decision for a site 

susceptible to liquefaction. 

Further reliability analysis following first order reliability method (FORM) has been 

carried out using high quality SPT and CPT database, which considers both model and 

parameter uncertainties. The uncertainties of input parameters were obtained from the 

database. But, a rigorous reliability analysis associated with the Bayesian mapping function 

approach was followed to estimate model uncertainty of the limit state, which has been 

represented by a lognormal random variable, and is characterized in terms of its two 

statistics, namely, the mean and the coefficient of variation. Four examples, two from SPT 

data (one liquefied and the other non-liquefied case) and the other two from CPT data (one 

liquefied and the other non-liquefied case), have been illustrated to show the procedure of 

reliability-based liquefaction potential evaluation in terms of notional probability of 

liquefaction (PL) considering the corresponding ñtrueò model uncertainty as obtained for 

SPT and CPT-based limit state models in the analysis.  

The development of compact and comprehensive model equation using deterministic 

methods based on both SPT and CPT data will enable geotechnical professional to use it 



 

v 

 

with confidence and ease. The presentation of probabilistic methods in conjunction with 

deterministic factor of safety (Fs) value gives the measure of probability of liquefaction 

corresponding to particular Fs. The present works also illustrate the effect of model and 

parameter uncertainties while discussing the reliability analysis. Design charts have been 

presented and discussed with examples using both SPT and CPT data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

Table of Contents 

CERTIFICATE  ....................................................................................................................... i 

ACKNOWLEDGEMENTS  ................................................................................................... ii  

ABSTRACT .......................................................................................................................... ii i 

CONTENTS .......................................................................................................................... vi 

LIST OF TABLES  ................................................................................................................ xi 

LIST OF FIGURES  ............................................................................................................ xiii  

ABBREVIATIONS AND SYMBOLS  ................................................................................ xix 

 

1 INTRODUCTION 1 

 1.1 GENERAL 1 

 1.2 RECENT TRENDS OF NATURAL HAZARDS 1 

 1.3 

1.4 

1.5 

1.6        

SOIL LIQUEFACTION 

MOTIVATION  FOR THE RESEARCH 

OBJECTIVES AND SCOPE OF THE RESEARCH 

ORGANIZATION OF THESIS 

5 

9 

10 

10 

2 LITERATURE REVIEW 13 

 2.1 INTRODUCTION 13 

 2.2 LIQUEFACTION POTENTIAL EVALUATION 13 

2.2.1 Energy-based approach 14 

  2.2.2 Cyclic strain-based approach 15 

  2.2.3 Cyclic stress-based approach 16 

   2.2.3.1 Laboratory test-based methods: 17 

   2.2.3.2 In-situ Test based methods: 19 

    SPT-based method 19 



 

vii  

 

    CPT-based method 23 

    Shear wave velocity (Vs)-based methods 25 

               BPT-based methods  26 

 2.3 METHODS OF ANALYSIS 27 

  2.3.1 Deterministic method 27 

  2.3.2 Probabilistic method 29 

  2.3.3 Reliability-based Probabilistic method 31 

 2.4 TOOLS USED FOR LIQUEFACTION POTENTIAL EVALUATION 32 

  2.4.1 Regression technique 32 

  2.4.2 Soft computing  techniques  32 

   2.4.2.1 Artif icial neural network (ANN) 33 

   2.4.2.2 Support vector machine (SVM) 37 

   2.4.2.3 Relevance vector machine (RVM) 39 

   2.4.2.4 Genetic programming (GP) 39 

 2.5 CONCLUSIONS 41 

3 GENETIC PROGRAMMING AS AN ANALYSIS TOOL 43 

 3.1 INTRODUCTION 43 

3.2 GENETIC PROGRAMMING 43 

 3.2.1 Initial Population 44 

3.2.2 Reproduction  44 

 3.2.2.1 Tournament selection 45 

 3.2.2.2 Roulette Wheel Selection 46 

 3.2.2.3 Ranking selection 47 

3.2.3 Crossover  48 

  3.2.4 Mutation  48 

 3.3 MULTI -GENE GENETIC PROGRAMMING 49 

  3.3.1 Two point high-level crossover  50 

  3.3.2 Low-level crossover 50 

 3.4 CONCLUSIONS 54 

4 DETERMINISTIC MODELS FOR EVALUATION OF LIQUEFACTION POTENTIAL 55 



 

viii  

 

 4.1 INTRODUCTION 55 

 4.2 DEVELOPMENT OF SPT-BASED DETERMINISTIC MODEL 56 

  4.2.1 Database and preprocessing 58 

  4.2.2 Results and discussion 58 

   4.2.2.1 MGGP Model for Liquefaction Index 59 

   4.2.2.2 Generation of artificial points on the limit state curve 63 

   4.2.2.3 MGGP Model for CRR 64 

   4.2.2.4 Comparison with existing methods using independent database 69 

 4.3 DEVELOPMENT OF CPT-BASED DETERMINISTIC MODEL 71 

  4.3.1 Database and Reprocessing 72 

  4.3.2 Results and discussion 73 

   4.3.2.1 MGGP Model for Liquefaction Index (LI) 73 

   4.3.2.2 Sensitivity analysis  81 

   4.3.2.3 Generation of artificial points on the limit state curve 82 

   4.3.2.4 MGGP Model for CRR 83 

   4.3.2.5 Comparison with existing methods using independent database 86 

 4.4 CONCLUSIONS 88 

  4.4.1 Conclusions based on SPT- based liquefaction potential evaluation 88 

  4.4.2 Conclusions based on CPT- based liquefaction potential evaluation studies  88 

5 PROBABILISTIC EVALUATION OF LIQUEFACTION POTENTIAL 91 

 5.1 INTRODUCTION 91 

 5.2 SPT-BASED PROBABILISTIC MODEL DEVELOPMENT 92 

  5.2.1 Development of Bayesian mapping function 92 

  5.2.2 Probability-based chart for evaluation of liquefaction potential 98 

  5.2.3 Comparison with existing methods using independent database 101 

 5.3 CPT-BASED PROBABILISTIC MODEL DEVELOPMENT 103 

  5.3.1 Development of Bayesian mapping function 103 

  5.3.2 PL-based design chart  108 

  5.3.3 Comparison with existing methods 109 

 5.4 CONCLUSIONS 113 



 

ix 

 

  5.4.1 Conclusions based on SPT-based probabilistic evaluation of liquefaction 

potential. 

113 

  5.4.2 Conclusions based on CPT-based probabilistic evaluation of liquefaction 

potential. 

113 

6 RELIABILITY -BASED LIQUEFACTION POTENTIAL EVALUATION 115 

 6.1 INTRODUCTION 115 

 6.2 DEVELOPMENT OF SPT-BASED RELIABILITY MODEL 116 

  6.2.1 Methodology 116 

  6.2.2 MGGP-based LIp model  117 

  6.2.3 Reliability Analysis 119 

   6.2.3.1 FORM (Hasofer -Lind approach) 122 

  6.2.4 Database and Pre-processing 126 

  6.2.5 Results and discussion 126 

   6.2.5.1 Generation of artificial points on the limit state curve 129 

   6.2.5.2 MGGP Model for CRR 130 

   6.2.5.3 PL-Fs mapping function 134 

   6.2.5.4 Estimation of model uncertainty from reliability analysis 135 

 6.3 DEVELOPMENT OF CPT-BASED RELIABILITY MODEL  147 

  6.3.1 Methodology 147 

  6.3.2 MGGP-based LIp model 148 

  6.3.3 Reliability Analysis 148 

  6.3.4 Database and Pre-processing 149 

  6.3.5 Results and Discussion 150 

   6.3.5.1 Generation of artificial points on the limit state curve 152 

   6.3.5.2 MGGP Model for CRR 153 

   6.3.5.3 PL-Fs mapping function 154 

   6.3.5.4 Estimation of model uncertainty from reliability analysis 157 

 6.4 CONCLUSIONS 168 

  6.3.1 Conclusions based on SPT-based reliability analysis.  168 

  6.3.2 Conclusions based on CPT-based reliability analysis. 169 



 

x 

 

7 SUMMARY AND CONCLUSIONS 171 

 7.1 SUMMARY 171 

 7.2 CONCLUSIONS 175 

  7.2.1 Based on deterministic method 175 

  7.2.2 Based on probabilistic method 177 

  7.2.3 Based on reliability method 178 

 7.3 RECOMMENDATIONS FOR FURTHER RESEARCH 180 

 REFERENCES 181 

 APPENDIX-A 192 

 APPENDIX-B 200 

 APPENDIX-C 206 

 APPENDIX-D 214 

 RESEARCH PUBLICATION 221 

 

 

 

 

 

 

 

 

 

 



 

xi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES  

Table 4.1   Controlling parameters settings for MGGP-based LIp model 

development 

60 

Table 4.2  Comparison of results of developed MGGP based LIp model with 

ANN and SVM models of Samui and Sitharam (2011) 

62 

Table 4.3  Statistical performances of developed MGGP-based CRR model 65 

Table 4.4  Comparison of results of proposed MGGP-based model with 

Statistical and ANN-based models   using an independent 

database of Idriss and Boulanger (2010). 

70 

Table 4.5 Optimum values of controlling parameters for MGGP-based LIp 

models (Model-I and Model-II) using CPT data 

74 

Table 4.6 Comparison of results of developed MGGP models with available 

ANN (Juang et al. 2003) and SVM (Goh and Goh 207) models. 

79 

Table 4.7 Statistical performances of developed MGGP models 80 

Table 4.8 Comparison of performance of the developed MGGP models with 

respect to an independent dataset (Juang et al. 2006). 

81 

Table 4.9 Sensitivity analysis of inputs for the developed MGGP models 82 

Table 4.10 Statistical performances of developed MGGP-based CRR model. 85 

Table 4.11 Comparison of performance of the developed MGGP-based 

deterministic model with ANN-based deterministic model of 

Juang et al. (2003) based on present database. 

86 

Table 4.12 Comparison of results of proposed MGGP-based deterministic 

model with the existing models   based on independent database 

(Moss 2003 and Juang et al. 2006) 

87 

Table 5.1 Comparison of results of probabilistic models of proposed MGGP 

method with Statistical and ANN-based methods on independent 

database (Idriss and Boulanger 2010) 

102 

Table 5.2 Comparison of results of proposed MGGP-based probabilistic 

model with available statistical and ANN-based probabilistic 

models using the database of Juang et al. (2003). 

111 

 



 

xii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.3 Comparison of results of proposed MGGP-based probabilistic 

model with available statistical and ANN-based probabilistic 

models using independent database. 

112 

Table 6.1 Summary of the post liquefaction SPT database used for 

development of different models in the present study. 

127 

Table 6.2 Performance in terms of the rate of successful prediction of 

MGGP-based LIp models on the basis of K-fold cross 

validation 

128 

Table 6.3 Performance in terms statistical parameters of MGGP-based   

CRR models on the basis of K-fold cross validation. 

132 

Table 6.4 Statistical performances of the developed ñbestò MGGP-based 

CRR model. 

132 

Table 6.5 Coefficients of correlation among six input variables as per 

Juang et al. (2008). 

137 

Table 6.6 Summary of the post liquefaction CPT database (Moss 2003) 

used for development of different models in the present study 

149 

Table 6.7 Performance  in terms of the rate of successful prediction of 

MGGP-based LIp models on the basis of K-fold cross 

validation. 

151 

Table 6.8 Statistical performances of the developed ñbestò MGGP- based 

LIp model 

152 

Table 6.9 Performance in terms statistical parameters of MGGP-based 

CRR models on the basis of K-fold cross validation. 

153 

Table 6.10 Statistical performances of developed ñbestò MGGP-based 

CRR model. 

154 

Table 6.11 Coefficients of correlation among six input parameters (Juang 

et al. 2006) 

158 

 



 

xiii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES  

Fig.1.1 Major natural disasters in world, during 1911-2010, reported 

causality and property loss in USD. 

2 

Fig. 1.2 Distribution of (a) human death and (b) property loss due to 

different Major natural Disasters in world (1911-2010) 

3 

Fig. 1.3 Number of people reported killed by major natural hazards in 

World during 1911-2010, presented in terms of quarter century. 

4 

Fig. 1.4 Estimated Damage (Million US$) caused by reported major 

Natural Disasters in World during 1911-2010, presented in terms 

of quarter century 

4 

Fig. 1.5 Flow diagrams showing the organization of the thesis 12 

Fig. 2.1 Schematic for determining maximum shear stress, tmax, and the 

stress reduction coefficient, rd (Seed and Idriss 1971). 

17 

Fig. 2.2 SPT -based limit state boundary curves for Magnitude 7.5 

earthquakes with data from liquefaction case histories 

(reproduced from Youd et al. 2001) 

22 

Fig. 2.3 Curve recommended for calculation for CRR from CPT data 

along with liquefaction data from compiled case histories 

(reproduced from Robertson and Wride 1998). 

25 

Fig. 2.4 Shows deterministic approach in liquefaction potential 

evaluation. 

28 

Fig. 2.5 Shows the possible distribution of CRR and CSR in liquefaction 

potential evalution. 

29 

Fig. 2.6 Typical architecture of a neural network (reproduced from 

 Das 2013). 

34 

Fig. 2.7 Graphical classification of GP among the various modelling 

techniques (modified from Giustolisi et al. 2007) 

40 

Fig. 3.1 Typical GP tree representing a mathematical expression:   

tan (6.5x2/x1). 

45 

Fig. 3.2 Roulette wheel showing the area of fitness of different GP trees 

 

46 

Fig. 3.3 The area of fitness of different GP trees as per ranking  selection 

 

47 

 

 



 

xiv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 A typical crossover operation in GP 48 

Fig. 3.5 A typical mutation operation in GP 49 

Fig. 3.6 A typical flow chart showing a GP procedure (modified from 

Rezania and Javadi (2007) 

51 

Fig. 3.7 An example of typical multi-gene GP model. 52 

Fig. 4.1 Variation of the best and mean fitness with the number of 

generations. 

61 

Fig. 4.2 Statistical properties of the evolved MGGP-based LIp model (on 

training data) 

61 

Fig. 4.3 Population of evolved models in terms of their complexity and 

fitness. 

62 

Fig. 4.4 Conceptual model for search technique for artificial data points 

on limit state curve (modified from Juang et al. 2000b) 

64 

Fig. 4.5 Search algorithm for data point on limit state curve 65 

Fig. 4.6 Performance of proposed MGG-based CRR model 67 

Fig. 4.7 The developed MGGP-based limit state curve separates liquefied 

cases from non-liquefied cases of the database of Hwang et al. 

(2001). 

68 

Fig. 4.8 Variation of the best and mean fitness with the number of 

generation. 

