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ABSTRACT 

 

 

 In this research work vibration analysis of a viscoelastic sandwich beam has been 

studied. A finite element model has been developed for the three layer viscoelastic 

sandwich beam. The sandwich beam is modelled using linear displacement field at face 

layer and non-linear displacement field at core layer. The equation of motion for the 

viscoelastic sandwich beam is derived by using the Hamilton’s principle. Different 

specimens have been modelled by varying the core layers and face layers and studied 

under the fixed-fixed and cantilever boundary conditions for modal analysis. The Natural 

frequencies are obtained for various models using different core thickness and boundary 

conditions. The results obtained are compared with the earlier existing and experimental 

results.   
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Chapter: 1 

Introduction 

Vibration mainly influences the life of engineering structures and their performance 

and invariably, damping in structures influences its behavior. Many types of damping 

mechanisms have been developed over time to control the undesired vibration of structures. 

Basically damping refers to the extraction of mechanical energy from a vibrating system, 

mainly by converting the mechanical energy into heat energy by means of some dissipation 

mechanism. Mostly all materials exhibit some amount of internal structural damping.Most 

of the time it is not substantially effective to minimize the vibration around resonant 

frequencies. Hence, by bringing these materials in contact with the highly damped and 

dynamically stiffed material it is possible to control the vibration.  

Passive damping treatment is one of the ways to control the vibration and noise in 

structures. The structure borne and airborne noise and vibration are frequent in most 

systems. The common passive control methods that include the use of mufflers, absorbers, 

barriers, mufflers, silencers, etc., are for airborne noise. For the systems with constant 

excitation frequency, modification of mass or system‟s stiffness reduces the unwanted 

vibrations as these parameters alter the resonant frequencies. 

  Viscoelastic materials are one such that they are capable of storing strain energy 

when they are deformed; these types of materials exhibit the material characteristics of both 

viscous fluid and elastic solid. Viscoelastic damping property was exhibited by the large 

variety of polymeric materials ranging from synthetic/natural rubbers to various 
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thermoset/thermostat materials used in different industries. Here polymers display 

rheological behavior intermediate between a simple fluid and crystalline solids, due to 

having tangled molecules and large molecular order. This type of viscoelastic materials 

offers a wide range of possibilities for developing a desire damping level provided by the 

designer to completely comprehend their mechanical behavior. In viscoelastic material the 

mechanical energy is released through normal deformation and cyclic shear. 

There are mainly three methods of treatment of viscoelastic material viz., 

unconstrained layer or free layer treatment, constrained layer and partially constrained layer 

treatment. Depending upon the functional requirements in obtaining efficient properties of 

all layers sandwich structures utilizes the constrained layer treatment. In this constrained 

layer damping treatment, the viscoelastic material was sandwiched between the surface of 

structure and thin facings of elastic metallic materials. 

Normally Sandwich construction includes a relative thick core of low density material,  

sandwiched between the bottom and top face sheets (face layers) of relatively thin in size. 

The schematic diagram of a sandwich beam is shown in Figure 1.1.   

 

         Figure 1.1:  Sandwich beam model 
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1.2.1 Material properties of Sandwich Structure 

The material choice in sandwich structures depends upon the need of employment 

such as high strength, high temperature resistivity, surface finish etc. In recent times the 

number of available cores has increased enormously due to the introduction of more 

competitive cellular plastics. Combining options of face sheet materials with different core 

materials give the new ideas to be integrated with a wide range of applications.           

It is the obligation of the designer to have reliable information about the strength and 

stiffness of the materials used in the design for efficient analysis and design of sandwich 

structures.  The best practice is to devote to tests for obtaining adequate material properties. 

The ample number of material choices may appear as an additional complexity, but is really 

one the main features of using sandwich structures. The materials best suited for a particular 

application may be utilized and some drawbacks can be overcome by geometrical sizing. 

The elementary objective of the designer is to achieve an efficient design that will utilize 

each material component to perform the function with good efficiency. 

It is the need of the designer to have reliable information about the stiffness and 

strength of the materials used in the design for efficient design and analysis of sandwich 

structures. The suitable practice is to devote to test for obtaining adequate material 

properties. The enormous number of material choices may appear as additional complexity, 

but is really one the main features of using the sandwich structures. The beat suited 

materials for a particular application may be used and some drawbacks can be overcome by 

geometrical correction. The basic objective of the designer is to make a good design that 

will utilize the each material component to perform the function with good efficiency.  
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1.2.2 Core Material 

 The function of the cores is to give support for the thin skin layers so that they do not 

deform outwardly or inwardly, and to keep them in relative position to each other. The main 

requirements of the core are generally the shear and compressive modulus and strength. The 

main objective of any designer in choice of core material is that it would not fail under the 

any applied load and there should not be any deformation of core in thickness wise, thus 

requiring a high modulus of elasticity perpendicular to face layers. The core layer is exposed 

to shear so that global deformations and core shear stresses are developed by the shear 

strains in the core. The thickness of core and core material are two main parameters that 

decide the most of the properties of the sandwich structure. 

The core layer consists of some typical features as given below,   

 Lower density 

 Damping of vibration and noise 

 Shear strength and shear modulus 

 Stiffness perpendicular to the top and bottom faces 

 Thermal insulation 

 

1.2.3 Face Material 

 The bottom and top layers of conventional sandwich structure are called as face 

layers or face sheets (as layers are in sheet form). From any structural materials that are 

available in the form of thin sheets can be used as a face material. The top and bottom layers 

face materials carry the compressive and tensile stresses in the sandwich. The flexural 
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rigidity is often very small and it can be ignored. Fiber glass-reinforced plastics are common 

and acceptable to choose as face materials.  

The face layer consists of some typical features as given below,   

 High impact resistance  

 High compressive and tensile strength 

 Wear resistance  

 Resistance to different conditions (chemical, heat, etc.) 

 High stiffness giving high flexural rigidity 

 Good surface finish 

 

Various types of materials used as face materials are as follows: 

Metals and alloys: Metals and their alloys possess all most all required properties of face 

materials. Conventional materials and their alloys such as steel, stainless steel and aluminum 

are often used as face material.  

Composites: Most composites offer properties similar to or even higher than those of metals, 

they have been substantially used in construction of sandwich structures. Particularly fibre 

reinforced composites are suitable for sandwich structures even though the stiffness is often 

lower in magnitude. Thus with a light core, the composites produce high rigidity. Even 

wood also can used as face material in sandwich structures. 
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 1.3 Design Considerations 

 A sandwich structure is designed to make sure that it is capable of taking structural 

loads throughout its design life. In addition, it should maintain its structural integrity in the 

in-service environments. The structure should satisfy the following criteria: 

• The face sheets should have sufficient stiffness to withstand the tensile, compressive, 

and shear stresses produced by applied loads. 

