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ABSTRACT 

 

Zircon (ZrSiO4) and Dolomite (CaMg(CO3)2) are used as raw materials for 

preparation of porous refractory aggregates. Different compositions e.g.    

Zircon : Dolomite (Z:D) ratio 1:1, 2:5 and 1:3 (molar ratio)  are chosen and the 

mixtures are reaction sintered in the temperature range 1150oC- 1300oC. Phase 

evolution as a function of temperature was studied in detail. It was found that 

the phases present in the sintered product differs by the presences of secondary 

phase – Ca2SiO4 or Ca3Mg(SiO2)2 - depending on the Zircon dolomite ratio 

starting mixtures. Apparent Porosity, Bulk Density and  Diametral Tensile 

Strength of the sintered samples has also been measured. 
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1. INTRODUCTION

1.1. REFRACTORIES 

According to ASTM C71, Refractories

physical properties that make them applicable

that are exposed to environments above 1000

refractories can be summed up as: protection of process equipment, energy saving and 

creation of workable environment. They a

applications in industries like iron and s

Depending on their area of application, refractories should have optimum values of densities, 

strength, thermal shock resistance, wear resistance, thermal conductivity etc.

Currently, the Indian refractory industry has a

tonnes per annum. Its distribution among various sectors is shown in Fig. 1.

 

Fig 1: Sector wise

Refractories must be selected depending on the conditions where they are to be used. 

Different application areas demand specific properties. For example: Zirconia refractories are 

used in high temperature applications 

Among non-oxides, silicon carbide is an important refractory material which can be used in 

severe temperature conditions.

decomposes. 

Binary compounds like tungsten carbide

Hafnium carbide is the most refractory binary compound know
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Refractories are non-metallic materials having those

physical properties that make them applicable for structures, or as components of systems, 

exposed to environments above 1000oC. The main purpose behind the application of 

refractories can be summed up as: protection of process equipment, energy saving and 

creation of workable environment. They are widely used in kilns, furnaces, boilers and other 
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about 3900°C. The ternary compound tantalum hafnium carbide has one of the highest 

known melting points i.e. 4215 °C.  

The general requirements for refractory materials are: 

• Ability to withstand high temperature 

• High load-bearing capacity  

• Abrasion and wear resistance  

• High resistance against corrosion by hot gases, molten metals and slag erosion 

• Low coefficient of thermal expansion(TEC) and high thermal shock resistance  

 

1.2. PROPERTIES OF REFRACTORIES 

Important properties include melting point, dimensional stability, porosity, bulk density, 

compressive strength, refractoriness, creep, shrinkage, and thermal conductivity. Manufacture 

and quality control processes are based on controlling these properties. 

 

1.3. CLASSIFICATION OF REFRACTORIES 

• Based on chemical composition 

� Acidic refractories (eg. Silica, zirconia) 

� Neutral refractories (eg. Alumina) 

� Basic refractories (eg. Magnesia, dolomite) 

• Based on physical form 

� Shaped refractories 

� Unshaped refractories or monolithics 

• Based on porosity 

� Dense/non-porous refractories 

� Porous refractories 

• Based on refractoriness 

� Low heat duty refractories (eg. Silica bricks) 

� Intermediate heat duty refractories (eg. Fireclay bricks) 

� High heat duty refractories (eg. Chromite bricks) 

� Super heat duty refractories (eg. Magnesite bricks) 
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• Based on carbon content 

� C-containing refractories (eg. MgO-C) 

� Non-carbon containing refractories (eg. SiO2) 

 

1.4. ZIRCON AS A REFRACTORY 

Zircon is a remarkable mineral, if only for its ubiquitous presence in earth’s crust.  Its 

chemical name is zirconium silicate and corresponding chemical formula is ZrSiO4. It has a 

tetragonal crystal structure. Its relatively high density and resistance to weathering have 

contributed to its wide-ranging use in heavy mineral studies. It is considered as a good 

refractory material because of the following reasons : 

• Low coefficient of thermal expansion 

• Chemical inertness 

• High melting point 

• Compatibility with novel chemical binders 

• High refractive index 

Zircon is the principal precursor to ZrO2, one of the most refractory materials known. It 

consists of 67%  Zirconia (ZrO2) ,  32.8%  Silica (SiO2) and typically about  1%  Hafnium. It 

has good abrasion, impact and thermal shock resistance. It is stable in chemical environments 

and is non-magnetic as well as a non-conductor.  