75 

Fig. 4.9 Statistical properties of the evolved óbestô MGGP model (on 

training data) 

75 

Fig. 4.10 Population of evolved models in terms of their complexity and 

fitness. 

76 

Fig. 4.11 Variation of the best and mean fitness with the number of 

generation. 

77 

Fig. 4.12 Shows statistical properties of the evolved óbestô MGGP model 

(on training data) 

78 

 



 

xv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.13 Population of evolved models in terms of their complexity and 

fitness. 

78 

Fig. 4.14 Conceptual model of the search technique for artificial data 

points on CPT-based limit state curve (modified from Juang et 

al. 2000b) 

83 

Fig. 4.15 Search algorithm for data point on CPT-based limit state curve. 84 

Fig. 4.16 Performance of proposed MGGP-based CRR model 85 

Fig. 5.1 Histogram showing the distributions (PDFs) of calculated factor 

of safeties:  (a),(b), (c) Liquefied (L) cases; (d),(e),(f) Non-

liquefied (NL) cases. 

94 

Fig. 5.1 Histogram showing the distributions (PDFs) of calculated factor 

of safeties:  (a),(b), (c) Liquefied (L) cases; (d),(e),(f) Non-

liquefied (NL) cases. 

95 

Fig. 5.1 Histogram showing the distributions (PDFs) of calculated factor 

of safeties:  (a),(b), (c) Liquefied (L) cases; (d),(e),(f) Non-

liquefied (NL) cases. 

96 

Fig. 5.2 Plot of PL-Fs showing the mapping function obtained through 

curve fitting. 

97 

Fig. 5.3 SPT-based deterministic and probability curves with liquefied 

and non-liquefied cases of the database (Data from Hwang et al. 

2001) 

99 

Fig. 5.4 Probability-based design chart for evaluation of liquefaction 

potential of soil using SPT data. 

100 

Fig. 5.5 Histogram showing the distributions of calculated factor of 

safeties:  (a), (b), (c), (d) Liquefied (L) cases; (e), (f), (g), (h) 

Non-liquefied (NL) cases. 

104 

Fig. 5.5 Histogram showing the distributions of calculated factor of 

safeties:  (a), (b), (c), (d) Liquefied (L) cases; (e), (f), (g), (h) 

Non-liquefied (NL) cases. 

105 

 



 

xvi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.5 Histogram showing the distributions of calculated factor of 

safeties:  (a), (b), (c), (d) Liquefied (L) cases; (e), (f), (g), (h) 

Non-liquefied (NL) cases. 

106 

Fig. 5.6 Plot of PL-Fs showing the mapping function approximated 

through curve fitting. 

107 

Fig. 5.7 PL-based design chart for evaluation of liquefaction potential of 

soil using CPT data. 

109 

Fig. 6.1 Probability density function of liquefaction performance 

function, Z (modified from Baecher and Christian 2003). 

121 

Fig. 6.2 Plot of Rô (CRR) and Q
ô
 (CSR) showing definition of reliability 

index (modified from Baecher and Christian 2003). 

123 

Fig. 6.3 An example of K-fold cross validation approach where the data 

are split into K (4) equal folds (modified from Oommen and 

Baise 2010). 

127 

Fig. 6.4 Search algorithm for data points on limit state curve. 131 

Fig. 6.5 Histogram showing the distributions of calculated factor of 

safeties:  (a) Liquefied (L) cases; (b) Non-liquefied (NL) cases. 

133 

Fig. 6.6 Plot of PL-Fs showing the mapping function approximated 

through curve fitting. 

135 

Fig. 6.7 Flow chart of the proposed FORM analysis with GA as 

optimization tool. 

139 

Fig. 6.8 PL- ɓ1 mapping function obtained from the reliability analysis of 

94 cases of liquefaction and non-liquefaction without 

considering model uncertainty. 

140 

Fig. 6.9 PL- ɓ mapping functions showing effect of COV of model factor 

on probability of liquefaction. 

141 

Fig. 6.10 PL- ɓ mapping functions showing effect of mean of model factor 

(µcmf) on probability of liquefaction
 

141 

 



 

xvii  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.11 PL- ɓ mapping functions showing effect of mean (Õcmf)  and 

COV of ñtrueò model factor on probability of liquefaction i.e. at 

ɓ=0, PL = 0.5.
 

143 

Fig. 6.12 Comparison of probabilities of liquefaction obtained for the 94 

cases of the database from two mapping functions, one based on 

ɓ2 (using µcmf =0.98 and COV=0.1) and other based on ɓ1. 

143 

Fig. 6.13 Comparison of notional probabilities of liquefaction obtained for 

the 94 cases based on ɓ2 (using µcmf =0.98 and COV=0.1) with 

the probabilities obtained from PL-ɓ1mapping function.
 

145 

Fig. 6.14 An example of K-fold cross validation approach where the data 

are split into K (3) equal folds (modified from Oommen and 

Baise 2010). 

151 

Fig. 6.15 Histogram showing the distributions of calculated factor of 

safeties:  (a) Liquefied (L) cases; (b) Non-liquefied (NL) cases. 

155 

Fig. 6.15 Histogram showing the distributions of calculated factor of 

safeties:  (a) Liquefied (L) cases; (b) Non-liquefied (NL) cases. 

156 

Fig. 6.16 Plot of PL-Fs showing the mapping function approximated 

through curve fitting 

156 

Fig. 6.17 Flow chart of the proposed FORM analysis with GA as 

optimisation tool using CPT database 

159 

Fig. 6.18 PL- ɓ mapping function obtained from the reliability analysis of 

144 cases of liquefaction and non-liquefaction without 

considering model uncertainty
 

161 

Fig. 6.19 PL- ɓ mapping functions showing effect of COV of model factor 

on probability of liquefaction 

162 

Fig. 6.20 (a) and (b) PL- ɓ mapping functions showing effect of mean of 

model factor (µcmf) on probability of liquefaction
 

163 

Fig. 6.21 PL- ɓ mapping functions showing effect of mean (µcmf)  and 

COV of ñtrueò model factor on probability of liquefaction  

164 

 



 

xviii  

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.22 Comparison of probabilities of liquefaction obtained from 144 

cases of the database obtained from two mapping functions: one 

based on ɓ2 (using µcmf =2.08 and COV=0.2) and other based on 

ɓ1 

165 

Fig. 6.23 Comparison of notional probabilities of liquefaction obtained for 

144 cases based on ɓ2 (using µcmf =2.08 and COV=0.2) with the 

probabilities obtained from PL-ɓ1mapping function. 

167 

 



 

xix 

 

List  of Abbreviations and Symbols 

Abbreviations 

AAE   average absolute error 

CDF   cumulative distribution function  

COV  coefficient of variation 

CRR  cyclic resistance ratio  

CSR     Cyclic stress ratio 

CSR7.5   Cyclic stress ratio adjusted to a benchmark earthquake of moment   

  magnitude of 7.5 

FORM  first order reliability method 

FOSM  first order second moment method 

GP  genetic programming 

LI     liquefaction index  

MAE  maximum absolute error 

MGGP  multi-gene genetic programming 

MSF   the magnitude scaling factor  

PDF  probability density function 

RMSE   root mean square error 

 



 

xx 

 

Symbols 

A  material attenuation factor 

CB correction for borehole diameter 

CE correction for hammer energy efficiency 

CN factor to normalize Nm to a common reference effective overburden 

stress 

CR correction for ñshortò rod length 

CS correction for non-standardized sampler configuration  

D50 mean grain size  

E  Nash-Sutcliff coefficient of efficiency 

Ef Error function 

ER percentage of the theoretical free-fall energy (i.e., estimated rod 

energy ratio expressed in percentage); 

f   MGGP functions defined by the user  

F  liquefaction index function 

FC fines content in percentage  

Fs  factor of safety against occurrence of liquefaction  

g  acceleration due to gravity and 

Gmax maximum number of genes 

Ic soil type index  

k  shape parameter  

KŬ  static shear stress correction factor 

Ků  overburden correction factor  
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M earthquake magnitude on Richter scale 
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1.1 GENERAL  

Natural hazards like earthquake, tsunami, flood, cyclone and landslides pose severe threat to 

human life and its environment. There is a huge social and economic consequence 

immediately after the occurrence of a natural disaster. The adverse effects of disasters are 

much more in developing countries where the population is very large and the 

socioeconomic factors force the people to live in vulnerable areas. It is estimated, on average 

natural disaster claim 1000 lives and cause damage exceeding one billion US$ each week. 

Due to natural hazards in the last century around 30% of total casualties and 60% of the total 

property loss caused by the various major natural hazards around the world is due to 

earthquake only (www.em-dat.net/ngdc.noaa.gov). The natural hazards are no more 

considered as the curse of God, but can be mitigated with suitable identification, evaluation 

and analysis of the same.  

The advent of high speed digital computers, development of new computational algorithms 

and their application to new areas cutting across various disciplines in science and 

engineering went hand in hand. In recent years such efforts have increased phenomenally. In 

the following section an effort has been made briefly to trace the need for evaluation of 

seismic hazard and use of soft computing techniques for liquefaction susceptibility analysis 

to decide upon the course of studies to be taken up in the present thesis. 

1.2  RECENT TRENDS OF NATURAL HAZARDS  

A study was made to observe the recent trends in natural hazards to identify the need of the 

present research. Case histories of different major natural disasters, occurred during 1911-

2010 around the world as well as in India, are collected from international and national 

disaster databases such as en.wikipedia.org, em-dat.net, ngdc.noaa.gov, nidm.net, sarc-
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sdmc.nic.in etc. The conflicting data have been verified considering the authenticity of the 

database. The major natural hazards include earthquake, Tsunami, flood, Cyclone and 

landslide. The number of occurrences of the aforesaid natural disasters as reported, the 

casualties and the property loss caused due to these disasters during the last one century 

(1911-2010) are studied thoroughly and presented as follows.  

The number of occurrences of the major natural disasters in the last century is increasing 

continuously over the years, whereas there is a decrease in the total numbers of people died 

(Fig. 1.1). This shows the better preparedness, implementation of early warning systems and 

other preventive measures adopted gradually by the world community has got a positive 

impact on prevention of loss of life. However, the property damage caused by the major 

natural disasters has been increased during the same period of time (Fig. 1.1). This clearly 

indicates that the existing disaster mitigation measures are not adequate to protect the 

infrastructures completely from catastrophic nature of the hazards.  
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Fig.1.1 Major natural disasters in the world, during 1911-2010, reported causality and 

property loss in USD. 
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Figs. 1.2a and 1.2b show the variation of human death and property losses, respectively due 

to different major natural hazards during the last century. It can be seen that the causality is 

the maximum due to flood but the property loss is maximized due to earthquake. However, 

when the data are presented in terms of quarter century for human death (Fig. 1.3) and 

property loss (Fig. 1.4), it was observed that in last 50 years the effect of the flood has been 

reduced in terms of human death and property loss. However, the human death and property 

damage due to earthquake has steadily increased over the same period. This may be due to 

the fact that the prediction models for flood forecasting have become effective in 

combination with warning system and society has become less prone to this disaster. In case 

of earthquake due to increase in urbanization and lack of an adequate mitigation system, its 

destructive effect has been increased.  
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Fig. 1.2 Distribution of (a) human death and (b) property loss due to different Major natural 

Disasters in world (1911-2010) 
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Fig. 1.3 Number of people reported killed by major natural hazards in World during 

1911-2010, presented in terms of quarter century. 

 

Fig. 1.4 Estimated Damage (Million US$) caused by reported major Natural Disasters in 

World during 1911-2010, presented in terms of quarter century 
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1.3  SOIL LIQUEFACTION  

Seismic hazards can be categorized as ground shaking, structural hazards, liquefaction, 

landslides, retaining structure failures, lifeline hazards, tsunamis. Out of the above, 

seismically induced liquefaction of soil is a major cause of both loss of life and damage to 

infrastructures and lifeline systems. The soil liquefaction phenomenon was known in early 

stage of development of soil mechanics by Terzhagi and Peck (1948) to explain the 

phenomenon of sudden loss of strength in loose sand deposit. It was recognized as the main 

cause of slope failure in saturated sandy deposit. Though, soil liquefaction phenomena have 

been recognized since long, it was more comprehensively brought to the attention of 

engineers, seismologists and scientific community of the world by several devastating 

earthquakes around the world; Niigata and Alaska (1964),  Loma Prieta (1989), Kobe 

(1995),Kocaeli (1999) and Chi-Chi (1999) earthquakes (Baziar and Jafarian 2007). Since 

then, a numerous investigations on field and laboratory revealed that soil liquefaction may 

be better described as a disastrous failure phenomenon in which saturated soil loses strength 

due to increase in pore water pressure and reduction in effective stress under rapid loading 

and the failed soil acquires a degree of mobility sufficient to permit movement from meters 

to kilometers. Soil liquefaction can cause ground failure in the way of sand boils, major 

landslides, surface settlement, lateral spreading, lateral movement of bridge supports, 

settling and tilting of buildings, failure of waterfront structure and severe damage to the 

lifeline systems etc.  

Soil liquefaction can be classified into two groups as flow liquefaction and cyclic 

liquefaction. The flow liquefaction can occur when the shear stress required for static 

equilibrium of a soil is greater than the shear strength of soil in its liquefied state. The cyclic 

liquefaction occurs even if static shear stress is less than the shear strength of liquefied soil. 

Here, the deformations produced are driven by both cyclic and static shear stress. Generally 

the deformations develop incrementally during earthquake shaking. It can produce large 

permanent deformations during earthquake shaking. The cyclic liquefaction occurs under a 

much broader range of soil and site conditions than flow liquefaction. But, its effect can 

range from insignificant to highly damaging.  
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The liquefaction hazard evaluation involves liquefaction susceptibility analysis, liquefaction 

potential evaluation, assessment of effect of liquefaction (i.e., the extent of ground failure 

caused by liquefaction) and study of response of various foundations in liquefied soil. These 

are the major concern of geotechnical engineers. In the present study, the focus is on 

liquefaction potential evaluation, which determines the likelihood of liquefaction triggering 

in a particular soil in a given earthquake. Evaluation of the liquefaction potential of a soil 

subjected to a given seismic loading is an important first step towards mitigating 

liquefaction-induced damage. Though, different approaches like cyclic strain-based, energy- 

based and cyclic stress-based approaches are in use, the stress based approach is the most 

widely used methods for evaluation of liquefaction potential of soil (Krammer, 1996). Thus, 

the focus of present study is on the evaluation of liquefaction potential on the basis of the 

cyclic stress-based approach.  

There are two types of cyclic stress based-approach available for assessing liquefaction 

potential. One is by means of laboratory testing (e.g., cyclic tri-axial test and cyclic simple 

shear test) of undisturbed samples, and the other involves the use of empirical relationships 

that relate observed field behavior with in-situ tests such as standard penetration test (SPT), 

cone penetration test (CPT), shear wave velocity measurement (Vs) and the Becker 

penetration test (BPT).  