• The core should have sufficient stiffness to withstand the shear stresses produced by 

applied loads. 

• The core should have sufficient shear modulus to prevent overall buckling of the 

sandwich structure under loads. 

• Stiffness of the core and compressive strength of the face sheets should be sufficient to 

prevent the wrinkling of the face sheets under applied loads.  

• The core cells should be small enough to prevent inter-cell buckling of the face sheets 

under design loads. 

• The core shall have sufficient compressive strength to prevent crushing due to applied 

loads acting normal to the face sheets or by compressive stresses produced by flexure.  

• The sandwich structure should have sufficient flexural and shear rigidities to prevent 

excessive deflections under applied loads. 

• Sandwich materials (face sheet, core and adhesive) should maintain the structural 

integrity during in-service environments. 
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1.4 Application Areas of Sandwich Structures 

In damped structures for effective vibration damping 

Aerospace field 

Building Construction 

Naval ships 

Rail Industry 

Automotive Industry 

1.5 Present Consideration 

In the present study the constrained layer damping treatment has been used for the study of 

vibration behavior in sandwich beams. The viscoelastic material has been bonded between 

the top and bottom elastic layers to form the sandwich beam model. 

 Top layer: Elastic material (Steel, Aluminum) 

Core layer: viscoelastic material (Rubber, Neoprene) 

Bottom layer: Elastic material (Steel, Aluminum) 
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1.6 Objectives of the Present Research Work 

 

The main objective is to model the viscoelastic sandwich beam for the modal 

analysis using the Finite Element Method in face layer displacement fields. The face and 

core layers are varied to model the different configuration of the sandwich beams and these 

modeled sandwich beams are investigated for natural frequencies using FEA and 

Experiment for various boundary conditions. The damping effect on the sandwich beams has 

to be studied by increasing the core layer thickness. Finally, harmonic analysis has to be 

made for the specimens modeled.     
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Chapter: 2 

Literature Review 

In the early, Kerwin [1]  presented damping effective of the constrained viscoelsatic 

layers and mentioned that the damping effect depends on the wavelength of bending waves, 

thicknesses and elastic modulli and formulated the complex shear modulus for the damping 

layer and he predicted that the heat dissipation takes place through the shearing 

phenomenon. For a number of constraining layers damping factors have determined 

experimentally by neglecting the boundary condition.  

Ditoranto [2] has derived auxiliary equation for the effect of viscoelastic layers. The 

use of this equation with the ordinary bending equation formed for homogeneous beams for 

solving static and dynamic bending problems. They formed the six orders, complex, 

homogeneous differential equation of the viscoelastic layered finite length beam and 

determined the natural frequencies and loss factors for the freely vibrating beam.  

Mead [3] they extended the Ditoranto work by decoupling the sixth order equation 

and modeling the sixth order equation of motion in terms of transverse displacements in a 

three layered sandwich beam with viscoelastic core for the forced vibration analysis and 

complexity in mode will only exist when the beam was excited by the damped normal loads 

which are proportional to the transverse inertia loading on the beam. 

Bai and Sun [4] Effects of viscoelastic adhesive layer on the structural damping and 

dynamic response of the structure are studied by a newly developed sandwich beam theory. 

They formed the new non linear displacement field in the core layer for achieving the 
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accurate kinematics of the flexible viscoelastic. The properties of viscoelastic are assumed in 

a complex modulus with the function of frequency for a given temperature. They studied the 

effect of adhesive layer on the damping and obtained the storage modulus and loss factors 

for the simply supported beam under harmonic loading and also obtained the results for 

driving point impedance for all the set of frequencies which are nearly matched with the 

available data reported by Lu and Douglas. 

Banerjee et al.[5] has discussed a dynamic stiffness model for unequal thickness of 

the three layered sandwich beam and used for investigating free vibration characteristics by 

using Timoshenko beam theory they modeled their layers and have developed a dynamic 

stiffness matrix by relating amplitudes of harmonic varying loads. The accuracy of their 

theory was confirmed with the earlier literature and experiment.   

Lu and Douglas [6] the motive of their work is to compare the analytical and 

experimental forced vibration response of the three layered damped laminate in a format of 

mechanical impedance to verify the analytical information given by the Mead and Markus. 

They used the analytical model given in reference of Mead and Markus to get the 

mechanical impedance at the mid span with a sinusoidal transverse force for the damped 

laminated beam with free-free boundary condition.   

Mace [7] modeled the viscoelastic sandwich beams by using the finite element 

model, in the layer wise displacement field for studying the dynamic behavior. The model 

developed is applicable duly to the very thin core layer of viscoelastic sandwich beam and 

the model which he made was in 3D model approach it is very difficult and costly for the 

implementation and it also generates the difficulties in the mesh for the analysis. 
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Barber et al. [8] modeled the finite element finite element model for the 3 layer 

viscoelastic sandwich beam considering the non-linear displacement field in the viscoelastic 

layer. They used the approximation that the viscoelastic core layers variable are to be 

expressed in the top and bottom layer displacement field and predicted the displacements at 

the resonant driving frequencies and compared the test data available with the literature. 

Chen et al. [9] used the Euler Bernoulli beam theory for deriving the equation of 

motion for the system. The resonant frequencies and loss factors of the cantilever beam are 

analyzed by applying the mass at the free end of the constrained layer. They defined that the 

variation in the resonance frequency and loss factor are mainly depend on the physical 

properties and geometry of the constraining layer. 

Yazhuk [10] developed the sandwich beam using piezoelectric layers and coupled 

with the electromechanical forced vibration. They investigated the effect of passive layer on 

the beam in nonlinear behavior. They obtained the comparison between the calculated 

transient responses of the beam using the full model with the approximate model. 

Sakihama et al. [11] developed a method for analyzing the free vibration of the 

sandwich beam with both elastic and viscoelastic are using the arbitrary conditions. They 

obtained the characteristic equation for free vibration using the Green function which 

defines from the discrete solution of governing differential equation. By using this 

characteristic equation the behavior of sandwich beam can be easily analyzed with the trial 

and error approach for free vibration. 
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Won et al. [12] detected the problem with the mead and markus two sets of 

differential equation of motion for the three layered constrained sandwich beam, to resolve 

that they taken the symmetric straight damped and constrained three layered sandwich 

structures are derived using the virtual kinetic energy and strain energy are mentioned in 

terms of axial displacement and the transverse shear strain of a viscoelastic core layer. They 

compared and validated their model using the NASTRON 3D-solid element. 