Zircon finds applications in foundry, refractory and glass industries. It is the most widely 

used opacifier in the ceramic industry. In refractory industries, they are used in steel ladle 

linings, high temperature bricks and glass tanks. Zircon is generally combined with other 

materials, including zircon flour, pre-fired zircon and bonding agents, to extend the ladle 

lining life up to 5-10 times that of alumina brick linings.  

1.5. DOLOMITE AS A REFRACTORY 

Dolomite is the double carbonate of calcium and magnesium (CaMg(CO3)2), having a density 

of 2.8. Generally it consists of 30% CaO  and 20% MgO and 50% LOI due to CO2 presence. 

The phase mixture of CaO and MgO is referred to as doloma. Because of the inherent basic 

oxides, it has a good corrosion resistance against alkalis. It is a high melting compound 
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possessing good refractoriness. Also, the high thermodynamic stability of CaO and MgO at 

high temperatures make doloma highly resistant in reducing conditions.  

Doloma can be regarded as an attractive potential refractory for applications in metallurgical 

industries because of its worldwide abundant sources, high melting temperature and 

inhibition against deep infiltration by the reaction of CaO with acidic slag. However, poor 

hydration resistance restricts its applications. Free lime present in the material has a strong 

affinity for moisture and the expansion accompanying the hydration process causes 

associated disintegration of the sample into powders. Studies have been carried out to inhibit 

hydration by elimination of free lime by reacting with several oxides but this happens at the 

cost of refractoriness.  

On heating dolomite in the range 700oC – 900oC, it loses CO2 and decomposes in 2 steps. 

The reactions are shown as under : 

• CaMg(CO3)2 (s)                       Ca1-xMgxCO3 (s)  +  MgO (s)  + CO2 (g) 

• CaCO3 (s)                       CaO (s)  +  CO2 (g) 

The mixture composed of CaO and MgO is also identified as caustic dolomite. 

There are a lot many other applications of dolomite as well. It is well suited for use as 

refractory linings in CRKs (i.e. cement rotary kilns). It is capable of withstanding the 

temperatures and stresses associated with the burning zone support exceptional coatability. It 

may also be used as a steel-making slag flux and in glass ‘batch’ depending on the 

composition of glass to be made. 

 

1.6. REACTIONS INVOLVED  

Zircon (ZrSiO4) and dolomite (CaCO3.MgCO3) were selected and the composition of the 

mixture was customized according to the following reactions : 

1.  ZrSiO4 + CaCO3.MgCO3                                 CaZrO3 + MgSiO3 + 4CO2 

2. ZrSiO4 + 3CaCO3.MgCO3                                 3MgO + CaZrO3 + Ca2SiO4 + 6CO2 

3. 2ZrSiO4 + 5CaCO3.MgCO3                              4MgO + 2CaZrO3 + Ca3Mg(SiO4) + 10CO2 
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The pyrolysis of dolomite gives off CO2 gas during the sintering process resulting in the 

formation of porous structure. These porous materials can serve as insulating refractories 

because of their good strength. Furthermore, in preparation of Zircon-Dolomite based 

insulating refractories, no pore formers like saw-dust are required; hence, the process does 

not release any combustible or harmful materials during the firing process and is environment 

friendly. These porous materials with good refractory phases find potential applications as 

refractory aggregates  
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2. LITERATURE REVIEW 

Dolomite-Zircon mixtures have become interesting sources for the production of dense as 

well as porous composites. Dense bulk-form CaZrO3/MgO nanocomposites have been 

successfully fabricated using reactive hot pressing from dolomite-zircon powders[1,2]. Both 

the green density and degree of agglomeration effect the sintering behaviour over the entire 

process. By adequate control of process parameters (particle size, sintering temperature), it is 

possible to obtain dense or porous materials [3].  