The methods like finite element, finite difference, statistically-derived empirical methods 

based on back-analyses of field earthquake case histories are used for liquefaction analysis. 

Finite element and finite difference analyses are the most complex and accurate of the above 

methods. However, liquefied sediments are highly variable over short distances, developing 

a sufficiently accurate site model for a detailed numerical model requires extensive site 

characterization effort. Desired constitutive modeling of liquefiable soil is very difficult, 

even with considerable laboratory testing. Hence, in-situ tests along with the post 

liquefaction case histories-calibrated empirical relationships have been used widely around 

the world. The cyclic stress-based simplified methods based on in-situ test such as SPT, 

CPT, Vs measurements and BPT are commonly preferred by the geotechnical engineer to 

evaluate the liquefaction potential of soils throughout most part of world.  
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The stress-based simplified procedure is pioneered by Seed and Idriss (1971). The SPT-

based simplified method, developed by Seed and Idriss (1971), has been modified and 

improved through several revisions (Seed and Idriss 1982; Seed  et al. 1983;  Seed et al. 

1985; Youd et al. 2001) and remains the most widely used methods around the world. 

Robertson and Campanella (1985) first developed a CPT based method for evaluation of 

liquefaction potential, which is a conversion from the SPT based method using empirical 

correlation of SPT-CPT and follows the same stress-based approach of Seed and Idriss 

(1971). Thereafter, various CPT-based methods of soil liquefaction potential evaluation 

using statistical and regression analysis techniques have been developed (Seed and de Alba 

1986; Olsen 1988; Shibata and Teparaksa 1988; Mitchell and Tseng 1990; Stark and Olson 

1995; Suzuki et al. 1995; Olsen 1997; Robertson and Wride 1998; Youd et al. 2001). 

Several VS-based simplified methods have been developed (Dobry et al. 1981; Stokoe et al. 

1988; Tokimatsu and Uchida 1990; Robertson et al. 1992; Kayen et al. 1992; Lodge 1994; 

Andrus and Stokoe 2000; Juang et al. 2000a; Juang et al. 2001; Andrus et al. 2003) and are 

in use. But, very few BPT-based simplified methods (Harder and Seed 1986 and Youd et al. 

2001) have been developed and primarily for gravelly soil. 

For a given soil resistance index, such as the corrected SPT blow count, the boundary curve 

yields liquefaction resistance of a soil, which is usually expressed as the cyclic resistance 

ratio (CRR). Under a given seismic loading, which is usually expressed as the cyclic stress 

ratio (CSR) the liquefaction potential of a soil is evaluated in terms of a factor of safety (Fs), 

which is defined as the ratio of CRR to CSR. The approach of expressing liquefaction 

potential of soil in terms of Fs is referred to as a deterministic method and is very much 

preferred by geotechnical professionals due its simplicity for use. 

However, due to parameter and model uncertainties, Fs>1 does not always indicate non-

liquefaction and also does not necessarily guarantee zero chance of soil being liquefied. 

Similarly FsÒ1 may not always correspond to liquefaction and may not guarantee 100% 

chance of being liquefied (Juang et al. 2000b). The boundary surface that separates 

liquefaction and non-liquefaction cases in the deterministic methods is considered as a 

performance function or ñlimit state functionò and is generally biased towards the 
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conservative side by encompassing most of the liquified cases. But, the degree of 

conservatism is not quantified (Juang et al. 2000b). Thus, attempts have been made by 

several researchers (Haldar and Tang 1979; Lioet al. 1988; Youd and Nobble 1997b; Toprak 

et al. 1999) to assess liquefaction potential in terms of probability of liquefaction (PL) using 

statistical or probabilistic approaches.  

The above in-situ test-based models are all data-driven as they are based on statistical 

analyses of the databases of post liquefaction case histories. The calculation of PL using 

these empirical models requires only the mean values of the input variables, whereas the 

uncertainty in the parameters and the model are excluded from the analysis. Thus, resulting 

PL might be subjected to error if the effect of parameter and model uncertainty is significant. 

These difficulties can be overcome by adopting reliability based probabilistic analysis of 

liquefaction, which considers both model and parameter uncertainties. In the framework of 

reliability analysis, the boundary curve separating liquefaction and non-liquefaction is a 

limit state. To conduct a thorough reliability analysis, knowledge of the uncertainties that are 

associated with both the input parameters and the limit state model is required. However, 

most of the existing simplified methods have not been fully examined for its model 

uncertainty, though the simplified methods tend to be conservative to some extent.  

Soft computing techniques such as; artificial neural network (ANN) (Goh, 1994; Juang et 

al., 2000; Hanna et al., 2007; Samui and Sitharam, 2011), support vector machine (SVM) 

(Pal, 2006; Goh and Goh, 2007; Samui and Sitharam, 2011) and relevance vector machine 

(RVM) (Samui, 2007) have been used to develop liquefaction prediction models based on an 

in-situ test database, which are found to be more efficient compared to statistical methods.  

However, the ANN has poor generalization, attributed to attainment of local minima during 

training and needs iterative learning steps to obtain better learning performances. The SVM 

has better generalization compared to ANN, but the parameters óCô and insensitive loss 

function (Ů) needs to be fine tuned by the user. Moreover, these techniques will not produce 

a comprehensive relationship between the inputs and output and are also called as óblack 

boxô system.  
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In the recent past, genetic programming (GP) based on Darwinian theory of natural selection 

is being used as an alternate soft computing technique. The GP is defined as the next 

generation soft computing technique and also called as a ógrey boxô model (Giustolisi et al., 

2007) in which the mathematical structure of the model can be derived, allowing further 

information of the system behaviour. The GP models have been applied to some difficult 

geotechnical engineering problems (Yang et al., 2004; Javadi et al., 2006; Rezania and 

Javadi, 2007;  Alavi et al., 2011; Gandomi and Alavi, 2012b; Muduli et al., 2013) with 

success. However, its use in liquefaction susceptibility assessment is very limited (Alavi  

and Gandomi, 2012; Gandomi and Alavi, 2012b; Gandomi and Alavi, 2013). The main 

advantage of GP and its variant multi-gene genetic programming (MGGP) over traditional 

statistical methods and other soft computing techniques is its ability to develop a compact 

and explicit prediction equation in terms of different model variables. 

1.4  MOTIVATION FOR THE RESEAR CH 

From the above discussions, it can be seen that different approaches and methodologies have 

been used to develop predictive models for evaluation of liquefaction potential over the 

years by various researchers. But any improvement to the existing methods for assessing 

liquefaction potential is considered as a contribution to the field of geotechnical engineering 

in mitigating the liquefaction hazards. In recent years, artificial intelligence techniques such 

as ANN, SVM and RVM have been successfully implemented for evaluation liquefaction 

potential. Though, GP has been implemented to solve some complex geotechnical problems 

its use in liquefaction potential evaluation is very limited. Muduli et al. (2013) observed that 

the efficacy of GP-based predictive model for uplift capacity of suction caisson 

outperformed the other soft computing technique-based (ANN, SVM, RVM) prediction 

models in terms of different statistical performance criteria. Now a days, the performance-

based design concepts in earthquake engineering have been receiving wide acceptance. One 

of the vital features of performance-based design in the perspective of geotechnical 

earthquake engineering is an assessment of liquefaction potential in terms of the probability 

of liquefaction. Precise estimation of the probability of liquefaction requires information of 

both parameter and model uncertainties. The issue of model uncertainty has been addressed 
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in the research presented in this dissertation through rigorous genetic programming based-

reliability analyses, which is considered to be significant.  

1.5.  OBJECTIVES AND SCOPE OF THE RESEARCH 

The objective of the present research is to develop deterministic, probabilistic and 

reliability-based models to evaluate the liquefaction potential of soil using multi-gene 

genetic programming based on reliable post liquefaction SPT and CPT database.  

The scopes of the research are as follows: 

i. To develop deterministic models implementing MGGP on the basis of available post 

liquefaction SPT and CPT data base 

ii.  To develop SPT and CPT-based probabilistic models using Bayesian mapping 

function approach to relate Fs to PL  

iii.  To explore the use of first order reliability method (FORM) for assessing 

liquefaction potential of soil in terms of PL on the basis of available SPT and CPT 

database 

iv. To estimate model uncertainties of the developed MGGP-based models for 

liquefaction potential evaluation using rigorous reliability analysis 

v. To validate developed models by comparing the efficacy of the proposed models 

with available models on the basis of independent database 

1.6   ORGANIZATION OF THESIS  

This thesis consists of seven chapters and the chapters have been organized in following 

order. 

After a brief introduction, the recent trend in natural hazards, the motivation, the scope and 

objective of the research work are presented in Chapter 1, that sets the stage for the entire 

thesis.  



 

11 

 

A detailed literature review pertaining to liquefaction susceptibility analysis has been 

presented in Chapter 2. The various approaches of liquefaction triggering analysis, in-situ 

test-based methods used for liquefaction susceptibility evaluation, methods of analysis and 

analysis tools used are discussed in this chapter.  

Chapter 3 pertains to a detailed description of the methodology (analysis tool), genetic 

programming (GP), used for development of different models for evaluation of liquefaction 

potential. The description and implementation of the GP in general and its variant, multi-

gene genetic programming (MGGP), is described citing examples. 

In Chapter 4, on the basis of post liquefaction SPT and CPT database separate deterministic 

models are developed using the MGGP method.  The efficiencies of developed models are 

compared with the existing ANN and SVM models. The developed models are also 

compared with other methods using independent database. While describing GP as an 

alternate predictive tool, aspects like the GP parameters, different statistical measures to 

compare different methods are also discussed. 

The probabilistic evaluation of liquefaction susceptibility evaluation is discussed in Chapter 

5. This chapter covers implementation of Bayesian mapping function for probabilistic 

evaluation of liquefaction potential by using the developed SPT and CPT-based 

deterministic models of Chapter 4. In this chapter efficiency of the developed models are 

compared with the available SPT and CPT-based probabilistic models using independent 

database.  

Chapter 6 presents the use of the first order reliability method (FORM) for evaluating the 

probability of liquefaction in detail, and uncertainties of the developed SPT and CPT-based 

limit state models are estimated through rigorous reliability analysis. The robustness of the 

Bayesian mapping approach is also demonstrated in this chapter. In the absence of existing 

model for comparison, development of óbestô model using cross validation method is also 

discussed in this chapter. 
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In Chapter 7, generalized conclusions made from various studies in this thesis, are presented 

and the scope of the future work is indicated.  The general layout and method of liquefaction 

potential evaluation of soil using different in-situ test data and different methods are shown 

in a flow diagram (Fig. 1.5) for ready reference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.5 A flow diagram showing the organization of the thesis 
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2.1  INTRODUCTION  

The liquefaction hazard evaluation involves liquefaction susceptibility analysis, liquefaction 

potential evaluation, assessment of effect of liquefaction (i.e. the extent of ground failure 

caused by liquefaction) and study of response of various foundations in liquefied soil. These 

are the major concerns of geotechnical engineers. But, in the present study, the focus is on 

liquefaction potential evaluation, which determines the likelihood of liquefaction triggering 

in a particular soil in a given earthquake. This Chapter presents a review of the various 

liquefaction potential evaluation methods. All these available research works are presented 

in four different parts. Part I focuses on different approaches of liquefaction potential 

evaluation and Part II  discusses about widely used stress-based approach in particular with 

emphasis on the in-situ test based methods. The available methods of analysis within the 

framework of stress-based approach such as deterministic method, probabilistic method and 

reliability method, which are in use for assessment of liquefaction potential are discussed in 

Part III. The various analysis tools used in model development for assessing liquefaction 

potential are described in the last part. 

2.2  LIQUEFACTION POTENTIAL EVALUATION  

Once a particular soil is found to be susceptible to liquefaction on the basis of various 

susceptibility criteria as mentioned in Kramer (1996) the next step in the liquefaction hazard 

evaluation process is the evaluation of liquefaction potential, which is the main topic of the 

present study. The major factors controlling the liquefaction potential of a saturated 

cohesion-less soil in level ground is the intensity and duration of earthquake shaking and the 

density and effective confining pressure of the soil. Several approaches are used for 

evaluating liquefaction potential, including (i) the energy-based approach, (ii) the cyclic 

Chapter 2 
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stress-based approach and the (iii)  the cyclic strain-based approach. Each of the above three 

methods are described briefly in the following subsections.  

2.2.1  Energy-based approach 

The energy-based approach is theoretically very much appropriate for liquefaction potential 

evaluation, as the dissipated energy reflects both cyclic stress and strain amplitudes.When a 

dry soil is cyclically loaded it causes densification at the expense of energy as energy is 

required to rearrange the individual soil particles. For a saturated soil densification causes an 

increase in pore water pressure under un-drained condition as the amount of energy required 

to rearrange soil grains decreases due to decrease in contact forces. Using this principle 

Davis and Berrill (1982) developed energy based formulation, in which the dissipated 

seismic energy at a site is considered responsible for the progressive development of pore 

water pressure, and also presented an expression as a criterion for liquefaction. Berrill and 

Davis (1985) revised their earlier formulation and developed an expression for the pore 

pressure increase by taking into account a non-linear relationship between the pore pressure 

increase and dissipated energy, effect of natural attenuation and reassessing the magnitude-

total radiated energy relationship: 
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where ȹu = increase in pore water pressure, ův
ô
 = effective vertical stress at depth of interest, 

N1 = corrected standard penetration value of the site soil layer under investigation, A = 

material attenuation factor, M= earthquake magnitude on the Richter scale, r = distance of 

the site from the centre of energy release. Law et al. (1990) used the above energy principles 

and developed a criterion for liquefaction occurrence in sands as given below. 
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Several other investigators have established relationships between the pore pressure 

development and the dissipated energy during ground shaking (Figueroaet al. 1994; Ostadan 

et al. 1996). The liquefaction triggering can be formulated by comparing the calculated unit 

energy from the time series record of a design earthquake with the resistance to liquefaction 

in terms of energy based on in-situ soil properties (Lianget al. 1995; Dief 2000). The energy-

based methods, however, is less commonly used due to non-availability of quality data for 

calibration of these methods.  