 Khalili [13] in their paper they used the finite element formulation and the dynamic 

stiffness method for performing the vibration analysis of a three layered sandwich beam 

consists of sprung mass. Some numerical examples are used for discussing the finite element 

formulation and dynamic stiffness matrix. 

Banerjee et al. [14] developed a 3-layered sandwich beam using the dynamic 

stiffness theory for calculating the free vibration characteristics. They considered the top and 

bottom layers to behave as a Rayleigh beams, while the core layer as a Timoshenko beam 

for the harmonic analysis the equations they developed are found in exact with analytical 

form, they discussed the natural frequencies and mode shapes of various problems. 

  Amirani et al. [15] discussed the free vibration analysis of a sandwich beam with the 

FGM as a core layer. They constrained the Galerkin method and formulation for two 

dimensional elastic plastic problems. Finally, they obtained the first ten natural frequencies 

using the finite element analysis. 

Fei Lin and Mohan [16] they presented a modeling technique for multi layered 

viscoelastic laminated beams to obtain the vibroacoustics. In their model they provide the 
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non-linear behavior for their core layer using the Biot damping. The FEA method has been 

used for the vibration analysis of the multilayered sandwich beam. 

 Mohammadi et al. [17] in their paper, sandwich cylindrical structures are 

investigated for vibration analysis and damping characteristics for various boundary 

conditions. They used the electroheological fluids to cover the untreated portions of the 

unconstrained viscoelastic material. The results showed that the sandwich treated partially 

with the electroheologic fluids provides better damping performance than fully treated for 

some boundary condition. 

 Grewel et al. [18] have modeled a sandwich beam using the linear and nonlinear 

displacement at its core layer by using the finite element method. Parametric studies were 

carried to find out the effect of core layer thickness on the natural frequencies and the loss 

factor for the sandwich beam structure and they considered the partial treatment of the 

structure to obtain the more damping for the fixed free and fixed -fixed boundary conditions. 

 Yadav [19] discussed about the vibration damping in the four layered sandwich 

beam. He used the method of equilibrium forces and beam theory for deriving the equation 

of motion for the vibration analysis. They conducted the analysis with the mass and rubber 

spring mounted on a sandwich beam structure for the simply supported boundary conditions. 

 Daya [20] modeled the viscoelastic sandwich beam for the non linear vibrations 

using the elementary theory. Galerkin analysis was used for coupling the harmonic balance 

and discussed about the effects of temperature and the boundary conditions on the vibration 

response. 
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Barbosa et.al [21] focused on the passive damping systems as viscoelastic materials 

in the laminated places. Golla Hugles Method (GHM) has been used in characterizing the 

viscoelastic materials and GHM based finite element model has been presented and 

validated with the various numerical and classic formulation comparisons. 

Jacques et al. [22] modeled a zigzag model using FEA to describe the displacement 

field for non linear vibrations of sandwich beams and investigated the influence of 

amplitude on the damping properties of sandwich beams. The behavior of viscoelastic has 

handled by using the hereditary integrals with complex modulus.  

Bekuit et al. [23] for the dynamic and static analysis they considered the quasi-two-

dimensional finite element formulation. The model is of three layers and consists of the both 

longitudinal and transverse displacement field. These formulations were independent of 

flexibility of the core layer. 

Mohammadi and Sedaghati [24] studied the semi-analytical finite element method to 

know the damping characteristics of the thick and thin core viscoelastic beams. They 

developed an efficient algorithm to solve the eigenvalue problem due to the frequency 

dependent properties in viscoelastic material. Effect of imperfect bonding with in the layers 

has also investigated. 

 

 

 



Page | 15  
 

Chapter: 3 

Finite Element Method 

3.1 Fundamental Concept of FEM 

The main rule that involved in finite element method is “DEVIDE and ANALYZE”. 

The greatest unique feature which separates finite element method from other methods is “It 

divides the entire complex geometry into simple and small parts, called „finite elements”. 

These finite elements are the building blocks of the finite element analysis. Based on the 

type of analysis going to be performed, these elements divided into several types. Division 

of the domain into elements is called „mesh‟. The forces and moments are transferred from 

one element to next element are represented by degrees of freedom (DOFs) at coordinate 

locations which are called as „nodes‟. Approximate solutions of these finite elements give 

rise to the solution of the given geometry which is also an approximate solution.  

The approximate solution becomes exact when 

1. The geometry is divided into numerous or infinite elements. 

2.Each element of geometry must define with a complete set of polynomials (infinite terms). 

3.2 General steps of the Finite Element Method  

The following general steps discussed below are for structural analysis case. 

1. Discretization  and choosing element types: 

 This step includes division of geometry into an equivalent set of finite elements with 

associated nodes and selecting the best suitable element which resembles the actual physical 
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behavior of the given system to be analyzed.  Engineer needs to focus in the matters of 

selecting the number elements, variation in size and type of elements. For getting best 

results it is advisable to choose as small elements as possible. One of the major tasks of the 

engineer is the selection of the appropriate element for a particular problem. 

2. Select a Primary variable function: 

          This step involves selecting a primary variable (displacement) function within each 

element. The function is defined within the element using the nodal values of the element. 

Polynomial functions are generally used because they are easy to work within finite element 

formulation. In case of two dimensional elements, the primary variable function is function 

of the coordinates in its plane. The functions are expressed in terms of the nodal unknowns. 

3. Define relations: 

          The relations among stresses, strains and displacements are essential for obtaining the 

equations for each finite element.  In the case of one –dimensional deformation, say, in the x 

direction, we have strain 𝜀𝑥 related to displacement u by 

𝜀𝑥 =
𝑑𝑢

𝑑𝑥
 

for small strain cases. The definition of material behavior is also important in obtaining 

acceptable results.  

4. Extraction of the element stiffness Matrix and Equations: 

            The element stiffness matrix and equations are deriving by using the following 

methods. 
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Direct Equilibrium Method 

 According to this method, the stiffness matrix and element equations relating nodal 

forces to nodal displacements are obtained using force equilibrium conditions for a basic 

element, along with force or deformation relationships. This method can easily adaptable to 

line or one-dimensional elements. 