Silica-bonded magnesia materials are known to have high thermal expansion coefficient and 

hence, poor thermal spalling resistance. When combined with Y2O3  (Y = Cr+3, Al+3), the 

thermal shock resistance of the material is enhanced [4, 5]. However, due to environmental 

protection regulations, which ban the use of chrome-based materials [6], we use zircon in 

order to form CaZrO3 based materials. Zircon and Dolomite are very economical raw 

materials for the production of CaZrO3-Ca2SiO4-MgO materials [7]. The MgO-CaO-ZrO2-

SiO2 system forms several high temperature compounds and may serve as viable alternatives 

for magnesia refractories. 

Zirconia undergoes phase transitions at specific temperatures and thus, its volume changes on 

heating and cooling. At low temperatures, monoclinic phase is most stable. On heating above 

1205oC it transforms to form tetragonal structure. The tetragonal to cubic phase transition 

occurs at high temperatures at around 2377oC. Oxides of magnesium and calcium may be 

added to stabilise zirconia. On the other hand, lime in dead-burnt dolomite has a strong 

affinity for moisture with associated disintegration because of expansion caused by hydration. 

This reaction can be inhibited to obtain an improved hydration resistance by purging of free 

lime by reacting with the oxides (iron oxides, silica, clay etc. ) at the cost of refractoriness. 

This makes the mixing of dolomite-zircon an attractive option for the manufacture of low 

cost refractories. Apart from that, the reaction between these two compounds may be tailored 

to form high temperature refractory phases like calcium zirconate ( melting temperature: 

2250oC–2550oC ), forsterite Mg2SiO4 ( melting temperature: 1890oC ). The phase diagram of 

the MgO-ZrO2-CaO-SiO2 quaternary system with a diagrammatic representation of the 

intersection between the solid state compatibility planes and the dolomite-zircon formulation 

line is shown in Fig 2. 
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Fig 2. a) Phase diagram of MgO-ZrO2-CaO-SiO2 system b) projection from the MgO-apex 

onto the opposite face of quaternary tetrahedron CaO- ZrO2-SiO2 

Reaction sintering of mixtures of zircon and dolomite produces CaZrO3-Ca2SiO4-MgO based 

materials. Dicalcium silicate (Ca2SiO4) have five polymorphs, amongst which the (β) 

orthorhombic to (γ) monoclinic transformation is very similar  to  that  of  the  tetragonal  to  

monoclinic  transformation  observed  in  ZrO2,  i.e.  both experience expansion on 

transformation during cooling. However, there exist differences between  these  two  

corresponding  transformations.  Firstly,  in  Ca2SiO4,  the  transformation occurs from a β 

a) 

b) 
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microstructure (twinning) to a γ structure that is untwined, while in ZrO2  the reverse 

phenomenon occurs. Secondly, unlike in ZrO2, the transformation from β to γ is irreversible, 

as β is a metastable phase. Thirdly, the volume expansion associated with phase 

transformation is 12% for Ca2SiO4, while it is just 4.9% for ZrO2  (at room temperature) [8]. 

Dolomite-zircon compositions when heated, behave in the following manner [7,9] : 

• Reaction between decomposed dolomite (CaO plus MgO) and zircon occurs above 

1000oC. 

{CaO + MgO} + ZrSiO4                 Ca3Mg(SiO4)2  +  t-ZrO2  +  MgO     

       +  amorphous phases 

t-ZrO2  +  amorphous phases                 CaZrO3  +  amorphous phases 

Ca3Mg(SiO4)2  + amorphous phases                Ca2SiO4  + amorphous phases   

 

• This is followed by sintering of the samples in 3 stages : 

� Initial stage : Rearrangement of particles and neck formation. 

� Intermediate stage : Growth of grains and pores and development of necks 

between particles. 