2.2.2  Cyclic strain-based approach 

The cyclic strain-based approach to evaluate of liquefaction potential is based on 

experimental evidence that shows densification of dry sands is effectively controlled by 

cyclic strain rather than cyclic stress and there exist a threshold volumetric strain below, 

which densification does not occur. Since there are tendencies of sand to density when dry, 

this is directly related to its tendency to develop excess pore pressure when saturated. This 

shows that pore pressure generation is more fundamentally related to cyclic strains than 

cyclic stress. In this approach earthquake induced loading is expressed in terms cyclic 

strains. The time history of the cyclic shear strain can be estimated from the ground response 

analysis. As it is difficult to predict cyclic strain accurately, Dorby et al.(1982) developed a 

simplified method for estimating uniform cyclic strain (ɔcyc ) from the amplitude of the 

uniform cyclic stress as originally proposed by Seed and Idriss (1971).  Once ɔcyc is 

calculated it is compared with threshold shear strain (ɔt). If ɔcyc< ɔt, no pore water pressure 

will be generated and thus liquefaction cannot be initiated. If ɔcyc>ɔt, the occurrence of 

liquefaction is possible. Liquefaction potential can be evaluated in this approach  by 

comparing the earthquake induced cyclic loading in terms of the amplitude of a series of  an 

equivalent number of uniform strain cycles with liquefaction resistance, which is expressed 

in terms of the  cyclic strain amplitude required to initiate liquefaction in the same number 

of cycles. Liquefaction can be triggered at depths where loading exceeds the liquefaction 

resistance. Dorby et al.(1984) developed a torsional tri-axial test for measurement of 

liquefaction resistance by imposing cyclic strains under un-drained conditions on a 

cylindrical tri-axial specimen by strain controlled cyclic torsion. The developed cyclic shear 

strain induces excess pore pressure in the specimen. Unlike cyclic stress approach cyclic 
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strain approach is not commonly used as cyclic strain amplitudes  can to be predicted as 

accurately as cyclic stress amplitude and the cyclic strain-controlled testing equipment is 

less readily available than the cyclic stress-controlled testing equipment (Kramer and 

Elgamal, 2001). Thus, the focus of this chapter is on the evaluation of liquefaction potential 

using the cyclic stress-based methods.  

2.2.3  Cyclic stress-based approach 

In this approach the earthquake induced loading is expressed in terms of cyclic shear stress, 

which is compared with the liquefaction resistance of soil expressed also in terms of cyclic 

shear stress. The location at which the loading exceeds the resistance of the soil liquefaction 

is expected to occur. The earthquake loading can be estimated in two ways: (i) by a detailed 

ground response analysis (ii) by the simplified method as originally proposed by Seed and 

Idriss (1971) and its subsequent modifications. The simplified methods are widely used than 

the first method. The uniform cyclic shear stress amplitude due to earthquake loading for 

level (or gently sloping) ground can be evaluated as per the simplified model developed by 

Seed and Idriss (1971), which is presented below. 

dvav
r

g

a
s=t max65.0                                                           (2.3) 

where Űav = the average equivalent uniform shear stress; ův = total vertical stress at the depth 

under consideration; amax = the peak horizontal ground surface acceleration, g = acceleration 

due to gravity and rd = the value of a stress reduction factor at the depth of interest that 

accounts for the flexibility of soil column (e.g., rd= 1 corresponds to the rigid body 

behavior) as illustrated in Fig. 2.1. and rd  can be presented as: 
( )
( )

r

d

d
r

max

max

t

t
= . The (Űmax)d is 

the maximum shear stress on soil element considering it as deformable body whereas (Űmax)r  

is the maximum shear stress on soil element considering it as a rigid body. The factor 0.65 is 

used to convert the peak cyclic shear stress ratio to a cyclic stress ratio that is representative 

of the most significant cycles over the full duration of loading. 

 



 

17 

 

 

Fig. 2.1 Schematic for determining maximum shear stress, tmax, and the stress 

reduction coefficient, rd (Seed and Idriss 1971). 

 

The liquefaction resistance of an element of soil depends on how close the initial state of soil 

is to the state corresponding to ñfailureò and also the nature of loading required to move the 

soil element from the initial state to failure state. Cyclic stress based approach is widely used 

and two types of methods under this approach are available for assessing liquefaction 

potential. One is by means of laboratory testing of undisturbed samples, and the other is 

based on empirical relationships that relate the field behavior with the in-situ tests. 

 

2.2.3.1  Laboratory test-based methods:  

Liquefaction resistance can be determined generally by two types of laboratory testing of 

undisturbed samples: (i) cyclic tri-axial test and (ii) cyclic simple shear test. In these tests 

liquefaction failures is defined as the point at which initial liquefaction is reached or at 

which some limiting cyclic strain amplitude is reached. Laboratory tests show that number 

of loading cycles required to produce liquefaction failure decreases with increase of shear 

stress amplitude and with the decrease of density of soil. Cyclic strength is normalized by 

initial effective overburden pressure to produce cyclic stress ratio (CSR). For cyclic simple 

shear test CSR is taken as the ratio of cyclic shear stress to the initial vertical effective stress 

i.e. (CSR)ss= Űcyc/ůôv. For cyclic tri-axial test it is taken as the ratio of maximum cyclic shear 

stress to the initial effective confining pressure and can be given as (CSR)tx=ůdc/2ů3c
ô
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whereůdc is cyclic deviator stress and ů3c
ô
 is the effective confining pressure. The CSR of the 

above two tests are not equivalent as they impose quite different loading. The CSR values of 

both tests are related as (CSR)ss=cr (CSR)tx, where cr is a correction factor. 

 

Seed and  Lee (1966) defined initial liquefaction as the point at which the increase in pore 

pressure is equal to the initial effective confining pressure from their study of  liquefaction 

of saturated sands during cyclic loading. Seed and Idriss (1967) developed an empirical 

procedure to evaluate the liquefaction potential of soil deposits by combining the 

development of pore water pressure obtained from laboratory results with the shear stress 

time history determined from the seismic response calculations. Seed et al. (1975) developed 

a model to determine the number of uniform stress cycles, Neq (at an amplitude of 65% of 

the peak cyclic shear stress i.e, Űavg=0.65Űmax) that would produce an increase in pore 

pressure equivalent to that of irregular time history by applying weighting procedure to a set 

of shear stress time histories from the recorded strong ground motions. Ishihara and Koseki 

(1989) showed that when the plasticity indices were below 10 the fines have little effect on 

liquefaction resistance. Chern and Chang (1995) developed a mathematical model for the 

evaluation of liquefaction characters of soil subjected to earthquake induced cyclic loading 

based on cyclic triaxial test results. Using the developed model and commonly used physical 

properties of soil the cyclic shear strength, number of cycles required to cause liquefaction 

and generation of excess pore water pressure can be evaluated without resorting to the 

complex laboratory cyclic shear test. Bray and Sancio (2006) conýrmed through cyclic 

testing of a wide range of soils, which were found to liquefy in Adapazari during the 1999 

Kocaeli earthquake, that  these ýne-grained soils are  susceptible to liquefaction. Gratchev et 

al. (2006) examined the validity of the plasticity index (PI) as a criterion for estimating the 

liquefaction potential of clayey soils under cyclic loading. They found that an increase in PI 

decreased the soil potential to liquefy, and soil with PI>15 seemed to be non-liqueýable, a 

ýnding that is in agreement with the results of other researchers.  

Though, evaluation of liquefaction potential based on laboratory test yields good results 

many engineers prefer to adopt the field performance correlation-based approach because of 

great difficulty and cost involved in obtaining undisturbed samples from cohesion-less soil 
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deposits. Here in this study focus is on in-situ test-based available methods for liquefaction 

potential evaluation. 

 

2.2.3.2  In -situ Test based methods: 

Soil liquefaction potential can be determined by using in-situ tests such as: (i) standard 

penetration test (SPT) (ii) cone penetration test (CPT) (iii) shear wave velocity (Vs) 

measurement (iv)Becker penetration test (BPT).  

 

Due to difficulties in obtaining high quality undisturbed samples and subsequent high 

quality laboratory testing of granular soils, use of in-situ tests along with case histories- 

calibrated empirical relationships are generally resorted by the geotechnical engineers for 

the assessment of liquefaction potential of soils. The simplified procedure pioneered by Seed 

and Idris (1971) mostly depend on a boundary curve, which presents a limit state and 

separates liquefaction cases from the non-liquefaction cases basing on field observations of 

soil in earthquakes at the sites where in situ data are available. The boundary is usually 

drawn conservatively such that all cases in which liquefaction has been observed lie above 

it. In this approach the CSR is usually used as earthquake loading parameters and the cyclic 

resistance ratio (CRR) is represented by in-situ test parameters that reflect the density and 

pore pressure generation properties of soil. Out of the various in-situ methods as mentioned 

above SPT and CPT-based methods are widely used for liquefaction susceptibility analysis 

of soil. 

 

SPT-based method 

It is the most widely used methods among the available in-situ test methods as discussed 

above for evaluation of resistance of soil against the occurrence of liquefaction. Whitman 

(1971) first proposed to use liquefaction case histories to characterize liquefaction resistance 

in terms of measured in situ test parameters. Seed and Idriss (1971) did a pioneer work in 

developing a simplified empirical model, using laboratory tests and post liquefaction field 

observations in earthquakes, which presents a limit state function separating liquefied cases 

from the non-liquefied cases on the basis of SPT data. Seed et al. (1983) extended their 



 

20 

 

previous work in developing a modified model in which used CSR (Űav/ův
ô
) instead of peak 

ground acceleration (amax) as a measure of seismic action and overburden pressure corrected 

SPT value (N1) instead of relative density (Dr) as the site parameter representing its 

resistance to liquefaction. However, it has been addressed by many researchers that the SPT 

has been conventionally conducted by using different kinds of hammers in different parts of 

the world, with different energy delivery systems, which also have varying degrees of 

efficiency. Moreover, the borehole diameters and the sampling techniques also differ 

significantly, which in turn cause a large variability in the measured values depending on the 

combinations of actual test procedures and equipment used. 

Seed et al. (1985) expressed the measured penetration resistance (Nm) in terms of N1,60 

where the driving energy in the drill rod is considered to be 60% of the free fall energy and 

correction for overburden effect is applied. Liquefaction resistance curves for sands with 

different fines contents are proposed, which is considered to be more reliable than the 

previous curves expressed in terms of mean grain size. Cyclic stress ratio, CSR, as proposed 

by Seed and Idriss (1971) and its subsequent modifications in Seed et. al.(1983), Seed et 

al.(1985), Youd et al. (2001), is defined as the average cyclic shear stress, Űav, developed on 

the horizontal surface of soil layers due to vertically propagating shear waves normalized by 

the initial vertical effective stress, ůǋv, to incorporate the increase in shear strength due to 

increase in effective stress and is presented as follows: 

d

v

v

v

av r
g

a
CSR

'

max

'
65.0

s

s
=

s

t
=                                               (2.4) 

where ův
ô
 = effective vertical stress at the depth under consideration. The value of CSR is 

corrected to an earthquake magnitude of 7.5, using the magnitude correction proposed by 

Seed et al. (1985). Seed et al.(1985) proposed a standard blow count N60as given below: 

( )%60
60

ERNN
m

=                                                      (2.5) 

where ER= percentage of the theoretical free-fall energy (i.e., estimated rod energy ratio 

expressed in percentage); and  Nm= measured  SPT blow count corresponding to the ER. The 
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value of N60is corrected to an effective stress of 100 kPa. Thus, the overburden stress and 

energy corrected SPT value, N1,60 is obtained by using the following relation: 

6060,1
NCN

N
³=                                                        (2.6) 

where CN is the effective stress correction factor and is calculated from the following 

relation: 

( )
av

N
P

C
'2.1

2.2

s+
=                                                       (2.7) 

where, Pa = 1atm of pressure in the same units used for ůǋv. Fig. 2.2 is a graph of calculating 

CSR and corresponding N1, 60 data from sites where liquefaction was or was not observed 

following past earthquakes with magnitudes of approximately 7.5. Liquefaction and non-

liquefaction data were separated by Cyclic Resistance Ratio (CRR) curves. Curves were 

developed for granular soils with the fines content of 5% or less, 15%, and 35%. Fig. 2.2 is 

only applicable for magnitude of 7.5 earthquakes.  

Juang et al. (2000) proposed an artificial neural network (ANN) -based CRR model based on 

SPT dataset and used Bayesian mapping function approach to relate factor of safety against 

the occurrence of liquefaction, Fs with probability of occurrence of liquefaction, PL. Youd et 

al. (2001) published a summary paper of 1996 and 1998, NCEER workshop in which the 

updates and augmentations to the original ñsimplified procedureò of Seed and Idriss (1971); 

Seed et al.1983; and Seed et al (1985) for evaluation of liquefaction potential, are 

recommended using SPT-based methods and is still followed as the current state of the art 

on the subject of liquefaction potential evaluation. Cetin (2000) and Cetin et al. (2004) 

proposed new correlations for assessment of liquefaction triggering in soil. 
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These correlations are developed on the basis of an expanded and reassessed post 

liquefaction SPT database after making screening of field data case histories on a 

quality/uncertainty basis, incorporating improved knowledge and understanding of factors 

affecting interpretation of SPT data, using improved understanding of factors affecting site 

specific earthquake ground motion, implementing improved methods for assessment of in 

situ CSR and using higher order probabilistic tools, Bayesian updating technique. The 

resulting correlations reduce the uncertainty associated with the liquefaction potential 

evaluation with respect to the existing models and also resolve controversial issues like 

magnitude-correlated duration weighting factors, adjustment of fines content and corrections 

for overburden stress in the context of assessment of CSR. Idriss and Boulanger (2004) and 

Idriss and Boulanger (2006) re-examined the existing semi-empirical procedures for 

evaluating the liquefaction potential of saturated cohesion-less soils during earthquakes and 

recommended revised correlations for use in practice. In this paper the authors discussed 

about the parameters, which contribute to the CSR formulation like stress reduction factor, 

earthquake magnitude scaling factor, overburden correction factor, and also the overburden 

Fig. 2.2  SPT ïbased limit state boundary curves for Magnitude 7.5 earthquakes with 

data from liquefaction case histories (Modified from Youd et al. 2001) 
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normalization factor for penetration resistances and presented the modified relations for 

these parameters. 

 

CPT-based method 

Although, the above SPT-based method remains an important tool for evaluating 

liquefaction resistance, it has some drawbacks, primarily due to the variable nature of the 

SPT (Robertson and Campanella, 1985; Skempton, 1986), nowadays the cone penetration 

test (CPT) is becoming more acceptable as it is consistent, repeatable and able to identify a 

continuous soil profile. Thus, CPT is being used as a valuable tool for assessing various soil 

properties, including liquefaction potential of soil. A typical CPT involves pushing a 

35.7mm diameter conical penetrometer into the ground at a  standard rate of 2cm/sec, while 

electronic transducers record (generally at 2cm or 5cm intervals) the force on the conical tip, 

the drag force on a short sleeve section behind the tip, pore water pressure behind the tip (or 

sometimes at other locations). The tip force is divided by the cross sectional area of the 

penetrometer to determine the tip resistance, qc and the sleeve drag force divided by the 

sleeve surface area to determine the sleeve friction, fs. The main advantages of the CPT are 

that it provides a continuous record of penetration resistance and is less vulnerable to 

operator error than the SPT. The main disadvantages of the CPT are the difficulty in 

penetrating layers that have gravels or very high penetration resistance and need to perform 

companion borings or soundings to obtain actual soil samples. 

