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Abstract

Community detection in a social network is an emerging issue in the study of

network system as it helps to realize the overall network structure in depth. Com-

munities are the natural partition of network nodes into subgroups where nodes

within the subgroup are densely connected but between the subgroups connections

are sparser. Real world networks, including social networks have been found to

partition themselves naturally into communities. A member of a social network

can be part of more than one group or community. As a member of a social net-

work can be overlapped between more than one group, overlapping community

detection technique need to be considered in order to identify the overlapping

nodes. This topic of research has many applications in various fields like biology,

social sciences, physics etc.

In literature, most of the proposed community detection approaches are able

to detect only disjoint communities. Recently few algorithms has been emerged

which are capable of discovering overlapping communities. In this work two dif-

ferent types of algorithms have been proposed which efficiently detect overlapping

communities. A novel approach has been introduced which overcomes the short-

falls of clique percolation method, an overlapping community detection algorithm

mostly used in this area. Another algorithm which is based on Genetic Algorithm

is also used to discover overlapping communities. Modularity measure is generally

used to determine the quality of communities for the particular network. The

Quality of the communities detected by the algorithms is measured by several

different overlapping modularity measures. Standard real world networks used as

benchmark for community detection, have been used to judge the algorithms.

Keywords: Social Network, Overlapping Community Detection, Graph Theory,

Clique, Modularity Measure, Genetic Algorithm.
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Chapter 1

Introduction

Real world complex systems can be represented in the form of networks. To under-

stand the in-depth structure and detail function of those systems, it is important

to study and analyze the networks [1–3]. A trivial property of these networks is

community structure obtained by partitioning the network into several groups,

within which connection between nodes are more dense than the rest of the net-

work. The sets of This type of grouping is commonly referred as communities, but

also known as clusters, cohesive groups, or modules as there is no globally accepted

unique definition [1]. The concept of community detection is related to graph par-

titioning in some way; though it is very much dissimilar from graph partitioning.

In case of graph partitioning, number of groups and the approximate size of those

groups are known priory and the task is usually to divide the network into these

many numbers of disjoint sub-graphs of almost same size, irrespective of whether

a partition even exists. But in case of community detection, it is not known that

how many communities are present in the network and it is not at all mandatory

for them to be of same size. The community detection approach assumes that

most of real world networks, divide naturally into groups of nodes (community)

with dense connections internally and sparser connections between groups, and

the experimenter’s job is only to detect these already formed groups [12]. The

number of partitions and size of them are settled by the network itself and not

set by the experimenter. So community detection is the technique which aims at

discovering natural divisions of (social) networks into groups based on strength of
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1.1 Literature survey

connection between vertices’s [1, 4].

Basically, community can be subdivided into two types; disjoint communities

and overlapping communities. In disjoint communities nodes can be part of only

a single community, but in overlapping communities partitions are not necessarily

disjoint. There could be nodes that belong to more than one community [5–7].

A social network is a collection of finite set of members (nodes) which can be

a single person, a group, an organization; and relations (edges) among them may

represent friendship, influence, affection or conversely, dislike, conflict or many

other similar entities. In a social network, a community could be a group of

people with common interest or location [8, 9]. Generally in any social network a

person may be part of more than one different group or community, like a person

can be part of his/her professional group and simultaneously can be part of his/her

family group indicating overlap between the professional and family group. So for

social networks, overlapping community detection technique should be considered

over disjoint community detection technique.

1.1 Literature survey

Community detection is a stimulating field of research. There are various commu-

nity detection algorithms available but most of the algorithms are able to detect

disjoint communities only. As overlapping community detection is comparatively

new approach less algorithms are present for this approach. Some of these work

are described below.