Work or Energy Methods 

 For the extraction of the stiffness and equations for two and three-dimensional 

elements, the application of work or energy methods are very friendly. The principle of 

minimum potential energy, the principle of virtual work methods used for derivation of 

element equations. 

Generally, for elastic materials the principle of minimum potential energy is suitable 

whereas the principle of virtual work can adopt for any other material behavior.  

Methods of Weighted Residuals 

 The methods of weighted residuals are useful for developing the element equations 

particularly popular is Galerkin‟s method. These methods yield the same results as the 

energy methods wherever the energy methods are applicable. They are especially useful 

when a functional such as potential energy is not readily applicable. 

5. Assembling the Element equations and Apply boundary conditions: 

 In this step, the equilibrium equations of nodes that are obtained in previous step are 

combined into the global nodal equilibrium equations. One more direct method of 
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superposition, whose basis is nodal force equilibrium, can be used to obtain the global 

equations. 

The global equation can be written in matrix form as  

 𝐹 =  𝐾  𝛿  

Where  𝐹  represents the Force vector,  𝐾 is the total stiffness matrix  𝛿  is the vector of 

generalised displacements. 

At this stage, the global stiffness matrix  𝐾 is a singular matrix because its determinant is 

equal to zero. To remove this we need to call upon certain boundary conditions in order to 

avoid to the movement of the structure as rigid body. 

6. Solve for the primary unknowns: 

 
𝐹1

𝐹2

𝐹𝑛

 =  
𝐾11 𝐾12 𝐾1𝑛

𝐾21 𝐾22 𝐾2𝑛

𝐾𝑛1 𝐾𝑛2 𝐾𝑛𝑛

  

𝛿1

𝛿2

𝛿𝑛

  

These general equations can be solved for the primary unknowns by using an elimination 

method or an iterative method. The primary variables are different for various problems. In 

case of the structural problem the primary unknown is displacement.  

7. Solve for secondary unknowns: 

 In this step secondary unknowns are determined by using the displacement equations 

which are already obtained from previous step. Commonly strain and stress, shear force and 

moments are secondary unknowns for structural problem, are determined by using 

mathematical techniques. 
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8. Interpret the results: 

 The results obtained in previous step need to analyze for use in the design or analysis 

process. For better design and to avoid the failure of the structure it is important to 

determine the locations in the structure where large deformations and stresses are occur. 

Postprocessor computer programs help the user to interpret the results by displaying them in 

graphical form. 

3.3 Applications of the Finite Element Method 

The finite element method is an effective tool to analyze both structural and non-

structural problems. Even in some biomechanical engineering problems, includes analyses 

of human spine, hip joints, skull, hip joints, heart and eye etc. 

Structural areas: 

1. stress analysis, including truss and frame analysis, and stress concentration problems 

commonly associated with holes, fillets, or  other changes in geometry in a body 

2. Buckling analysis 

3. Vibration analysis 

Non-structural problems 

1. Heat transfer 

2. Fluid flow 

3. Distribution of electric or magnetic potential 
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3.4 Advantages of the Finite Element Method 

Some of the advantages of the Finite element method that includes the ability to  

1. Easy modeling of irregularly shaped bodies 

2. Handle general load conditions without difficulty 

3. Model bodies composed of different materials 

4. Handle unlimited numbers and kinds of boundary conditions 

5. Includes dynamic effects 

6. Handle nonlinear behavior with large deformations and nonlinear materials  

3.5 Limitations of the Finite Element Method 

In spite of many advantages some drawbacks of finite element method are as follows 

1. Stress values depend on the size of mesh fine to average 

2. In some cases the approximations used may not provide accurate results 

3. For vibration and stability problems the cost of analysis by FEA is prohibitive 

Software packages for FEM 

Below list provides some of the commercially available software packages of FEM  

ABACUS, ANSYS, COSMOS/M, LS-DYNA, NASTRAN 

 

http://en.wikipedia.org/wiki/LS-DYNA
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Chapter: 4 

Sandwich Beam Model 

The sandwich beam model described here based on the following assumptions  

1. Top and bottom layers are considered as ordinary beams with axial and bending 

resistance. 

2. The core layer carries negligible longitudinal stress, but takes the non linear 

displacement fields in x and z directions. 

3. All the three layers are assumed to be perfectly bonded and there is no slippage 

between the layers. 

4. Transverse displacements of top and bottom layers equal transverse displacement of 

core at interfaces. 

  The sandwich beam considered here consists of three layers with viscoelastic 

material as a core layer, the top and bottom layers are isotropic and linear elastic 

material with thickness ℎ1  and ℎ3 . The viscoelastic core layer has a thickness of ℎ 2 

under harmonic loading exhibits complex modulus in the form of 𝐸𝑐 = 𝐸′ 1 + 𝑖η   

where η is the loss factor. The model of the viscoelastic sandwich beam has shown in the 

figure given below 

 

                                          Figure 4.1 Sandwich Beam model 
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                     Figure 4.2 Local coordinates of sandwich beam model 

4.2 Displacement Field                        

The assumed displacement fields in the sandwich beam are as follows,  

The longitudinal and transverse displacement fields for the top layer are given by: 

0
0 1

1 1 1 1( , , ) ( , ) ( , )
w

u x z t u x t z x t
x


 


                                                                                       (4.1)                                                         

),(),,( 0

111 txwtzxw                                                                                                            (4.2) 

Where 

1u = longitudinal displacement in the top layer for any (x, z) location 

0

1u = longitudinal displacement at the centroid of the top layer 

1z = distance from centroid of top layer in transverse direction 

1w = transverse displacement in the top layer for any (x, z) location 

0

1w = transverse displacement at the centroid of the top layer 
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Similarly, for the bottom layer the displacements are considered as 

0
0 3

3 3 3 3( , , ) ( , ) ( , )
w

u x z t u x t z x t
x


 


                                                                                      (4.3)                                                         

),(),,( 0

333 txwtzxw                                                                                                            (4.4) 

Where 

3u = longitudinal displacement in the bottom layer for any (x, z) location 

0

3u = longitudinal displacement at the centroid of the bottom layer 

3z = distance from centroid of the bottom layer in transverse direction 

3w = transverse displacement in the bottom layer for any (x, z) location 

0

3w = transverse displacement at the centroid of the bottom layer 

Displacements field in the viscoelastic core layer varies nonlinearly in both x and z 

directions. By taking an elastic analysis, Bai and Sun [4] assumed that the longitudinal and 

transverse displacement of the core is  

2

23
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
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


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
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
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