� Final stage : Elimination of remaining pores. 
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3. EXPERIMENTAL WORK 

3.1. SAMPLING OF RAW MATERIALS 

High purity and fine batches of dolomite and zircon were used in the preparation of test 

samples. Samples of 3 different compositions were made. Batch compositions are as 

follows (Table-1):- 

BATCH COMPOSITION 

Samples Zircon (mol %) Dolomite (mol %) Z:D 

Z1 50 50 1:1 

Z2 28.5 71.5 2:5 

Z3 25 75 1:3 

 

Table 1. Batch composition 

 

3.2. SAMPLE PREPARATION 

The steps involved in the sample preparation process are shown below: 

 

 

Fig 3. Flow diagram for sample preparation 

 

 

Batch calculation

Mixing

Pressing

Drying 

Firing
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3.2.1. BATCH CALCULATION 

Based on the the percentage of ZrSiO4 and Dolomite in each batch composition, the amount 

of raw materials required for 50g of each composition was calculated (Table 2). 

 

Batch Zircon (g) Dolomite (g) 

Z1 25.394 24.606 

Z2 14.61 35.39 

Z3 12.798 37.202 

 

Table 2. Batch calculation for each composition 

 

3.2.2. MIXING 

For preparing powder mixes of each of the batches, ascertained measures of each of the crude 

material (as per Table 2) was taken in a mortar & pestle and dry mixed and ground. Requisite 

amount (3-4 drops approx) of 3% PVA solution was added as a binder and the mixture was 

blended properly. Care was taken to ensure that agglomerates were not formed in the process. 

 

3.2.3. PRESSING 

The prepared mix was then partitioned into batches of 1g each and pressed to form pellets 

(12mm dia) by applying a load of 4 tons for a dwelling time of 90 seconds in a Carver 

Hydraulic Press machine. 

 

3.2.4. DRYING 

Subsequent to pressing, the pellets were first air dried for 24 hrs followed by drying in an 

oven maintained at a temperature of 110oC for another 24 hours.  

 

3.2.5. FIRING 

Ten samples of each of the compositions of Table 1 were prepared and fired at each of the 

temperatures – 1150oC, 1200oC, 1250oC and 1300oC at a heating rate of 3oC/min and for a 

soaking time of 2 hours. 
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3.3. SAMPLE CHARACTERIZATION 

 

3.3.1. PHASE ANALYSIS BY XRD 

X-Ray diffraction technique can be used for phase identification, investigation of crystal 

structure of a material and unit cell parameter determination of novel materials. Each material 

has a unique XRD pattern that is distinctive of its structure. 

The X-ray diffraction method was used to determine the present phases in the fired samples. 

The main aim was to study the phase evolution with temperature for different compositions. 

XRD measurements were performed at a 3oC/min scan rate using a Philips Advance D8 X-

ray diffractometer operated at 40 keV and 30 mA and in the 2 theta range of 10o to 80o.  

The samples in the form of pellets were sent for X-ray analysis. The X-ray analysis data was 

matched with the standard JCPDS software to identify the phases. 

 

3.3.2. MEASUREMENT OF BULK DENSITY AND APPARENT POROSITY 

Bulk density isn’t an intrinsic material property. It may change with material handling ways. 

It’s defined as the mass of particles divided by their volume. This volume includes the 

volume of particles, voids between them and volume of internal pores present. 

Apparent porosity refers to the volume of open pores divided by the total volume (bulk 

volume) of the material.  

The AP/BD measurements of refractories can be done by the evacuation method (applicable 

for all types) or boiling water method (for burnt bricks). Both these methods are based on the 

Archimedes’ principle.   

The A.P./B.D. measurements of the samples were carried out in kerosene so as to avoid the 

hydration of lime i.e. CaO. The bulk density and apparent porosity values can be calculated 

by the following sequence of steps : 

• Dry weight of the samples was measured. 

• The samples were soaked in kerosene in a beaker. 

•  The beaker was kept in a dessicator under vacuum conditions until bubble formation 

stopped. 
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• Then the suspended weight and soaked weight of the samples were measured using 

the AP/BD setup and weighing machine. 

 

B.D.   =    
�

���
	 ∗ 	� 

 

A.P.   = 			
�−�

�−�
∗ 	

 

Where, 

D = dry weight  

W = soaked weight 

S = suspended weight 

ρ = density of kerosene = 0.78 

The variation of density with firing temperature for each batch composition was studied. 