In 2004, Newman [1] proposed a disjoint community detection algorithm. Com-

munities are found using edge betweenness. In this work first modularity measure

is introduced. In the year of 2005, Clauset et al. [10] proposed another community

detection algorithm based on a local modularity measure proposed by them. At

each step the algorithm adds a node into a partial community and update the

neighbors of that community. It discovers only disjoint communities. Palla et

al. [11] presented the first overlapping community detection algorithm in 2005. In

2



1.1 Literature survey

this approach communities are identified based on the adjacent cliques. This algo-

rithm allows a node to be part of more than one community, resulting overlapping

community structure. In 2006, Newman proposed another community detection

algorithm [12]. The algorithm works by using eigenvector of matrices. Here he has

proposed a new quality function, modularity matrix which has been used to detect

the community structure. This algorithm results disjoint communities. Nepsuz et

al. [13] in 2008 proposed a new approach to evaluate modularity for overlapping

communities. Lancichinetti et al. [7] in 2009 have proposed an algorithm which

works based on local optimization of a fitness function. This algorithm finds over-

lapping communities by maximizing the fitness value. Shen et al., 2009 [2] pro-

posed another overlapping community detection approach. Overlapping commu-

nities are detected based on maximal cliques. An overlapping modularity measure

is also proposed here based on number of maximal cliques. Gregory, 2009 [14], pro-

posed a two phase method for overlapping community detection. In the first phase

of this method, the network is transformed into a new one by splitting the nodes

using split betweenness. In the second phase of the method, a disjoint community

detection algorithm has been applied to process the transformed network. Ahn

et al., 2010 [15] presented another overlapping community detection algorithm

based on link partition. Using hierarchical clustering links are partitioned to link

dendogram. Overlapping communities are detected by cutting this dendogram

at some threshold point. Here one more modularity measure partition density is

introduced. Chen et al., 2010 [16] proposed another algorithm to detect overlap-

ping communities in weighted network. It detects overlapping communities using

a local algorithm which works by expanding a partial community which is started

from a special single node. They have introduced another overlapping modularity

measure. Lazar et al. 2010 [17] proposed a overlapping modularity measure for

overlapping communities based on difference between inward and outward edges.

Nguyen et al., 2011 [18] proposed a two-phase framework which detect the over-

lapping community structure in a dynamic network by quickly and adaptively

updating the network structure only based on its history without recomputing

3



1.2 Motivation of Work

from scratch. Coscia et al., 2012 [19] presented an overlapping community discov-

ery algorithm. Each node vote for the communities it sees surrounding it using a

label propagation algorithm and finally, the local communities are merged into a

global collection. Tooth et al., 2013 [20] studied various modularity measures by

applying them on community structures obtained using clique percolation method.

Those are some of graph theory based overlapping community detection ap-

proaches. Few author has attempted to detect overlapping communities using

genetic algorithm by maximizing the modularity value. Some of these type of ap-

proach are described here. Clara Pizzuti, 2008 [21] proposed an genetic algorithm

based disjoint community detection approach which uses node-based clustering.

A simplified objective function is also proposed here. Clara Pizzuti, 2009 [22]

has proposed first genetic algorithm based overlapping communities detection al-

gorithm. It uses edge-clustering approach instead of node-clustering. They have

used line graph concept to achieve that. Cai et al., 2011 [23] proposed another

genetic algorithm based approach to detect overlapping communities. The algo-

rithm first finds the link communities by optimizing objective function partition

density, and then map the link communities to overlapping node communities.

They have used the concept of bridge node to adjust the node membership of

overlapped nodes. Dickinson et al., 2013 [24] also attempted to detect overlap-

ping communities using genetic algorithm. Overlapping communities are detected

using two different approach Label Rank algorithm and genetic algorithm. For

genetic algorithm edge based clustering has been used and Modularity by Shen et

al. [2] is used as the objective function.

1.2 Motivation of Work

The ability to find and analyze communities present in the network can provide

help in understanding and visualizing the structure of networks. Social creatures

interact in diverse ways by forming groups, sending messages, sharing items, join-

ing in group discussion etc. Some of the interactions are accidental while others

4



1.4 Experimental Datasets

are a consequence of the underlying explicit or implicit social structures. In order

to understand social interactions and the low-level structure of the network, it

is therefore crucial to identify these social structures or communities. The well-

known structure of the network can have significant applications. For effective on-

line marketing, such as placing online ads or deploying viral marketing strategies,

known community structure in social network could often lead to more accurate

targeting and better marketing results.