                 (4.5) 
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txz
txztxwtzxw





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2

2
2

0

222


                                                                 (4.6) 

 Where 

2u = longitudinal displacement in the core layer for any (x, z) location 

0

2u = longitudinal displacement at the centroid of the core layer 

2z = distance from centroid of core layer in transverse direction 
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 =shear deformation in core 

 =transverse normal deformation in core 

2w =transverse displacement in core layer for any (x, z) location 

0

2w = transverse displacement at the centroid of the core layer 

 e = 2 (1+𝜗𝑐)  

𝜗𝑐  = Poisson‟s ratio of viscoelastic core layer 

To describe the displacement field for the core layer, four generalized degrees of freedom 

0

2u , 0

2w , and   are required. Non linear displacement field of a viscoelastic core layer 

allows the transverse displacement of top constrained layer and bottom layer to remain 

independent of each other. This leads to transversal extension and compression of the core 

layer. As assumed in the assumptions that there is the perfect bond between the three layers 

and to obtain the continuity between all the three layers the following relations are used: 

At top interface, 

2 2 1 1( , / 2, ) ( , / 2, )u x h t u x h t 
(4.7)                                                                                                                                                 

2 2 1 1( , / 2, ) ( , / 2, )w x h t w x h t 
                                                           (4.8) 

At bottom interface, 

                                 2 2 3 3( , / 2, ) ( , / 2, )u x h t u x h t                                                             (4.9) 

                                2 2 3 3( , / 2, ) ( , / 2, )w x h t w x h t                                                           (4.10) 
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Now substituting the displacement fields of the viscoelastic core layer from Eq. (4.5) and 

Eq. (4.6) into Eqs. (4.7), (4.8), (4.9), and (4.10), out of four degrees of freedom it is possible 

to eliminate the three degrees of freedom in core  layer, specifically through the following 

relations 

00
0 0 0 3 31 2 1 2
2 1 3

1

2 2 4 2 4

h dwh h dw h
u u u

dx dx

   
         

    
                                                          (4.11) 

0 0 2
0 1 3 2
2

2 8

w w h
w

x

 
 



                                                                                                   (4.12)                                                                                           

 
0 0

1 3

2

w w

h



                                                                                                                    (4.13) 

The remaining degree of freedom for the core layer, α (x, t), cannot be eliminated easily, but 

it is related to the top and bottom face layers by the following partial differential equation: 

    002
1 2 3 20 0 31

3 12 2 3

2 2

( , ) 12 12

2 2

h h h h dwdwx t e
u u

x h h dx dx




  
     

  
                                  (4.14) 

 The generalized degrees of freedom to describe the displacement fields in vector form for 

both core and elastic layers as follows  

0 0 0 0

1 1 1 3 3 3( , ) [ , , , , , ]Tq x t u w u w                                                                                         (4.15) 

It should be noted that from Eq (4.14), the term   cannot be directly eliminated as it related 

to the top and bottom face layers variables through the partial differential equation and the 



Page | 26  
 

above partial differential equation can be modified into the ordinary differential equation for 

steady state harmonic response independent of variable time t as follows: 

    002
1 2 3 20 0 31

3 12 2 3

2 2

( ) 12 12

2 2

h h h h wwx e
u u

x h h x x




   
     

   
                                        (4.16) 

The solution of the equation has been solved by neglecting the higher order terms by Baber 

et.al (1998) and final approximate solution of the above equation can be written as 

00
0 0 3 2 31 2 1
3 1

2

( )( )1
( )

2 2

h h dwh h dw
x u u

eh dx dx


 
     

   .                                                   (4.17)

 

4.3 Strain Displacement Relations 

It can be easy to formulate the strains developed in all the three layers by using the assumed 

displacement fields. By following the assumed Euler-Bernoulli bending of top and bottom 

layers, the only relevant strains in these layers are longitudinal strains. They are  

Longitudinal strain in top layer is taken as 

0 2 0

1 1
1 1 2

xx u w
z

x x


 
 
 

                                                                                                           (4.18) 

Longitudinal strain in bottom layer is taken as 

0 2 0

3 3
3 3 2

xx u w
z

x x


 
 
 

                                                                                                          (4.19) 

The relevant strains in the core layer are vertical normal strain 

2 2

( , )
( , )zz x t
x t z

x


 


 

                                                                                                   (4.20)
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and shear strain in the core layer is 

2 ( , )xz e x t 
                                                                                                                     (4.21)

 

4.4 Strain Energy 

The total strain energy consists of sum of several different contributions from the top, 

bottom, and core layers and given by the following equation. 

1 2 3 4U U U U U V    
                                                                                                (4.22)
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4.5 Kinetic Energy   

The kinetic energy for all the three layers can be written as                                                            

1 2 3T T T T  
                                                                                                                  (4.28)

 

Where 
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                                                                            (4.31)

 

4.6 Finite Element Formulation 

As discussed in above section the beam modeled over here consists of three layers with two 

nodes at each node there are six degrees of freedom as shown in the figure given below: 

                       

                    Figure 4.3: Two-node sandwich beam element with displacement field  
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The response of the sandwich beam has been expressed in face layers only, so the face plates 

are assumed to behave as Euler-Bernoulli beams (with rotary inertia added). The general 

shape function for the beam analysis can be used to determine the displacement of the face 

layers. That is 

1 1
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  k= 1, 3                      (4.32) 

where i ,j denotes the two nodes of the beam element as shown in the above figure and  

the shape functions are given as follows. 
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                                                                                   (4.33) 

The generalized degrees of freedom q are related to the element nodal degrees of freedom 

eq related to shape functions as follows 

eq Nq                                                                                                                              (4.34) 

1 1 1 10 0 0 0 0 0 0 0 0 0 0 0

1 1 1 3 3 3 1 1 1 3 3 3( , , , , , , , , , , , )T

e i i i i i i j j j j j jq u w w u w w u w w u w w                                                    (4.35) 
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Substituting the equations no‟s (4.32) and (4.33) into Eqs no‟s (4.11), (4.12), (4.13), (4. 17)   

the stiffness and mass matrix for the beam element can be obtained as follows 

The resulting element stiffness matrix may be written in the form of 

1 2 3 4K K K K K   
                                                                                                     (4.36) 

In the above equation the stiffness matrix consists of K1 which was contributed by the strain 

energies of top and bottom layers U1 and U2 and K2 has been contributed by shearing strain 

energy of the core appearing in U3.  K3 and K4 has been contributed by the two terms 

appearing in the U4.
 