Zhou (1980) first published liquefaction correlation directly based on case history CPT 

database of the 1978 Tangshan earthquake. He presented the critical value of cone 

penetration resistance separating liquefiable from non-liquefiable conditions to a depth of 

15m. Seed and Idriss (1981) as well as Douglas et al. (1981) proposed the use of correlations 

between the SPT and CPT to convert the available SPT-based charts for use with the CPT 

data. Robertson and Campanella (1985) developed a CPT- based method for evaluation of 

liquefaction potential, which is a conversion from SPT-based method using empirical 

correlation of SPT-CPT data and follows the same stress-based approach of Seed and Idriss 

(1971). This method has been revised and updated by many researchers (Seed and de-Alba 

1986; Shibata and Teparaksa 1988; Stark and Olson, 1995; Suzuki et al. 1995; Olsen 1997, 
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Robertson and Wride 1998).  Most of the CPT based simplified methods are presented in a 

chart that defines the limit state function (i.e., a boundary curve) separating the liquefied and 

non-liquefied cases in a plot of the cyclic resistance ratio (CRR) versus corrected CPT tip 

resistance (QC). These methods also need the knowledge of mean particle size (D50) and 

fines content (FC) which cannot be obtained from CPT measurements alone. For 

determining D50 and FC additional boreholes are required for collecting samples. Ishihara 

(1993) suggested that in case of liquefaction resistance evaluated by using CPT value for 

silty sands (>5% fines), the effects of fines could be estimated by adding some tip resistance 

increments to the measured tip resistance to obtain an equivalent clean sand tip resistance. 

For evaluating liquefaction potential only from CPT measurements, Olsen (1997) developed 

a CRR model using the parameters: qc, ůǋv and friction ratio (Rf). Robertson and Wride 

(1998) proposed a separate method using soil behaviour type index, Ic, which was 

recommended for use by the 1998, National Center for Earthquake Engineering Research 

(NCEER) workshop and is also presented in the summary paper of Youd et al. (2001).Fig. 

2.3is used to determine the CRR for clean sands [i.e., fines content (FC) Ò5%] from CPT 

data. This chart (i.e., Fig. 2.3) is valid for the magnitude 7.5 earthquake only.  

As per Juang et al. (1999a), Robertson and Wride method and Olsen method  are found to be 

quite comparable. Juang et al. (2003) also developed an ANN-based simplified method 

using soil type index (Ic) for evaluation of CRR of soil using post liquefaction CPT database 

and also used Bayesian mapping function approach to relate Fs with PL. Moss (2003) and 

Moss et al.  (2005) presented a CPT-based probabilistic model for evaluation of liquefaction 

potential using reliability approach and a Bayesian updating technique. Juang et al. (2006) 

used first order reliability method (FORM) for probabilistic assessment of soil liquefaction 

potential. 
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Shear wave velocity (Vs)-based methods 

The use of shear wave velocity (Vs) as a in-situ test index of liquefaction resistance of soil is 

very well accepted because both Vs and CRR are similar, but not proportional, influenced by 

void ratio, effective confining stresses, stress history, and geologic age. The followings are 

the main advantages of using Vs for evaluation of liquefaction potential: (i) Vs measurements 

are possible in soils that are difficult to penetrate with SPT and CPT or difficult to extract 

undisturbed samples, such as sandy and  gravelly soils, and at sites where borings or 

soundings may not be permitted; (ii) Vs is a basic mechanical property of soil materials, 

directly related to small-strain shear modulus; and (iii ) the small-strain shear modulus is a 

parameter required in analytical procedures for estimating dynamic soil response and soil-

structure interaction analyses. But, the following disadvantages are also there  when Vs  is 

used for liquefaction resistance evaluations: (i) seismic wave velocity measurements are 

made at small strains, whereas pore-water pressure build up and the liquefaction triggering 

are medium- to high-strain phenomena; (ii) seismic testing does not provide samples for 

Fig.2.3 Curve recommended for calculation for CRR from CPT data 

(Reproduced from Robertson and Wride 1998). 
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classification of soils and identification of non-liquefiable soft clay-rich soils; and (iii ) thin, 

low Vs strata may not be detected if the measurement interval is too large. Therefore, it is 

preferred to drill sufficient boreholes and conduct in-situ tests (SPT or CPT) to detect and 

demarcate thin liquefiable strata, non-liquefiable clay-rich soils, and silty soils above the 

ground water table that might become liquefiable should the water table rise. Few VS-based 

simplified methods (Dobry et al. 1981; Stokoe et al. 1988; Tokimatsu and Uchida 1990; 

Robertson et al. 1992; Kayen et al. 1992; Lodge 1994; Andrus and Stokoe 1997; Andrus and 

Stokoe 2000; Juang et al. 2000a; Juang et al. 2001; Andrus et al. 2003) have been developed 

and are in use. But as Vs method is of recent origin and has not been verified with the 

historical post liquefaction database, Vs ï based method is not that popular like SPT and 

CPTïbased method.  

 

BPT-based methods 

Liquefaction resistance of non-gravelly soils has been assessed mostly through SPT and 

CPT, with rare Vs measurements. Several investigators have employed large-diameter 

penetrometers to overcome these difficulties; the Becker penetration test (BPT) in particular 

has become one of the more effective and widely used larger tools. The BPT was developed 

in Canada in the late 1950s and consists of a168-mm diameter, 3-m-long double-walled 

casing driven into the ground with a double-acting diesel-driven pile hammer. The hammer 

impacts are applied at the top of the casing and the penetration is continuous. The Becker 

penetration resistance is defined as the number of blows required to drive the casing through 

an increment of 300 mm.  The BPT has not been standardized, and several different types of 

equipment and procedures have been used. There is currently very few liquefaction sites 

from which BPT data have been obtained. Thus the BPT cannot be directly correlated with 

field behaviour, but rather through estimating equivalent SPT Nm-values from BPT data and 

then applying evaluation procedures based on the SPT. This indirect method introduces 

substantial additional uncertainty into the calculate CRR. But, very few BPT-based 

simplified methods (Harder and Seed 1986 and Youd et al. 2001) have been developed 

primarily as it is only suitable for gravelly soil. 
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2.3  METHODS OF ANALYSIS  

The basic analysis criterion in liquefaction potential evaluation is to compare the resistance 

(CRR) of soil with the loading (CSR) effects. These liquefaction triggering analyses are 

carried out using the following three methods based on the importance of the project. 

Deterministic method  

Probabilistic method 

Reliability-based probabilistic method 

A brief description and literature pertaining to above methods are presented separately.  

 

2.3.1  Deterministic method  

In deterministic approach, the Fs, which is defined as the ratio of CRR to CSR,  is calculated 

on the basis of prediction of single values of load (CSR) and resistance (CRR) as shown in 

the Fig. 2.4 without considering the uncertainty associated in prediction of loading and 

resistance. It is assumed that there is 100% probability of occurrence of calculated CRR and 

CSR. In deterministic approach, Fs>1 corresponds to non-liquefaction and Fs Ò 1 

corresponds to liquefaction. Here in this approach, only single Fs based on past experience is 

used to account for all the uncertainties associated with the load and resistance parameters. 

Though, this method of analysis does not provide adequate information about the behaviour 

of variables causing liquefaction, is still very much preferred by the geotechnical 

professionals due to its simple mathematical approach with minimum requirement of data, 

time and effort.  
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Fig. 2.4 Shows deterministic approach in liquefaction potential evaluation (modified from 

Becker 1996). 

The most commonly used deterministic method to assess the liquefaction potential of a site 

is the ñsimplified procedureò originally developed by Seed and Idriss (1971) as discussed in 

earlier sections. This method has been modified and improved on several occasions for its 

use in different in-situ tests (Seed et al. 1983; Seed et al. 1985; Robertson and Campanella 

1985; Shibata and Teparaksa 1988; Olsen 1997; Robertson and Wride 1998). National 

Center for Earthquake Engineering Research (NCEER) workshop, 1998, published the 

reviews of in-situ test-based deterministic methods for evaluation of liquefaction potential of 

soil (Youd et al., 2001). Factor of safety (Fs) against the occurrence of liquefaction for any 

earthquake is given by the following relation (Youd et al. 2001): 

( )MSFCSRKKCRRF
s as=a=s
=

0,1,5.7                                                    (2.8) 

where CSR= calculated cyclic stress ratio by using the Eq. (2.4); Ků is the overburden 

correction factor and KŬ is static shear stress correction factor; CRR7.5  is determined from 

Fig. 2.2; MSF is the magnitude scaling factor used to adjust the CRR value to magnitude 

smaller or larger than 7.5 and it is calculated by using different formulae (Seed and Idriss, 

1982; Ambraseys, 1988; Arango, 1996; Andrus and Stokoe, 1997; Youd and Noble, 
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1997a).The further design decisions for mitigation of liquefaction hazards are taken on the 

basis of evaluated Fs of a site. 

 

2.3.2 Probabilistic method 

 

Because of the parameter and model uncertainties, in liquefaction potential evaluation, Fs>1 

does not always correspond to non-liquefaction that it cannot guarantee a zero chance of 

occurrence of liquefaction and  similarly, Fs Ò 1 does not always correspond to liquefaction. 

This can be explained considering the variability of CRR and CSR as shown in the Fig. 2.5. 

If Fs is evaluated considering the mean values of CRR and CSR then, Fs is greater than1.0. 

But, as per the distributions of CSR and CRR shown in the Fig. 2.5,there is some probability 

that the CRR will be less than CSR as indicated by the shaded region of the figure, which 

will yield Fs< 1, proving the previous prediction wrong and  a non-liquefied case may turn 

out to be a liquefied case.  Thus, in recent years a lot of work has been done to assess the 

liquefaction potential in terms of probability of liquefaction (PL). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Shows the possible distribution of CRR and CSR in liquefaction potential 

evaluation. 

Haldar and Tang (1979) carried out second moment statistical analyses of the SPT-based 

limit state introduced by Seed and Idriss (1971) to estimate the PL. Fardis and Veneziano 

(1981) used Bayesian regression technique to develop a model for evaluation of liquefaction 
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potential of sands using the results of 192 published cyclic simple shear tests taking into 

account the uncertainties caused by the effect of sample preparation, effect of system 

compliance, and stress non-uniformities. The developed model is only applicable to uniform 

and medium clean sands. Fardis and Veneziano (1982) presented a probabilistic method of 

liquefaction analysis of horizontally layered sand deposits subject to vertically propagating S 

waves. The method was able to predict well, the probability of liquefaction on the basis of 

post liquefaction case history of SPT data. Liao et al. (1988) developed logistic regression-

based models using post liquefaction field performance database to quantify the probability 

of liquefaction as a function of parameters such as distance to earthquake, peak horizontal 

acceleration at the ground surface, normalized CSR, depth of ground water table, total 

vertical stress, effective vertical stress, corrected field SPT N-value, fines content, clay 

content, gravel content, and grain size at 50% passing. Hwang and Lee (1991) used a 

liquefaction potential probability matrix and a fragility curve based on the moment 

magnitude to determine probability of no, minor, moderate, and major liquefaction. They 

considered the uncertainties in both site parameters and seismic parameters to determine 

various earthquake-site models. The Fourier Acceleration amplitude spectrum (non-linear 

site response analysis) was used to determine ground motions for each case. A factor of 

safety based on SPT N-values is calculated to evaluate a probability of liquefaction index, 

which measures the severity of liquefaction. The shear stresses calculated by this method are 

close to those obtained by using simplified stress-based method pioneered by Seed and 

Idriss (1971). Youd and Nobble (1997b) and Toprak et al. (1999) used logistic regression 

analyses of post liquefaction field performance data to develop empirical equations for 

assessing PL.  Juang et al. (2000b) proposed a Bayesian mapping function based on SPT 

dataset to relate Fs with PL. Juang et al. (2002a) found that the Bayesian mapping function 

approach is better than logistic regression approach for the site specific probability of 

liquefaction evaluation. The equation for determining liquefaction probability established 

through logistic regression has nothing to do with any deterministic methods whereas 

Bayesian mapping function preserves the characteristics of a particular deterministic method 

under consideration and provides an easy transition from Fs-based design to PL-based 

design, thus it is the preferred approach. Juang et al.(2002b) compared three CPT- based 
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simplified methods, the Robertson method, the Olsen method, and the Juang method on the 

basis of developed Bayesian mapping functions for the corresponding deterministic methods 

within probabilistic framework using the case histories obtained from the 1999, Chi-Chi, 

Taiwan earthquake. They showed that the Juang method is more accurate than the other two 

methods in predicting the liquefaction potential of soils. Juang et al. (2003) developed a 

simplified CPT-based method using the Bayesian mapping function approach to relate Fs 

with PL.  

 

2.3.3 Reliability-based Probabilistic method 

The probabilistic models as discussed above are all data-driven as they are based on 

statistical analyses of the databases of post liquefaction case histories. Calculation of PL 

using these empirical models requires only the mean values of the input variables, whereas 

the uncertainty in the parameters and the model are excluded from the analysis. Resulting PL 

might be subjected to error if the effect of the parameter and model uncertainty is 

significant. These difficulties can be overcome by adopting reliability based probabilistic 

analysis of liquefaction, which considers both model and parameter uncertainties. 

 

Juang et al. (1999b) used advanced first order second moment (AFOSM) method to find out 

the reliability index (ɓ) for liquefied and non-liquefied cases of the database, and developed 

a relationship between ɓ and PL using a Bayesian mapping function based on post 

liquefaction CPT database. They used ellipsoid method (Low and Tang 1997) to carry out 

the minimization analysis in reliability index calculation. For the reliability analysis authors 

assumed the coefficient of variation (COV) of the soil and seismic parameters. But, model 

uncertainty was not considered. Juang et al. (2000d) used AFOSM method with Monte 

Carlo simulation technique to find out minimum ɓ for liquefied and non-liquefied cases, and 

also proposed a PL-Fs relationship based on a Bayesian mapping function approach without 

considering model uncertainty. Cetin (2000) and Cetin et al. (2004) developed SPT-based 

probabilistic models for evaluation of liquefaction potential using first order reliability 

method (FORM) and a Bayesian updating technique. Similarly, Moss (2003) and Moss et al.  