1.3 Objectives of Work

The objective of this work is to effectively explore and identify the naturally

formed communities in a network so that the in-depth structure of the network

becomes understandable. Diverse overlapping community detection algorithms

need to be studied and implemented to investigate for the effective and better

approach for this purpose. To identify the best and effective approach, they need

to be evaluated by some means. Various overlapping modularity measures are

needed to be considered to measure effectiveness of the approaches.

1.4 Experimental Datasets

Standard real world networks generally considered as benchmark for community

detection, are used as experimental dataset for all the implemented algorithms.

1.4.1 Zachary’s Karate Club Network

This is a social network of friendships between 34 members of a karate club at an

American university in the 1970. It is an undirected, unweighted network having

34 nodes and 78 edges. Due to some reason their was a disagreement between the

administrator and instructor and the network was divided into two groups. Node

1 and 33 represents the administrator and instructor respectively [25].

5



1.5 Thesis Organization

1.4.2 Dolphin Social Network

It is a relation-network between bottlenose dolphins. It describes the associations

between 62 dolphins lving in Doubtful Sound, New Zeland, with ties between

dolphin pairs. This Network was built by Lusseau et al [26]. It is an undirected

network consisting 62 nodes and 159 edges .

1.4.3 Les-Miserables

This is a weighted network of co-appearances of characters in Victor Hugo’s novel

”Les Miserables”. Nodes represent characters and edges connect any pair of char-

acters that appear in the same chapter of the book. The weights on the edges

are the number of such co-appearances. The data on co-appearances were taken

from [27]. In this work as only unweighted and undirected links are considered,

here links are considered as un-directed. Network consist of 77 nodes and 254

edges.

1.5 Thesis Organization

The rest of the thesis is organized as follows.

In Chapter 2 related concepts have been discussed which are used later in this

work. Chapter 3 describes the proposed overlapping community detection algo-

rithm based on fuzzy assignments of nodes. In Chapter 4 another overlapping

community detection algorithm, based on genetic algorithm has been discussed.

Finally, Chapter 5 concludes the thesis with future work.

6



Chapter 2

Related Concepts

In this chapter fundamental concepts related to overlapping community detection

are described which have been used throughout the thesis.

2.1 Network

A network represents the actors and relations among them. A network is generally

presented as a graph G(V,E), where V is set of n nodes and E is set of m edges.

Actors in the network are called as nodes, vertex and relations can be called as

edge, arc, link, tie, bond or connections.

The nodes and edges in the network may have different properties depending on

the concerned system. For example edges or connections can be weighted, directed

or undirected and nodes can have a size, color or many other attributes generally

termed as labels. For example, in a social network, one might need to consider the

gender or age of the considered population. In the corresponding network, this

translates into labels associated to each node. Links labels are more common, and

generally take the form of numerical values called weights, expressing the strength

of the corresponding to relationships. Another important link attribute is the

direction, which introduces a distinction between the connected nodes: one is the

tail, the other is the head, and the link represents an asymmetrical relationship

from the tail towards the head. Depending on the links, a network is said to be

(un)weighted and (un)directed. In this work networks, with attribute-less nodes

and unweighted, undirected links has been considered.

7



2.4 Average Degree

2.2 Adjacency Matrix

The information about a network can be represented by some mathematical ex-

pressions, vectors, matrices etc. One of the most common way of network repre-

sentation is adjacency matrix. It describes how the nodes are connected.

Aij =











1 if a link exists between node i and node j

0 otherwise

(2.1)

If the network is weighted then the weights are used in place of binary values.

2.3 Degree of a Node

Degree of a node is the number of connections, a node is having with other nodes.

In another words, number of neighbors a node is directly associated with. For

a directed network a node has two type of degree which are in-degree and out-

degree. These are distinguished by the direction of links. In-degree of a node

is the number of incoming links where out-degree is the count of outgoing links.

Nodes with no links that is of zero degree are called as isolated nodes [28].

2.4 Average Degree

Average degree of a network is the mean degree processed over all of the nodes of

the network. It depends on the considered system, the number of links and nodes.