 

3.3.3. MEASUREMENT OF DIAMETRAL TENSILE STRENGTH 

This test applies a compressive load onto a cylindrical disk sample through 2 diametrically 

opposite rigid plates. Such loading conditions produce almost uniform tensile stress over a 

major portion of diametric plane containing the applied load. The max. tensile stresses are 

relative to the applied load and grow in a direction perpendicular to loading direction. This 

test would yield correct results on the condition that fracture initiation occurs due to tensile 

stresses. 

Prior to DTS measurement, the diameter and thickness of the pellets were measured using 

vernier callipers. DTS was measured using the Universal Testing Machine (UTM). The pellet 

was placed centrally between the plates of the machine in vertical orientation. The load range 

was selected depending on the material. The load was applied uniformly until the test piece 

failed, i.e. until it was unable to support the load. The maximum load indicated was recorded.  
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The diametral tensile strength was calculated from the following formula [10]: 

DTS = 
�∗


���
 

Where, 

P = maximum force at which fracture occurs 

D = diameter of the sample 

t = thickness of the sample 
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4. RESULTS AND DISCUSSIONS  

4.1. RAW MATERIAL CHARACTERIZATION 

4.1.1. XRD PATTERN OF ZIRCON 

Characterization of zircon was done by X-ray diffraction method. Fig 4. shows the XRD 

pattern of Zircon powder  used in the study.  

 

Fig 4. XRD analysis of zircon powder 

The XRD curve shows the presence of zircon in all high intensity peaks. No other impurity 

phases could be detected from the pattern. XRD pattern was matched with JCPDS file 

number  81-0589. 

4.1.2. XRD PATTERN OF DOLOMITE 

Characterization of dolomite was done by X-ray diffraction method. Fig 5 shows the XRD 

pattern of dolomite used in the study. 
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Fig 5. XRD analysis of dolomite powder 

The XRD curve shows the presence of dolomite in all high intensity peaks. No trace of other 

impurities could be detected from the pattern. The XRD pattern was matched with JCPDS 

file number 36-0426. 

4.1.3. CHEMICAL ANALYSIS OF DOLOMITE 

The typical composition of the dolomite used in present study is shown in Table 3. 

 
%   

SiO2 2.386 

Fe2O3 1.1 

Al2O3 0.6 

CaO 32.608 

MgO 18.98 

LOI 46.36 

 

Table 3. Chemical composition of dolomite 
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Wet chemical analysis method was used for determining the oxide composition of dolomite. 

The percentage of silica, alumina, calcia and magnesia were determined by gravimetric 

analysis. The amount of iron oxide was determined by titrating against standard mercurous 

nitrate solution. 

4.1.4. DSC/TGA OF DOLOMITE 

Fig 6 shows the thermal decomposition behaviour of dolomite powder used in this study. 

 

 

Fig 6. Thermal decomposition behaviour of dolomite powder 

The two endothermic peaks in the DSC curve correspond to the decomposition of dolomite to 

form CaO and MgO. The first one reaches a peak at 745oC and the second one reaches a peak 

at 845oC. The  lower temp. peak shows the decomposition of dolomite structure, by releasing 

CO2 from the carbonate ion allied with magnesium part in the composition resulting in the 

formation of MgO and calcite. The higher temp. peak represents calcite decomposition 

associated with CO2 evolution. There is a mass loss of about 37% due to decarbonation. 

Beyond 1000oC, CaO and MgO react with zircon which is shown by a broad exothermic peak 

with maximum at 1120oC. 
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4.2. SAMPLE CHARACTERIZATION 

4.2.1. XRD ANALYSIS 

The XRD patterns of the Z1 samples as a function of  temperature are shown in Fig 7. 