(2005) presented a CPT-based probabilistic model for evaluation of liquefaction potential 
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using a mean value first-order second moment (MVFOSM) reliability approach and a 

Bayesian updating technique. Hwang and Yang (2004) developed a model using MVFOSM 

reliability analysis to calculate the relation among the probability of liquefaction, the factor 

of safety and the reliability index. Juang et al. (2006) used first order reliability method 

(FORM) along with the Bayesian mapping function approach for probabilistic assessment of 

soil liquefaction potential and carried out extensive sensitivity analyses to characterize 

uncertainties associated with their developed CRR model.  

 

2.4  ANALYSIS TOOLS USED FOR LIQUEFACTION POTENTIAL 

 EVALUATION  

 

As discussed in the previous section, due to difficulty in developing analytical models for 

liquefaction susceptibility analysis of soil, because of complex constitutive model for 

liquefied soil, various empirical methods have been developed based on post-liquefaction 

database of laboratory and in-situ tests.  Later, soft computing techniques are found to have 

better efficiency in developing the empirical models compared to traditional regression 

techniques. A brief literature on the above techniques and its applications are presented 

below.  

 

2.4.1  Regression technique 

The statistical regression techniques have been used to develop different soil liquefaction 

evaluation.  Seed and Idriss (1971), Seed et al. (1984), Seed et al. (1985), Robertson and 

Campanella (1985),Shibata and Teparaksa (1988), Olsen (1997), Robertson and Wride 

(1998), Juang et al. (2000a), and Juang et al. (2003) used statistical regression techniques for 

development of their empirical models for evaluation of liquefaction potential using 

laboratory and in-situ test data.  

 

2.4.2  Soft computing techniques  

 The soft computing techniques such as artificial neural network (ANN), support vector 

machines (SVM), relevance vector machine (RVM) etc. have been used recently for 
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liquefaction susceptibility analysis with success and found to have better performance 

compared to the statistical method. A brief description on application of the above soft 

computing techniques to the liquefaction evaluation is presented below.  

 

2.4.2.1  Artificial neural network (ANN) 

The ANN is a problem solving algorithm modelled on the structure of the human brain. 

Neural network technology mimics the brainôs own problem solving process. The neurons 

are described as processing elements or nodes in mathematical model of the ANN. A 

network with an input vector of elements xl(l = 1, é, Ni) is transmitted through a connection 

that is multiplied by weight wjl  to give the hidden unit zj(j = 1, é, Nh) 

 

                                             (2.9) 

 Where Nh is the number of hidden units and Ni is the number of input units. The hidden 

units consist of the weighted input and a bias (bj0). A bias is simply a weight with constant 

input of 1 that serves as a constant added to the weight. These inputs are passed through a 

layer of transfer function/activation function f which produces: 

 

                                                                   (2.10) 

The activation functions are designed to accommodate the nonlinearity in the input-output 

relationships. Some common activation functions used in ANN are: (a) stepped (b) linear (c) 

logistic sigmoid and (d) hyperbolic tangent sigmoid (Das 2013). The outputs from hidden 

units pass another layer of filters, and are fed into another activation function F to produce 

output y (k = 1, é, No):  

                 

                (2.11)    

 

This way it continues depending upon the number of hidden layers and finally the output 

layer. This multilayer (hidden layer and output layer) with the nonlinear transfer function 

gives rise to a highly nonlinear function with a number of unknown parameters in terms of 

weights. Fig. 2.6 shows the typical architecture of a three layer ANN. 

ä
=

+=
iN

l
jljlj

bxwz
1

0

ùú
ø

éê
è += ä
=

iN

l
jljlj

bxwfr
1

0

()
ùú

ø
éê

è +
ùú
ø

éê
è +== ä ä

= =
0

1 1
0 k

hN

j

lN

l
jljlkjkk

bbxwfwFvFy



 

34 

 

 

Fig.2.6   Typical architecture of a neural network (Reproduced from Das 2013). 

 

Studies dealing with various engineering applications indicate that the ANN models are not 

significantly different from a number of statistical models. However, there has been little 

interaction between the neural network and statistical communities. In general, the problems 

dealt by ANNs are more complex, and as such, the dimensionality of the models tends to be 

much higher. The ólearningô or ótrainingô process in ANN in general, is a nonlinear 

optimization of an error function. The process is about optimizing the connection weight. 

This is equivalent to the parameter estimation phase in conventional statistical models.  

Steepest descent algorithm, which is known as gradient descent algorithm is mostly used in 

geotechnical engineering. The Levenberg-Marquardt (LM) algorithm is the other 

optimization used in the implementation of ANN in Geotechnical engineering.  

As the characteristic of traditional nonlinear programming based optimization method are 

the initial point dependent, the results obtained using back propagation algorithm are 

sensitive to initial conditions (weight vector) (Shahin et al. 2002). The use of global 

optimization algorithms like genetic algorithm (GA) are also in use in geotechnical 

engineering (Goh 2002). Goh (2002) used GA to find out the optimum spread of 

probabilistic network for liquefaction analysis. 
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Goh (1994) first investigated the feasibility of use of ANN to model the relationship 

between soil and seismic parameters, and the liquefaction potential. He used a simple back 

propagation neural-network algorithm. The ñbestò model consists of eight input variables: 

corrected SPT value (N1,60), fines content(FC), the mean grain size (D50), equivalent 

dynamic shear stress (Űav/ůôv), ův, ůôv, Mw, and amax. From the parametric studies, the most 

important input parameters have been identified as N1, 60 and FC. The results obtained by the 

neural network model were compared with that of the statistical method of Seed et al. 

(1985). The liquefaction classification accuracy of the neural network model was found out 

to be 95% compared to 84% of Seed et al. (1985). Goh (1996) developed five neural 

network models to assess liquefaction potential using a post liquefaction CPT database. The 

sites were from sand and sandy silt deposits in Japan, China, United States and Romania 

representing the earthquakes that occurred during the period 1964-1983.The ñbestò model 

consists of five input variables: measured cone tip resistance qc, ůôv, D50, Mw, and amax. The 

efficiency of the developed model in terms of rate of successful prediction has been 

compared with that of the existing statistical method of Shibata and Teparaksa (1988), and 

found that the rate of successful prediction by both the models are equally good (i.e., 97%). 

From the parametric studies, the most important input parameter has been identified as qc.   

Najjar and Ali (1998) used ANN to characterize the soil liquefaction resistance using post 

liquefaction CPT data obtained from various earthquake sites around the world. They 

presented a liquefaction potential assessment chart, which can be used by geotechnical 

professionals for liquefaction potential evaluation. Juang et al. (1999a) developed two ANN-

based models to approximate the two existing CPT-based statistical methods: the Robertson 

method and the Olsen method using the same database. Based on the developed ANN 

models the rate of successful prediction of both liquefied and non-liquefied cases by 

Robertson method (89%) was found to be better than that of Olsen method (77%).  Juang 

and Chen (2000a) used Levenberg-Marquardt neural network (LMNN) to a large database of 

shear wave velocity measurements to establish a limit state boundary that separates the zone 

of liquefaction from the zone of non-liquefaction. Juang et al. (2000c) developed an ANN-

based CRR model using 225 cases of post liquefaction CPT data. The developed CPT-based 

limit state function forms the basis for the development of a reliability-based method for 
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assessing cyclic liquefaction potential. Goh (2002) used probabilistic neural network (PNN) 

to develop two separate models for evaluating seismic liquefaction potential based on CPT 

data and shear wave velocity data, respectively. It was observed that the overall rate of 

successful prediction of both liquefied and non-liquefied cases were 100% for CPT data and 

98% for shear velocity measurement data. Rahman and Wang (2002) developed fuzzy 

artificial neural network models for assessment of liquefaction potential of a site using SPT-

based post liquefaction case histories. The results from the developed models were 

compared with actual field observations and misclassified cases were identified. The models 

are found to have good predictive ability and can be used by the geotechnical professionals 

for preliminary evaluation of liquefaction potential of a site for which the input parameters 

are not well defined. Juang et al.(2003) used a large CPT-based database to develop an 

artificial neural network (LMNN) model for predicting the occurrence and non-occurrence 

of liquefaction in terms of a liquefaction field performance indicator (LI) based on derived 

soil (qc1N, Ic, ůôv ) and seismic parameters (CSR7.5). Further, using this ANN-based model a 

simplified CRR model was developed. The developed CRR model in conjunction with the 

existing CSR7.5 model forms the deterministic method for evaluation of liquefaction 

potential where factor of safety is used for taking design decisions. Su and Tak (2006) 

developed a back propagation ANN model to predict the CRR of sands using the data 

obtained from un-drained cyclic triaxial and cyclic simple shear tests. It was found that the 

predicted CRR values are mostly sensitive to the variations in relative density thus 

confirming the ability of the developed model to identify the dominant dependence of 

liquefaction susceptibility on soil density already known from field and laboratory-based 

experimental observations. Baziar and Jafarian (2007) developed an artificial neural network 

(ANN)-based model to establish a correlation between soil parameters and the strain energy 

required to trigger liquefaction in sands and silty sands using a relatively large database of 

the results of cyclic triaxial, torsional shear and simple shear test. Hanna et al. (2007) 

developed a general regression neural network (GRNN) model based on 620 cases of post 

liquefaction SPT data from earthquakes of Turkey and Taiwan, 1999 using  12 soil and 

seismic  input parameters: depth of soil layer (z), N1,60, FC, depth of ground water table (dw), 

ův, ůôv, threshold acceleration (at), CSR,shear wave velocity (Vs) , internal friction angle of 
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soil (ʟ
ô
), Mw, and amax. From sensitivity analysis it was observed that N1,60 was the most 

important parameter and Vs is the least significant parameter. Lee and Hsiung (2009) 

developed an MLP neural network model based on reliable SPT-based case history data to 

classify the cases of liquefaction and non liquefaction. Excellent performance and good 

generalization were achieved with overall 96.6% success rate. Using this model sensitivity 

analyses was made and amax was found out to be the most significant parameter. Juang et al. 

(2006) developed an ANN-based reliability model using a post liquefaction CPT database. 

The model uncertainty of the developed limit state model was estimated. Samui and 

Sitharam (2011) developed a SPT-based ANN model for classification of liquefaction and 

non-liquefaction cases using post liquefaction database of 1999, Chi Chi Taiwan earthquake. 

The performance of the developed ANN model in terms of rate of successful prediction of 

liquefied cases and non-liquefied cases based on an independent database was found out to 

be 70.58%. 

 

2.4.2.2 Support vector machine (SVM) 

Support vector machine (SVM) is an emerging machine learning technology where 

prediction error and model complexity are simultaneously minimized. Unlike ANN 

modeling, which is based on biological inspired algorithm, the SVM is based on statistical 

learning theory.  The support vector machine is becoming more popular due to its high 

generalization ability (Vapnik 1998). However, application of SVM to liquefaction 

triggering analysis is very much limited (Pal 2006; Goh and Goh 2007; Samui and Sitharam 

2011), but it is found to have better generalization capability compared to ANN modeling. 

Support Vector Machine (SVM) has originated from the concept of statistical learning 

theory pioneered by Boser et al. (1992). For liquefaction analysis the SVM is used as a 

regression technique by introducing a Ů-insensitive loss function. In this section, a brief 

introduction on SVM for regression problem is presented. More details can be found in 

literature (Boser et al. 1992; Cortes and Vapnik 1995). Considering a set of training 
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The Ů-insensitive loss function can be described in the following way 

() 0yŮL =  for () Ůyxf <-  otherwise  () () ŮyxfyŮL --=                  (2.12) 

This defines an e tube so that if the predicted value is within the tube the loss is zero, while 

if the predicted point is outside the tube, the loss is equal to the absolute value of the 

deviation minus e. The main aim in SVM is to find a function ()xf  that gives a deviation of 

e from the actual output and at the same time is as flat as possible.  

The final equation of SVM can be written as (Vapnik, 1998; Cristianini and Shwae-Taylor 

2000; Smola and Scholkopf 2004). 
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where ai, 
*
i
Ŭ are the Lagrangian Multipliers, nsv is the number of support vectors and 

K(xi.xj) is kernel function. Some common kernels have been used such as polynomial 

(homogeneous), polynomial (nonhomogeneous), radial basis function, Gaussian function, 

sigmoid etc. for non-linear cases.  

Pal (2006) developed SVM-based classification models using post liquefaction case 

histories based on reliable SPT and CPT database and observed that prediction accuracy was 

96% and 97% respectively. Goh and Goh (2007) developed SVM model using CPT 

database and found that the overall liquefaction classification accuracy was 98%. Samui and 

Sitharam (2011) developed SPT-based SVM model for classification of liquefaction and no-

liquefaction using post liquefaction database of 1999, Chi Chi Taiwan and found that the 

classification accuracy based on an independent dataset was 77.5%, which is better than that 

of their developed ANN model (70.58%). 
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2.4.2.3  Relevance vector machine (RVM) 

The relevance vector machine (RVM) is a revised SVM tool. It is introduced by Tipping 

(2001) and is a sparse linear model, which is based on Bayesian formulation of linear model. 

Samui (2007) developed RVM model using reliable CPT-based liquefaction case history 

dataset for liquefaction potential assessment and revealed that overall performance was good 

in prediction, more accurate than ANN model. Das and Samui (2008) examined the potential 

of RVM-based classification approach to assess the liquefaction potential from the reliable 

CPT data by developing two models. The liquefaction prediction accuracy for Model-I and 

Model- II was 100% and 97.14%, respectively. 

 

2.4.2.4  Genetic programming (GP) 

In the recent past, genetic programming (GP) based on Darwinian theory of natural selection 

is being used as an alternate soft computing technique. The GP is defined as the next 

generation soft computing technique. According to the classification of modeling techniques 

based on colours (Giustolisi et al. 2007), whose meaning is related to the three levels of 

prior information required, white-, black-, and grey-box models are in use, each of which 

can be explained as follows. Black-box models (e.g., ANN, SVM etc.) are data-driven or 

regressive systems in which the functional form of relationships between model variables is 

unknown and needs to be estimated. Black-box models depend on data to map the 

relationships between model inputs and corresponding outputs rather than to find a feasible 

structure of the model input-output relationships. But, grey-box models are conceptual 

systems in which the mathematical structure of the model can be derived, allowing further 

information of the system behavior to be resolved. White-box models are systems that are 

based on first principles (e.g., physical laws) where model variables and parameters are 

known and have physical meaning by which the underlying physical relationships of the 

system can be explained. GP and its variant multi-gene GP (MGGP) can be classified as 

grey box techniques. Fig. 2.7 is a pictorial representation of the above classification, where 

higher the physical knowledge used during the model development, the better the physical 

interpretation of the phenomenon that the model allows the user.  
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Fig. 2.7 Graphical classifications of soft computing modelling techniques (modified from 

Giustolisi et al. (2007) 

The models developed using GP and its variants have been applied to some difficult 

geotechnical engineering problems (Yang et al., 2004; Javadi et al. 2006; Rezania and Javadi 

2007; Alavi et al. 2011; Gandomi and Alavi 2012b) with success. The main advantage of GP 

and its variant multi-gene genetic programming (MGGP) over traditional statistical methods 

and other soft computing techniques is its ability to develop a compact and explicit 

prediction equation in terms of different model variables. However, its use in liquefaction 

susceptibility assessment is very limited (Gandomi and Alavi, 2012b). Gandomi and Alavi 

(2012b) developed a liquefaction classification model using post liquefaction CPT database. 