The resulting element mass matrix may be written in the form of 

1 2 3M M M M  
                                                                                                          (4.37) 

In the above equations the mass matrix consists of M1 contributed by  kinetic energy of the 

face layers T1 and T2 and M2 and M3 contributed by the two terms in kinetic energy T3 of the 

core layer.    

4.7 Equation of Motion 

The equation of motion for the mentioned element has been solved by using the Hamilton‟s 

principle  
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T U w dt                                                                                         (4.38) 
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Now, substituting the expressions for strain energy, kinetic energy and work done given 

equations Eq (4.22), Eq (4.28) in to Eq (4.38) and integrating over time, we get the Eq (4.38) 

as follows 

   [ ] [ ( )] ( ) 0M q K q F t                                                                                           (4.39) 

Where [M], [K], {F} are the mass element matrix, stiffness matrix and force vector for the 

given element respectively. As mentioned earlier the strain energy of the core layer is the 

function of excitation frequency and it is in complex quantity. Thus the stiffness matrix 

obtained here was formed with all the strain energies so it is also the function of frequency 

and complex matrix. So the above equation can now be written as 

    *[ ] [ ( )] ( ) 0M q K q F t                                                                                         (4.40) 

Where * ' ''( ) ( ) ( )K K iK        

If the harmonic load has been applied, then  

 ( ) { } i t

oF t F e                                                                                                                 (4.41) 

where  is the forcing frequency .Both the amplitude and mode of vibration are depending 

on the exciting frequency. 

It should be assumed that the response due to the applied harmonic load will also be in 

harmonic and at the same frequency, then 

 

 2

i t

i t

q Q e

q Q e







 
                                                                                                                (4.42) 
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Now, substituting the above equations in to the Eq (4.32) then the equation of motion 

becomes  

* 2( ) oK M Q F                                                                                                        (4.43) 

Here 
*K and M are matrices and Q, oF are the vectors. 

The above equation can be easily solved for every frequency after applying certain boundary 

conditions by using the inverse of matrix inside the brackets to the other side. Here we are 

not interested for every excited frequency and when the exciting frequency gets close to the 

natural frequency, the response of the system elevated as inertial forces become prominent 

along external exciting forces. Natural frequency of the system can be obtained easily by 

equating the exciting force amplitude in Eq (4.36) to zero as 

* 2( ) 0K M Q      .                                                                                                   (4.44)                                                                   
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Chapter: 5 

Experimentation 

 

5.1 Description of the Experimental Setup 

The experimental setup consists of 1) power amplifier 2) Function Generator 3) Vibration 

Generator 4) Accelerometer and 5) Oscilloscope. 

The function of each instruments are described below: 

1) Power amplifier: Power amplifier was used for the subsequent amplification of the signal 

generated by the function generator and give input to the vibration exciter for vibrating of 

the specimen. 

2) Function Generator: Function generator is used to generate the sine function of the 

required frequency and it is given as input to the power amplifier for giving the excitation in 

the vibration generator. 

3) Vibration Generator: Vibration Generator gets the signal from the amplifier through the 

function generator and vibrates at the given range of frequency. 

4) Accelerometer: Accelerometer measures the response of the specimen which is vibrated 

by the vibration generator and gives the response to the oscilloscope. 

5) Oscilloscope: Oscilloscope was used to observe the response of vibration pickups of the 

accelerometer from the vibrated specimen. It gives the signals in the form of graph between 

the amplitude and time. 

The schematic diagram of the experimental setup is as shown in the Figure 5.1 and 

photograph with setup in Figure 5.2.   
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Figure 5.1: The schematic diagram of the experimental setup 

 

Figure 5.2: Photograph of the experimental setup 
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      Figure 5.3: Beam is arranged on frame for fixed-fixed and cantilever conditions 

                    

                         Figure 5.4: Specimens prepared for the Experimental Investigation 
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5.2 Preparation of Sandwich Beam Specimens 

Sandwich beams are made with the aluminum and steel sheets as the face layers and 

the core layers as rubber and neoprene. In preparing the sandwich beam specimens the face 

layers are made free from grease, dirt etc by cleaning their surface with acetone and carbon 

tetrachloride. The adhesive used for bonding the layers was commercially available Araldite. 

After application of thin layer and equal amount of adhesive on surfaces of all layers, the 

specimens were allowed to settle down for 24 hr‟s for perfect bonding under the load and 

proper care was taken to avoid the slippage between the layers by providing the positioning 

guides at all the edges of the specimen. The details of physical and geometrical properties of 

specimen are given as: the thickness of top and bottom layers 1 mm, core layer thickness as 

5 mm, the length and width of beam are taken as 500 mm and 25 mm respectively. 

The material properties of sandwich beam considered here are given in Table 5.1. 

Table 5.1: Material properties of sandwich beam for face and core layers 

Type of  material 

Young‟s Modulus 

E (GPA) 

Shear Modulus 

G (GPA) 

Density 

 in Kg/m
3 

Poisson‟s Ratio 

  

Aluminum 71  27.3 2766 0.33 

Steel 210 80  7850 0.3 

Rubber 0.00154 0.005  950 0.45 

Neoprene 0.0008154 0.000273  960 0.49 
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Four different types of sandwich beam specimens were made for experimental investigation 

which consists of  

Specimen1: Aluminum – Rubber- Aluminum 

Specimen2: Aluminum-Neoprene- Aluminum  

Specimen3: Steel- Rubber- Steel 

Specimen4: Steel-Neoprene-Steel 

The natural frequencies for all the specimens were determined experimentally for the 

cantilever and fixed-fixed boundary conditions. 

5.3  Procedure for Conducting the Experiment: 

1)  The testing specimen was arranged in the frame for obtaining the necessary boundary 

conditions.  

2)  The accelerometer was placed on the testing specimen at a position where the vibration 

measurement was to be taken. 

3) Now, the excitation was given to the loaded specimen by using the vibration generator 

which was driven by the power amplifier connected to the function generator. 

4) Responses of the excited beam were measured by the accelerometer which gives the 

input signal to the oscilloscope. 

5) From oscilloscope one can get the response of the beam in the wave form i.e., sine wave 

given from the function generator between the amplitude and time for the exciting 

frequency of the specimen. 
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6) With the help of these response readings the corresponding peak amplitudes were noted 

for different exciting frequencies. The graphs were plotted between the peak amplitudes 

of vibration response and the exciting frequencies which gives the natural frequency of 

the tested specimen.  
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Chapter: 6  

Results and Discussion 

6.1 Numerical Results 

This section represents the validation of the result for the present developed finite 

element model for the viscoelastic sandwich beam .Total twenty number elements are used 

for validating  the present model with the model already been developed in reference[5]. 