INDEX: 

 

 

 

 

& - ZrO2 

$ - CZ 

# - C2S 

* - Calcium Magnesium silicates 

@ - Enstatite 
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Fig 7. XRD patterns of Z1 samples as a function of temperature 
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The main phases observed in the XRD analysis of Z1 samples are listed below: 

• Calcium zirconium oxide (CaZrO3) 

• Calcium silicate (Ca2SiO4) 

• Zirconium oxide (ZrO2) 

• Enstatite (Mg0.944Ca0.056SiO3) 

• Calcium Magnesium silicates (CaMgSi2O6)  

It was seen that some unreacted  ZrO2 remains in the samples fired at relatively lower 

temperatures. Calcium Magnesium silicates are formed in samples fired at 1150oC and 

1200oC but not in those at still higher temperatures. This corroborates the theoretical finding 

from literature that transitory amorphous silicate phases and transitory solid phases like 

calcium magnesium silicates and t-ZrO2 are formed in the initial stage of reaction which later 

forms stable phases like CZ and C2S. Also, low melting phases like enstatite are formed 

which start forming liquid beyond 1300oC. Formation of enstatite is the main reason for the 

melting of Z1 samples when fired at temperatures above 1300oC. 

The XRD pattern for Z2 and Z3 samples fired at different temperatures show the presence of 

CZ, C2S and C3MS2 as the major phases.  

INDEX : 
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# - C2S 

* - C3MS2 
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Fig 8. XRD patterns of Z2 samples as a function of temperature 
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Fig 9. XRD patterns of Z3 samples as a function of temperature 
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4.2.2. APPARENT POROSITY/BULK DENSITY MEASUREMENTS 

 

 

 

 

 

 

 

 

Fig 10. AP/BD of Z1 samples as a function of temperature 

Fig 10 depicts the variation of AP/BD of Z1 samples with different temperatures of firing. 

The density increases and porosity decreases with increase in firing temperature. This 

behaviour may be attributed to higher densification in the samples on firing at higher 

temperatures. 

 

  

 

 

 

 

 

 

Fig 11. AP/BD of Z2 samples as a function of temperature 
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The AP/BD of Z2 samples as a function of temperature is shown in Fig 11. The variation of 
density and porosity with firing temperature is in good agreement with theoretical prediction. 
There is a decrease in porosity and increase in density with increase in firing temperature 
because of densification of the sample. 

 

 

 

 

 

 

 

 

 

 

Fig 12. AP/BD of Z3 samples as a function of temperature 

 

Densification studies of the samples were carried out by measuring apparent porosity and 
bulk density. The density of the Z1 samples was considerably higher than that of Z2 and Z3 
samples. This is because of lower dolomite content which in turn results in lesser CO2 
removal from the structure. Bulk density increases and apparent porosity decreases with 
increase in firing temperature due to higher degree of sintering and hence densification. It 
was also found that high dolomite contaning samples sinter  at  lower  temperatures.  
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4.2.3. DIAMETRAL TENSILE STRENGTH MEASUREMENT 

The tensile strengths of Z1, Z2 and Z3 samples as a function of temperature are shown in 
Figures 13, 14 and 15 respectively. 

 

Fig 13. Tensile strength of Z1 samples as a function of temperature 

 

Fig 14. Tensile strength of Z2 samples as a function of temperature 
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Fig 15. Tensile strength of Z3 samples as a function of temperature 

Strength of the samples increases with firing temperature due to higher densification and 
formation of high strength refractory phases. But  in case of higher dolomite containing 
samples (especially Z3) ,on  holding  for  a few  hours,  they  get  disintegrated on their own 
and convert to loose powders. This happens because lime present in the samples takes up 
moisture from surroundings and expands and causes unstabilisation of calcined dolomite. 
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5. CONCLUSION 

 

• The main phases present in Z1 samples are CZ and  C2S with small amounts of 

Calcium magnesium silicates and unreacted zirconia. Calcium magnesium silicate 

phases are present in samples fired at low temperatures which then convert to form 

C2S and enstatite( in high zircon compositions) at higher temperatures. 

• The major phases present in Z2 and Z3 samples are CZ, C3MS2 and C2S. 

� High zircon containing samples get fused at a relatively lower temperature due to the 

formation of low melting phases in the CaO-MgO-SiO2 system. 

� Higher dolomite samples sintered at relatively lower temperatures. 

� Density and tensile strength of the samples was found to increase with increase in 

firing temperature. 

� In some cases, high dolomite containing samples crumbled automatically and gets 

converted to disintegrated powders. This un-stabilization may be due to expansion 

caused by hydration of lime. 
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