The overall classification accuracy of their model is 91.6%, which is considered to be very 

good. But, the performance of the developed model has not been compared with that of the 

existing models based on other soft computing techniques. The developed model has not 

also been tested with independent dataset other than testing data.  
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2.5  CONCLUSION 

The following conclusions are drawn from the above literature study. 

i. Though conceptually the energy-based approach is more appropriate for 

liquefaction potential evaluation, it is less commonly used than the cyclic 

stress-based approach due to non-availability of quality data for calibration of 

the developed models. 

ii.  The cyclic strain-based approach is less commonly used than the cyclic 

stress-based approach as the cyclic strain amplitudes cannot be predicted as 

accurately as cyclic stress amplitudes, and due to unavailability of equipment 

for cyclic strain-controlled testing.  

iii.  Though, evaluation of liquefaction potential based on laboratory test yields 

good results many geotechnical engineers prefer to adopt the field 

performance correlation-based approach because of great difficulty and cost 

involved in obtaining high quality undisturbed samples from cohesionless 

soil deposits. 

iv. Out of the various in-situ methods SPT and CPT-based methods are widely 

used for liquefaction susceptibility analysis of soil due to availability of 

sufficient post liquefaction database of these methods. 

v. Though, deterministic method of liquefaction potential is preferred by the 

geotechnical professionals but, probabilistic evaluation is very much required 

in actual practice, which helps in taking risk-based design decisions. 

vi. For making an unbiased evaluation of liquefaction potential, the uncertainty 

of the limit state boundary surface is to be determined for which rigorous 

reliability analyses are required.  

vii.  Though, various soft computing techniques such as ANN, SVM, and RVM 

are in use and performing well in predicting the liquefaction susceptibility of 

soil the ANN has poor generalization. The SVM has better generalization 

compared to ANN, but the parameters óCô and insensitive loss function (Ů) 

needs to be fine tuned by the user. Moreover, these techniques will not 
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produce a comprehensive relationship between the inputs and output and are 

also called as óblack boxô system.  
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3.1  INTRODUCTION  

In the present study, multi-gene genetic programming (MGGP), the variant of GP is used to 

develop different prediction models for evaluation of liquefaction potential of soil within the 

framework of deterministic, probabilistic and reliability-based approach. As discussed in 

previous chapter, GP and its variant, MGGP have been used in limited geotechnical 

engineering problems and are not very common to geotechnical engineering professionals, 

hence, a detailed description is presented as follows. 

3.2 GENETIC PROGRAMMING  

Genetic Programming is a pattern recognition technique where the model is developed on 

the basis of adaptive learning over a number of cases of provided data, developed by Koza 

(1992). It mimics biological evolution of living organisms and makes use of the principles of 

genetic algorithms (GA). In traditional regression analysis the user has to specify the 

structure of the model, whereas in GP, both structure and the parameters of the mathematical 

model are evolved automatically. It provides a solution in the form of a tree structure or in 

the form of a compact equation using the given dataset. A brief description about GP is 

presented here for the completeness, but the details can be found in Koza (1992).  

GP model is composed of nodes, which resembles a tree structure and thus, it is also known 

as  GP tree. Nodes are the elements either from a functional set or terminal set. A functional 

set may include arithmetic operators (+, ×, ÷, or -), mathematical functions (sin (.), cos (.), 

tanh (.) or ln(.)), Boolean operators (AND, OR, NOT, etc.), logical expressions (IF, or 

THEN) or any other  suitable  functions defined by the user. The terminal set includes 

variables (like x1, x2, x3, etc.) or constants (like 3, 5, 6, 9, etc.) or both. The functions and 

Chapter 3 

GENETIC PROGRAMMING AS AN ANALYSI S TOOL  
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terminals are randomly chosen to form a GP tree with a root node and the branches 

extending from each function nodes to end in terminal nodes as shown in Fig.3.1.The GP 

tree as shown in Fig. 3.1 presents a mathematical expression: tan (6.5x2/x1). Here the 

variables: x1, x2, and constant: 6.5 constitute the terminal nodes and the arithmetic operators: 

×, / and the mathematical function: tan, constitute the functional nodes. The starting 

functional node (tan) from which the branching of other nodes begins with the GP tree is 

called the root node. 

Initially a set of GP trees, as per user defined population size, is randomly generated using 

various functions and terminals assigned by the user. The fitness criterion is calculated by 

the objective function and it determines the quality of each individual in the population 

competing with the rest. At each generation a new population is created by selecting 

individuals as per the merit of their fitness from the initial population and then, 

implementing various evolutionary mechanisms like reproduction, crossover and mutation 

to the functions and terminals of the selected GP trees. The new population then replaces the 

existing population. This process is iterated until the termination criterion, which can be 

either a threshold fitness value or maximum number of generations, is satisfied. The best GP 

model, based on its fitness value that appeared in any generation, is selected as the result of 

genetic programming. A brief description of various evolutionary mechanisms in GP is 

presented below. 

 

3.2.1 Initial Population 

In the first step of genetic programming a number of GP trees are generated by randomly 

selecting user defined functions and terminals. These GP trees form the initial population. 

 

3.2.2 Reproduction 

In the second stage of the GP, a proportion of the initial population is selected and copied to 

the next generation and this procedure is called reproduction. The reproduction mechanism 

does not produce any new population. The generated GP trees of initial population are 

evaluated based on the fitness function and less than average populations are replaced by 

copies of the above average population thereby keeping the population size constant. So the 
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GP tree with high fitness enter the mating pool and the remaining ones die off. There are 

different operators of reproduction like: (1) Tournament selection, (2) Roulette wheel 

selection (3) Ranking selection.  The number of the population taking part in the selection 

procedure is guided by a probability constant Ps.  

 
 

6.5  x2 

  X   x1 

/  

tan 

 

Root node 

Link 

 
Function nodes

 

Terminal nodes 
 

Fig.3.1 Typical GP tree representing a mathematical expression:  tan (6.5x2/x1). 

 

3.2.2.1 Tournament selection 

In this selection procedure, tournaments are played between a specific numbers of GP trees. 

The tournament size represents the number of GP trees taking part in the tournament. The 

winner survives and gets more number of copies and the looser does not go to the next 

generation.   
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3.2.2.2 Roulette Wheel Selection 

Parents are selected according to their fitness. The better the GP trees are, the more chances 

they have, to be selected. This procedure is explained taking example of a Roulette wheel 

where all the GP trees in the population are placed. The size of the section in the Roulette 

wheel is proportional to the value of the fitness function of every GP tree - the bigger the 

value is, the larger the section is as shown in Fig. 2.2. A marble is thrown in the roulette 

wheel and the GP tree where it stops is selected. Clearly, the GP tree with bigger fitness 

value will be selected more times.  

This process can be described by the following steps.  

Step 1. Calculate the sum of all GP tree fitness in population; sum =S.  

Step 2.Generate random number r from the interval (0, S) 

Step 3.Go through the population and sum the fitness from 0 to sum Si. When the sum Si is  

 greater then r, stop and return the i
th 

GP tree.  

Step 4. Repeat step 2 and 3  

Of course, the step 1 is performed only once for each population.  

 

GP Tree 4

2%

GP Tree 3

6%

GP Tree 2

12%

GP Tree 1

80%

 

 

 

Fig.3.2 Roulette wheel showing the area of fitness of different GP trees 
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3.2.2.3 Ranking selection 

The Roulette wheel selection will have problems when there are big differences between the 

fitness values. For example, if the best GP tree fitness is 90% of the sum of all fitness then 

the other GP trees will have very few chances to be selected. Ranking selection ranks the 

population first depending upon their respective fitness, and then every GP trees is assigned 

revised fitness value determined by this ranking. The worst will have the fitness 1, the 

second worst 2 etc. and the best will have fitness N (number of GP trees in population). Fig. 

3.3 shows an example of the ranking selection procedure in which the initial fitness of the 

GP trees are 80, 12, 6 and 2 respectively. So the ranks assigned to the GP trees are 4, 3, 2 

and 1 respectively. So the average ranking value is 2.5 and the revised fitness of the GP trees 

are obtained by dividing the ranks by the average ranking value (2.5) as 1.6, 1.2, 0.8 and 0.4 

corresponding to 80, 12, 6 and 2, respectively.  The final GP tree as per ranking selection is 

shown in Fig. 3.3.  Now all the GP trees have a chance to be selected. However this method 

can lead to slower convergence, because the best GP tree does not differ so much from other 

ones.  

GP Tree 4

10%

GP Tree 3

20%

GP Tree 2

30%

GP Tree 1

40%

 

 

 

Fig.3.3 The area of fitness of different GP trees as per ranking selection 
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3.2.3 Crossover 

In crossover operation, two GP trees (Parent1 and Parent2) are selected randomly from the 

population in the mating pool (Koza 1992). One node from each tree is selected randomly, 

the sub-trees under the selected nodes are swapped and two offspring (Offspring1 and 

Offspring 2) are generated. An example of crossover operation is shown in Fig. 3.4. 

 

3.2.4 Mutation  

In mutation operation a GP tree is first selected randomly from the population in the mating 

pool and any node of the tree is replaced by any other node from the same function or 

terminal set. A function node can replace only a function node and the same principle is 

applicable for the terminal nodes. An example of mutation operation is shown in Fig. 3.5 in 

which the functional node, ñ/ò of the GP tree representing a mathematical expression:  

tan(x1/x2) is replaced by another functional node, ñ×ò and thus, a new GP tree representing a 

mathematical expression: tan(x1×x2) is produced. 
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 Fig. 3.4 A typical crossover operation in GP 
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Fig. 3.6 shows a typical flow diagram of MGGP procedure in which Ngen is the number of 

generation, Ps, Pc, and Pm are the probability of reproduction, crossover and mutation 

respectively. 
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Fig. 3.5 A typical mutation operation in GP 

3.3  MULTI -GENE GENETIC PROGRAMMING  

MGGP is a variant of GP and is designed to develop an empirical mathematical model, 

which is a weighted linear combination of a number of GP trees. It is also referred to as 

symbolic regression.  Each tree represents lower order non-linear transformations of input 

variables and is called a ógeneô. ñMulti-geneò refers to the linear combination of these genes. 

Fig. 3.6 shows a typical flow diagram of MGGP procedure in which Ngen is the number of 

generation, Ps, Pc, and Pm are the probability of reproduction, crossover and mutation, 

respectively. 

Fig. 3.7 shows an example of MGGP model where the output is represented as a linear 

combination of two genes (Gene-1 and Gene- 2) that are developed using four input 

variables (x1, x2, x3, x4).Each gene is a nonlinear model as it contains nonlinear terms  (sin(.) 

/log(.)). The linear coefficients (weights) of Gene-1 and Gene-2 (c1 and c2) and the bias (c0) 

of the model are obtained from the training data using statistical regression analysis 

(ordinary least square method).  

In MGGP procedure, initial population is generated by creating individuals that contain 

randomly evolved genes from the user defined functions and variables. In addition to the 
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standard GP evolution mechanisms as discussed earlier there are some special MGGP 

crossover mechanisms (Searson et al. 2010), which allow the exchange of genes between 

individuals and brief descriptions of them are presented as follows. 

 

3.3.1   Two point high-level crossover 

Two point high level crossover operation allows swapping of genes between two parent 

individuals in the mating pool and can be explained through an example, where the first 

parent individual is having four genes [G1, G2, G3, G4] and the second contains three genes 

[G5, G6, G7] with  Gmax as 5. Two crossover points are selected randomly for each parent and 

genes enclosed by crossover points are denoted by {...}. 

[G1, {G2, G3, G4}], [G 5, G6,{G7}]  

The genes enclosed by the crossover points are swapped and thus, two offspring individuals 

are created as shown below. 

[G1, {G7}], [G 5, G6, {G2, G3, G4}]  

If swapping of genes results in an individual containing more genes than Gmax then genes are 

randomly selected and removed until the individual contains Gmax genes. 

 

3.3.2 Low-level crossover 

Standard GP sub-tree crossover is referred to as low level crossover. In this operation, first a 

gene is randomly selected from each of the parent individuals (any two) in the mating pool 

and then swapping of sub-trees under arbitrarily selected nodes of each gene is performed. 

The resulting trees replace the parent trees in the otherwise unchanged parent individuals, 

which go on to produce offspring individuals for the next generation without any deletion of 

genes.  

Similarly, MGGP also provides six methods of mutation for genes (Gandomi and Alavi 

2012a): (i) sub-tree mutation, (ii) mutation of constants using additive Gaussian 

perturbation, (iii) substitution of a randomly selected input node with another randomly 
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selected input node, (iv) substitute a randomly selected constant with another randomly 

generated constant (v) setting of randomly selected constant to zero, (vi) setting a randomly 

selected constant one.  

 

Fig. 3.6 A typical flow diagram for a multi-gene genetic programming procedure  
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Fig. 3.7   An example of typical multi-gene GP model. 

The probabilities of the each of the re-combinative processes (evolutionary mechanisms) can 

be set by the users for achieving the best MGGP model. These processes are grouped into 

categories referred to as events. Therefore, the probability of crossover, mutation and the 

direct reproduction event are to be specified by the user in such a way that the sum of these 

probabilities is 1.0. The probabilities of the event subtypes can also be specified by the user. 

For example, once the probability of crossover event is selected, it is possible to define the 

probabilities of a two point high-level crossover and low-level crossover keeping in mind 

that the sum of these event subtype probabilities must be equal to one. 

Various controlling parameters such as function set, population size, number of generations, 

maximum number of genes allowed in an individual (Gmax), maximum tree depth (dmax), 

tournament size, probabilities of crossover event, high level crossover, low level crossover, 

mutation events, sub-tree mutation, replacing input terminal with another random terminal, 

Gaussian perturbation of randomly selected constant, reproduction, and ephemeral random 

constants are involved in MGGP predictive algorithm. The generalization capability of the 

model to be developed by MGGP is affected by selection of these controlling parameters. 
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These parameters are selected based on some previously suggested values (Searson et al. 

2010) and after following a trial and error approach for the problem under consideration. 