The sandwich beam model has been validated with results of the Banerjee et al. [5].  

They developed a dynamic stiffness method for the three layered sandwich beam and 

discussed about the natural frequencies and mode shapes for the two different types of cases. 

In case 1, they considered the core layer as the rubber and in case 2, core layer as lead. For 

face layers they considered steel for both the cases. The geometric properties of the case 1 

are given as length of the beam is 0.5 m with rectangular cross section. The bottom and top 

layer are made up of steel with thickness 15 and 10 mm respectively, the core layer is of 

rubber material with thickness 20 mm, and width is 40 mm for all the layers. The properties 

used for the steel and rubber are as follows  

For steel sE =210 Gpa, sG =80 Gpa, s =7850 3/kg m   and 

For rubber rE =1.5 Mpa, rG =0.5 MPa, r =950 3/kg m . 

For case 2, it is similar to the first one except that only the core layer of rubber is replaced 

with the lead with material properties as:  

For lead 1E =16 Gpa, 1G =5.5 Gpa, 1 =11,100 3/kg m   
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The first four natural frequencies of the two cases with cantilever boundary conditions are as 

shown in the Table 6.1 together with results obtained by using the theory of Banerjee et al. 

[2007].  

     Table 6.1: Natural frequencies of a three layered sandwich beam with cantilever boundary conditions. 

 

Mode No 

Natural Frequency (rad/sec) 

case 1 case 2 

 Reference [5] Present Result  Reference [5] Present Result 

1 291.50 291.94 776.4 776.79 

2 1684.48 1685.03 3841.1 3841.62 

3 4623.98 4624.17 8753.1 8752.8 

4 8945.18 8945.07 11459.2 11468.02 

 

The natural frequencies obtained here are in good agreement with results of the Banerjee [5]. 

Here small deviations between the previous and current results are noticed. In the previous 

result, reference [5] they have used Timoshenko beam theory for the core layer. But in 

present theory for face layer Euler-Bernoulli beam theory has been taken.   

6.2 Experimental Results 

After the validation of the present developed model, an experiment has been conducted for 

further validation of the present theory. The prepared specimens which are discussed in the 

earlier section [5.2] are discussed here for modal analysis with the Fixed-Fixed and 

cantilever boundary conditions. The first three natural frequencies of the specimen which are 
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experimented are compared here with theoretical results. The natural frequencies obtained 

through experiment are given in Tables 6.2 through 6.5. 

 

   Table 6.2: Natural frequencies of Specimen 1 (Aluminum-Rubber-Aluminum) 

Mode No 

Cantilever beam Fixed- Fixed beam 

Experiment 

(Hz) 

Theoretical 

(Hz) 

% Error 

Experiment 

(Hz) 

Theoretical 

(Hz) 

% Error 

1 21.64 18.36 15.16 25.64 22.73 11.34 

2 38.42 44.20 15.04 58.20 53.59 7.92 

3 91.88 89.275 2.83 97.85 103.37 5.64 

 

 

    Table 6.3: Natural frequencies of Specimen 2 (Aluminum-Neoprene-Aluminum) 

Mode No 

Cantilever beam Fixed- Fixed beam 

Experiment 

(Hz) 

Theoretical 

(Hz) 

% Error 

Experiment 

(Hz) 

Theoretical 

(Hz) 

%Error 

1 14.02 15.08 7.56 22.10 20.605 6.76 

2 47.60 45.24 8.79 62.35 55.68 10.69 

3 89.74 94.482 5.28 117.32 109.79 6.14 
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                 Table 6.4: Natural frequencies of Specimen 3 (Steel-Rubber-Steel) 

Mode No 

Cantilever beam Fixed- Fixed beam 

Experiment 

(Hz) 

Theoretical 

(Hz) 

% Error 

Experiment 

(Hz) 

Theoretical 

(Hz) 

%Error 

1 22.36 20.54 8.14 28.10 25.88 7.90 

2 60.21 55.169 8.372 71.63 67.31 6.03 

3 102.25 113.77 11.26 119.23 132.03 10.74 

 

           Table 6.5: Natural frequencies of Specimen 4 (Steel-Neoprene-Steel) 

Mode No 

Cantilever beam Fixed- Fixed beam 

Experiment 

(Hz) 

Theoretical 

      (Hz) 

% Error 

Experiment 

(Hz) 

Theoretical 

(Hz) 

%Error 

1 22.63 18.91 16.43 25.26 24.27 3.92 

2 59.10 54.29 8.13 74.54 66.58 10.67 

3 121.65 113.25 6.90 120.67 131.58 9.04 

 

From the tabular results one can infer that the values obtained using experiment and 

theoretical are in good agreement with acceptable errors. 
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6.3 Modal Analysis using FEA: 

In this section the thickness of the damping layer has varied to study the damping effect on 

the sandwich beam for the specimens which are modeled in the previous chapter. The 

thickness of top and bottom layers are taken as 1 mm and 1.5 mm respectively and core 

layer varied as 5mm, 10 mm, 15 mm, and 20 mm. The length and width of the beam are 

500mm and 40mm respectively. The material properties considered here are similar to that 

taken in the previous section. The natural frequencies obtained here for fixed-fixed and 

cantilever boundary conditions are given in Tables 6.0 through 6.13.   

Fixed-Fixed boundary condition: 

Table 6.6: Natural frequency of Specimen1 (Aluminum-Rubber-Aluminum) using FEA 

Mode No 

Natural Frequency ( ) in Hz 

ℎ2=  5 mm ℎ2=  10 mm ℎ2=  15 mm ℎ2=  20 mm 

1 97.73 72.81 62.08 55.75 

2 142.89 124.85 116.76 111.49 

3 236.40 221.73 213.39 206.93 

4 372.25 356.96 346.21 337.04 

5 546.22 527.84 513.20 500.18 
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Table 6.7 Natural Frequency of Specimen2 (Aluminum-Neoprene- Aluminum) using FEA 

Mode No 

Natural Frequency ( ) in Hz 

ℎ2=  5 mm ℎ2=  10 mm ℎ2=  15 mm ℎ2=  20 mm 

1 45.43 41.90 40.06 38.72 

2 113.47 109.55 106.51 503.82 

3 219.51 213.20 207.67 202.60 

4 361.37 351.42 342.40 334.06 

5 538.51 523.80 510.30 497.80 

 