The function set (arithmetic operators, mathematical functions etc.) is selected by the user 

on the basis of physical knowledge of the system to be analysed. The number of programs or 

individuals in the population is fixed by the population size. The number of generation is the 

number of times the algorithm is used before the run terminates. The proper population size 

and number of generations often depend on the complexity of the problems. A fairly large 

number of population and generations are tested to find the best model. The increase in Gmax 

and dmax value increases the fitness value of training data whereas the fitness value of testing 

data decreases, which is due to the over-fitting to the training data. The generalisation 

capability of the developed model decreases. Thus, in the MGGP-model development it is 

important to make a tradeoff between accuracy and complexity in terms Gmax and dmax. 

There are optimum values of Gmax and dmax, which produce a relatively compact model 

(Searson et al. 2010). The success of MGGP algorithm usually increases by using optimal 

values above of controlling parameters.  

 In the MGGP procedure a number of potential models are evolved at random and each 

model is trained and tested using the training and testing data respectively. The fitness of 

each model is determined by minimizing the root mean square error (RMSE) between the 

predicted and actual value of the output variable (LI) as the objective function (f), 

( )

n

LILI

fRMSE

n

i

pä
=

-

== 1

2

                                                        (3.1) 

where n = number of cases in the fitness group. If the errors calculated by using Eq. (4.5) for 

all the models in the existing population do not satisfy the termination criteria, the evolution 

of a new generation of the population continues till the best model is developed as discussed 

earlier. 
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The general form of the MGGP based model of the present study can be presented as: 

()[ ] 0
1

,, ccXfXFLI
n

i
ip +=

=
                                                  (3.2) 

where  LIp = predicted value of liquefaction field performance indicator (LI), F = the 

function created by the MGGP  referred herein as liquefaction index function, X = vector of 

input; ci is a constant,  f  are the functions defined by the user, n is the number of terms of 

target expression and c0= bias. The MGGP as per Searson et al. (2010) is used and the 

present models are developed and implemented using Matlab (Math Work Inc. 2005).  

As discussed in previous chapter, though GP has been used in some limited application in 

geotechnical engineering, there are only two applications of MGGP in geotechnical 

engineering (Gandomi and Alavi 2012a, 2012b).  In this study an initial attempt was made to 

compare the efficiency of the MGGP with ANN, SVM (Muduli et al. 2013).  The efficacy of 

MGGP-based predictive model for uplift capacity of suction caisson outperformed the other 

soft computing technique-based (ANN, SVM, RVM) prediction models in terms of different 

statistical performance criteria.  

3.4     CONCLUSIONS 

The MGGP, a variant of GP is a biologically inspired algorithm with different operators 

like, reproduction, crossover and mutation. Unlike ANN and SVM, it has the advantage of 

obtaining a comprehensive expression for the output from the inputs for further analysis. A 

trade off is to be made between the complexity and accuracy of the method. There is a very 

limited application of MGGP in Geotechnical engineering. Based on preliminary study on 

application of MGGP to uplift capacity of suction pile, it has been observed that the 

performance of MGGP model is better than ANN, SVM and RVM models. Hence, in this 

thesis an attempt has been made in the following chapters to develop models for evaluation 

of liquefaction potential within the frame work of deterministic, probabilistic and reliability-

based methods using MGGP.  
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4.1 INTRODUCTION  

Though, different approaches like cyclic stress-based, cyclic strain-based, and energy-based 

approach are in use, the stress-based approach is the most widely used method for evaluation 

of liquefaction potential of soil (Krammer 1996). The SPT is the most widely used in situ 

test-based soil exploration method for liquefaction potential evaluation but, it has some 

drawbacks, primarily due to the variable nature of the SPT used around the world. Now a 

days cone penetration test (CPT) is also becoming more acceptable as it is consistent, 

repeatable and able to identify continuous soil profile.  

Soft computing techniques  such as artificial neural network (ANN), support vector machine 

(SVM), and relevance vector machine (RVM) have been used to develop liquefaction 

prediction models based on in-situ test database, which are found to be more efficient 

compared to statistical methods. The advantages and disadvantages of the above techniques 

have already been discussed in Chapter-I.  

In the present study, an attempt has been made using MGGP to present a deterministic 

model based on post liquefaction SPT database (Hwang and Yang 2001). A limit state 

function that separates liquefied cases from the non-liquefied cases and also represents 

cyclic resistance ratio (CRR) of soil is developed by using MGGP. The developed CRR 

model in conjunction with widely used CSR7.5 (Juang et al. 2000) is used to evaluate 

liquefaction potential in terms of Fs. Using an independent SPT dataset, a comparative study 

among the present MGGP model, available ANN and statistical models is also made in 

terms of rate of successful prediction of liquefaction and non-liquefaction cases based on Fs. 

Chapter 4 

DETERMINISTIC MODELS FOR E VALUATION OF 

LIQUEFACTION POTENTIAL  
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Similarly, an attempt has also been made to predict the liquefaction potential of soil in terms 

of liquefaction field performance indicator referred as liquefaction index (LI)   (Juang et al. 

2003) on the basis of a large database consisting of  post liquefaction CPT measurements 

and field manifestations using MGGP. Two different MGGP models (Model-I and Model-

II) are developed for predicting occurrence and non-occurrence of liquefaction taking 

different combination of input parameters.  The parameters of Model-I are kept same as that 

of  ANN model (Juang et al. 2003) to compare the efficacy of both the models in terms of 

rate of successful prediction of liquefaction and non- liquefaction. These parameters are 

further used for development of cyclic resistance ratio (CRR) model using MGGP similar to 

the most widely used statistical model of Robertson and Wride (1998) and ANN-based CRR 

model of Juang et al. (2003). In Model-II , the primary soil and seismic parameters of the 

CPT database are used to present a simple model that can easily be used by the practicing 

engineers. Goh and Goh (2007) have used the same parameters of the above database (Juang 

et al. 2003) for prediction of liquefaction susceptibility using SVM. Hence, liquefaction 

classification accuracies of the developed Model -II are compared with that of the SVM 

model of Goh and Goh (2007). Performances of the proposed MGGP based models (Model-

I and Model-II) in terms of rates of successful prediction of liquefaction and non-

liquefaction as per predicted LI values are also verified using an independent CPT database 

(Juang et al. 2006).The developed MGGP-based CRR model in conjunction with widely 

used CSR7.5 (Juang et al. 2000) is used to evaluate liquefaction potential in terms of Fs. 

Similarly as mentioned above, using an independent CPT dataset (Juang et al. 2006), a 

comparative study among the present MGGP model, available ANN and statistical models is 

also made in terms of rate of successful prediction of liquefaction and non-liquefaction cases 

based on Fs. 

4.2  DEVELOPMENT OF SPT-BASED DETERMINISTIC MODEL  

The general form of MGGP-based model for LIp based on SPT database can be presented 

here as: 

()[ ]
0

1

,, ccXfXFLI
n

i
ip
+=

=         (4.1) 



 

57 

 

where,  LIp= predicted value of liquefaction index (LI),  F = the function created by the 

MGGP process referred herein as liquefaction index function, X = vector of input variables =  

{ N1,60 , CSR7.5} where, N1,60 =  corrected blow count. Here in the present study, the general 

formulation of CSR as presented by Seed and Idriss (1971) and  by Youd et al. (2001) is 

adopted with minor modification, i.e., CSR is adjusted to the benchmark earthquake 

(moment magnitude, Mw , of 7.5) by using the  parameter, magnitude scaling factor (MSF).  
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                                       (4.2) 

where amax= peak horizontal ground surface acceleration, g = acceleration due to gravity, rd 

= shear stress reduction factor which is determined as per Youd et al. (2001):  

,z..r
d

00765001 -= for  z Ò 9.15m 

,0267.0174.1 z-=  for 9.15 Ò  z Ò 23m           (4.3) 

where z is depth under consideration. 

The adopted MSF equation is presented below according to Youd et al. (2001). 
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ci is a constant,  f  is MGGP function defined by the user, n is the number of terms of model 

equation and c0 is the bias. It is pertinent to mention here that Juang et al. (2000) also 

followed the above CSR formulation for development of their ANN-based CRR model. The 

MGGP as per Searson et al. (2010) is used and the present model is developed and 

implemented using Matlab (MathWorks Inc. 2005). 
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4.2.1  Database and preprocessing 

In the present study, SPT-based dataset of post liquefaction case histories of Chi Chi, 

Taiwan, earthquake, 1999 is used (Hwang and Yang 2001). It contains information about 

soil and seismic parameters: measured SPT blow count (Nm), corrected blow count (N1,60), 

fines content (FC),clay size content (CC), mean grain size (D50), peak horizontal ground 

surface acceleration (amax) and CSR7.5, which are obtained from the SPT measurements at 

different  sites of Taiwan along with field performance observations (LI). The soil in these 

cases ranges from sand to silty sand to sandy and clayey silt. The depths at which SPT 

measurements are reported in the database range from 1.3m -20.3m. The Nm values range 

from 01 to 50 and the N1,60 values range from 0.93 to 49.29. The FC and CC values are in 

the range of 4-65% and 0-23% respectively. The amax and CSR7.5values are in the range of 

[0.055, 1g] and [0.041, 0.822] respectively. The moment magnitude, Mw of the 1999, Chi 

Chi, Taiwan, earthquake was 7.6. The database consists of total 288 cases, 164 out of them 

are liquefied cases and other 124 are non-liquefied cases. Out of the above data 202 cases 

are randomly selected for training and remaining 86 data are used for testing the developed 

model. Samui and Sitharam (2011) also used the above databases with the above number of 

training and testing data while developing ANN and SVM-based liquefaction classification 

models.  Here, in the MGGP approach normalization or scaling of the data is not required 

which is an advantage over ANN and SVM approach. 

 

4.2.2 Results and discussion 

In this section, the result of deterministic model based on post liquefaction SPT database is 

presented. A limit state function that separates liquefied cases from the non-liquefied cases 

and also represents cyclic resistance ratio (CRR) of soil is also developed by using MGGP. 

The developed CRR model in conjunction with widely used CSR7.5 (Juang et al. 2000) is 

used to evaluate liquefaction potential in terms of Fs and the results are presented in 

following sequence.  
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4.2.2.1 MGGP Model for Liquefaction Index 

The MGGP-based model for liquefaction index is developed taking LI = 1 for liquefaction 

and LI = 0 for non-liquefaction field manifestations. In the MGGP procedure a number of 

potential models are evolved at random and each model is trained and tested using the 

training and testing cases respectively. The fitness of each model is determined by 

minimizing the RMSE between the predicted and actual value of the output variable (LI) as 

the objective function or the error function (Ef), 
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                                                        (4.5) 

where n = number of cases in the fitness group. If the errors calculated by using Eq. (4.5) for 

all the models in the existing population do not satisfy the termination criteria, the evolution 

of a new generation of the population continues till the best model is developed as discussed 

earlier in Chapter-III.  

 The selection of controlling parameters (as mentioned in Chapter-III) affects the efficacy of 

the model generated by the MGGP. Thus, optimum values of the parameters are selected for 

the development of LIp model based on some previously suggested values (Searson 2009; 

Searson et al. 2010) and after following a trial and error approach and are presented in Table 

4.1. 

Using the optimum values of controlling parameters as given in the Table 4.1 different LIp 

models were developed running the MGGP code several times.  These models are analyzed 

with respect to physical interpretation of LIp as well as their rate of successful prediction 

capability and the ñbestò LIp model was selected. The developed model is presented below as 

Eq. (4.6). 
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Table 4.1 Controlling parameter settings for MGGP-based LIp model development. 

 

The developed LIp model has been characterized by the Figs. 4.1, 4.2, 4.3. Fig. 4.1 shows the 

variation of the best fitness (log values) and mean fitness with with number of generations. 

It can be seen from this figure, the fitness values decrease with increasing the number of 

generations and its decrements. The best fitness was found at the 143
rd
 generation (fitness 

=0.2466).The statistical significance of each of the four genes of the developed model is 

shown in Fig. 4.2. As shown in the Fig. 4.2a the weight (coefficient) of the the gene-2 is 

higher than the other genes and bias. The degree of significance of each gene using p values 

is also shown in Fig. 4.2b. It can be noted that the contribution of all the genes  towards 

prediction of LI(i.e., LIp) is very high except the Gene-2, as their corresponding p values are 

Parameters Ranges Resolution Selected 

optimum 

values 

Population size 1000-4000 200 3000 

Number of generations 100-300 50 150 

Maximum number of genes (Gmax) 2-4 1 3 

Maximum tree depth (dmax) 2-5 1 4 

Tournament size 2-8 1 7 

Reproduction probability 0.01-0.07 0.02 0.05 

Crossover probability 0.75-0.9 0.05 0.85 

Mutation probability 0.05-0.15 0.05 0.1 

High level cross over probability 0.1-0.4 0.1 0.2 

Low level cross over probability 0.5-0.9 0.1 0.8 

Sub-tree mutation 0.6-0.9 0.05 0.85 

Substituting input terminal with 

another random terminal 

0.05-0.2 0.05 0.05 

Gaussian perturbation of randomly 

selected constant 

0.05-0.2 0.05 0.1 

Ephemeral random constant    [-10 10] - - 
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very low, whereas the Gene-2 contribution is the least. Fig. 4.3 presents the population of 

evolved models in terms of their complexity (number of nodes) and fitness value.The 

developed models that perform relatively well with respect to the ñbestò model and are much 

less complex (having less number of nodes) than the ñbestò model in the population can be 

identified in this figure as green circles. The ñbestò model in the population is highlighted 

with a red circle.  
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Fig. 4.1 Variation of the best and mean fitness with the number of generation. 

 

Fig.4.2 Statistical properties of the evolved MGGP-based LIp model (on training data) 
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Fig 4.3  Population of evolved models in terms of their complexity and fitness. 

Table 4.2 Comparison of results of developed MGGP based LIp model with ANN and SVM 

models of Samui and Sitharam (2011) 

 

A prediction in terms of LIp is said to be successful if it agrees with field manifestation (LI) 

of the database.  As per Table 4.2, the successful prediction rates of liquefied and non-

liquefied cases are comparable, 94.55% for training and 94.19% for testing data, showing 

good generalization of the developed model.  The overall success rate of the trained model 

in predicting liquefaction and non-liquefaction cases is 94.44%.Thus, it is evident from the 

results that the proposed MGGP based LIp model is able to establish the complex 

relationship between the liquefaction index and its main contributing factors in terms of a 

model equation with a very high accuracy. In comparison, the classification accuracy of the 

ANN model was 94.55% and 88.37% for training and testing data respectively for the above 

Model Input 

variables 
Performance in terms of successful prediction (%) 

MGGP ANN SVM MGGP ANN SVM 

Training data Testing data 

LI  N1,60, CSR7.5 94.55 94.55 96.04 94.19 88.37 94.19 