  Table 6.8: Natural frequency of specimen3 (Steel-Rubber-Steel) using FEA 

Mode No 

Natural Frequency ( ) in Hz 

ℎ2=  5 mm ℎ2=  10 mm ℎ2=  15 mm ℎ2=  20 mm 

1 68.17 56.07 51.22 48.47 

2 127.85 120.88 117.78 115.70 

3 233.60 228.16 224.92 222.28 

4 379.15 373.42 369.13 365.29 

5 562.39 555.39 549.48 543.95 

 

 

 



Page | 45  
 

 

Table 6.9: Natural Frequency of Specimen4 (Steel-Neoprene-Steel) using FEA 

Mode No 

Natural Frequency ( ) in Hz 

ℎ2=  5 mm ℎ2=  10 mm ℎ2=  15 mm ℎ2=  20 mm 

1 43.89 42.58 41.87 41.33 

2 116.64 115.16 113.93 112.79 

3 227.51 225.07 222.82 220.66 

4 375.29 371.42 367.73 364.16 

5 559.66 553.93 548.40 543.04 

 

Cantilever boundary condition: 

Table 6.10: Natural Frequency of specimen1 (Aluminum-Rubber-Aluminum) using FEA 

Mode No 

Natural Frequency ( ) in Hz 

ℎ2=  5 mm ℎ2=  10 mm ℎ2=  15 mm ℎ2=  20 mm 

1 89.12 61.54 49.14 41.66 

2 97.76 72.71 61.91 55.55 

3 143.17 125.02 116.87 111.57 

4 236.48 221.67 213.25 206.73 

5 372.07 356.63 345.75 336.45 
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Table 6.11: Natural frequency of Specimen2 (Aluminum-Neoprene- Aluminum) using FEA 

Mode No 

Natural Frequency ( ) in Hz 

ℎ2=  5 mm ℎ2=  10 mm ℎ2=  15 mm ℎ2=  20 mm 

1 21.65 15.53 12.84 11.25 

2 44.90 41.34 39.50 38.16 

3 113.47 109.53 106.46 103.75 

4 219.33 212.99 207.41 202.29 

5 360.99 360.99 341.84 333.38 

 

Table 6.12: Natural frequency of Specimen3 (Steel-Rubber-Steel) using FEA 

Mode No 

Natural Frequency ( ) in Hz 

ℎ2=  5 mm ℎ2=  10 mm ℎ2=  15 mm ℎ2=  20 mm 

1 54.119 38.17 31.10 26.88 

2 67.93 55.70 50.80 48.02 

3 127.96 120.93 117.81 117.71 

4 233.52 228.03 224.76 222.08 

5 378.86 373.07 368.73 364.82 
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      Table 6.13: Natural Frequency of Specimen4 (Steel-Neoprene-Steel) using FEA 

Mode No 

Natural Frequency ( ) in Hz 

ℎ2=  5 mm ℎ2=  10 mm ℎ2=  15 mm ℎ2=  20 mm 

1 14.13 10.92 9.58 8.82 

2 43.28 41.95 41.24 40.70 

3 116.63 115.14 113.90 112.76 

4 227.33 224.88 222.61 220.42 

5 374.92 371.02 361.90 359.66 

 

From the above results one can clearly see that with increase in the thickness of the core 

layer there is a decrease in natural frequency for each mode. This means the damping effect 

of the sandwich has been increased. The results obtained clearly shows that the beams 

modeled with Neoprene as a core layer has more damping effect as compared to the rubber 

for the fixed-fixed and cantilever boundary conditions.  

6.4 Harmonic Analysis: 

In this section harmonic analysis has been performed for the prepared specimens using FEA. 

For harmonic analysis the width of the beam considered as 50mm and length as 500 mm and 

rest of geometrical properties are taken as same in modal analysis and load of 1N is applied 

at the centre of the beam. The amplitude and frequency response plots have been plotted for 

fixed-fixed and cantilever boundary conditions. 
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For fixed-fixed boundary condition the frequency response is as follows:

 

             Figure 6.1: Frequency response of Aluminum-Rubber-Aluminum specimen  

                                                                        

             Figure 6.2: Frequency response of Aluminum-Neoprene-Aluminum specimen 
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                           Figure 6.3: Frequency response of Steel-Rubber-Steel specimen  

Figure 6.4: Frequency response of Steel-Neoprene-Steel specimen 
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For Cantilever boundary condition the frequency response is as follows                                            

       

               Figure 6.5: Frequency response of Aluminum-Rubber-Aluminum specimen             

Figure 6.6: Frequency response of Aluminum-Neoprene-Aluminum specimen 
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Figure 6.7: Frequency response of Steel-Rubber-Steel specimen 

 

                  Figure 6.8:  Frequency response of Steel-Neoprene-Steel specimen 
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These are harmonic response of the beams for fixed-fixed and cantilever boundary 

conditions for the specimens considered in the modal analysis and experimental analysis 

with varying the core and face layers. From the frequency response curves the sandwich 

beam with core layer as rubber provides less amplitude when compared to the neoprene 

under load conditions.  
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Chapter: 7 

Conclusion 

The viscoelastic sandwich beam has been successfully modeled using finite element method. 

The developed model have been validated with the earlier theory, experimental verification 

has also been done for the different types of sandwich beams modeled. The sandwich beams 

modeled here with varying of face and core layers. The sandwich beams modeled here are 

carried out for modal analysis using finite element method by varying the core thickness to 

study the damping effect on the beams for the fixed-fixed and cantilever boundary 

conditions. The results obtained from the modal analysis clearly shows that with increase in 

the thickness of the core layer there is a decrease in the natural frequency for the same 

mode. From the results one can infer that damping characteristics for neoprene viscoelastic 

material has significant effect when compared with the rubber viscoelastic material. Finally 

the frequency responses of the modeled sandwich beams have been plotted for the fixed-

fixed and cantilever boundary conditions. Results show that the viscoelastic constrained 

layer damping treatment has a great significance in controlling the vibration of structures 

like beams, plates, etc.  
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7.1 Scope for future work 

 The developed model can be extended to study the forced vibration of the sandwich 

beams for various boundary conditions. 

 The thermal effects in the viscoelastic layer can be included for vibration analysis of 

sandwich beam.  

 The face layers and core layers of the sandwich beam can be replaced with different 

materials like FGM and Composite materials for the vibration analysis and dynamic 

study. 

 Vibration analysis can be done for the multiple boundary conditions for the multiple 

layers of the viscoelastic sandwich beams. 
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