The average degree of an undirected, unweighted network can be calculated as

davg =
1

n

∑

i

di (2.2)

Here, davg is average degree of network, di symbolizes the ith node’s degree and

n is the total node number.

8
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2.5 Degree Distribution:

A significant property of real world network is power law degree distribution. The

degree distribution, p(k) of a considered network is defined as the fraction of nodes

in the network having degree of k. If there are n nodes in total in a network and nk

of them have degree k, then p(k) = nk/n. The networks which follows power-law

degree distribution is known as scale free network. It has been seen that degree

distribution of real world network follows power law [28, 29].

2.6 Small World

If the average path length between two nodes is small then the considered network

is having small world property. The famous experiment of Milgram’s named as,

”six degrees of separation” [28] presents the idea, that any two person in earth is

at most six steps away from each other. A chain of, ”a friend of a friend” can be

made which will be able to connect any two person in six steps or less distance.

The empirical studies are shown that many real networks has small world property.

2.7 Component

A component is a sub-network in which any node is reachable from any other

node by a walk. Putting concisely, it is a maximal connected subgraph. For

an undirected network, a component is a set of connected nodes with no links

with other nodes from the same network. But for directed networks, it is less

straightforward. A component is said to be strongly connected if there is a directed

walk between each pair of nodes It is called weakly connected if there is at least an

undirected walk between each pair of nodes. A network with only one component

is said to be connected. An isolated node (i.e. a node with a degree zero) is a

component of its own. [30, 31]

9



2.9 Community Structure

2.8 Community

A community is a group of actors or nodes, and connections or links between

these nodes where nodes are clustered into tightly knit groups with high density

of within-groups edges and low density of between-group edges [32]. Communities

have been studied in diverse domains which results several names to refer them

like modules, partitions, clusters or cohesive subgroups. In Figure 2.1, nodes 1,

2 and 3 combinedly represents a community. Again Nodes 3, 4 and 5 represents

another community.

Basically communities can be subdivided into two types; disjoint communities

and overlapping communities. In disjoint communities nodes can be part of only

single community but in overlapping communities partitions are not bounded to

be disjoint. There could be nodes that belong to multiple communities [5–7].

1

2

3

4

5

Figure 2.1: Community Structure in a network

2.9 Community Structure

Set of communities discovered in a network combinedly referred as the community

structure or cover, represented as C = {c1, c2, c3, ..., ck}. Here C is the cover or

community structure and c1, c2, ck are communities. The size of cover represented

by |C| indicate number of communities in the cover. For example in Figure 2.1

communities are c1={1, 2, 3} and c2={3, 4, 5} and cover |C|= {c1, c2}.

10



2.11 Modularity Measure

2.10 Overlapped and Non-Overlapped node

An overlapped node is shared by more than one community. Type of community

structure where some nodes are overlapped is known as overlapping community

structure. For example in Figure 2.1 node 3 is an overlapped node.

An non-overlapped node belongs to only one community. Type of commu-

nity structure where all nodes are non-overlapped is known as non-overlapping or

disjoint community structure.

2.11 Modularity Measure

Actual community structure or cover in a network is not always fixed. It corre-

sponds to the arrangement of edges. Modularity is a quantitative measure of the

quality of the community structure or inversely it defines how good the founded

community structure is [4]. It can be either positive or negative, where positive

value indicates possible presence of community structure [1, 4].

Presently most commonly used modularity measure for overlapping community

structure is Normalized Mutual Information (NMI) [5]. The problem with this

modularity measure is on ground truth about the network which needs to be

known priori. But it is nearly not possible for real world networks. Recently few

modularity measures for overlapping community structure have been developed

which does not require the ground truth information [20]. In most of the papers

researchers have considered a single modularity measure to rate the community

structure. Every modularity measure has its own strength and weakness. It will

not be fair enough to declare a single modularity measure as ideal one; as there

is no such universal modularity. In this work a number of modularity measures

have been considered for quality measure.

2.11.1 Modularity by Girvan and Newman

The concept of modularity is proposed by Girvan and Newman [4]. According to

them a good community division in network is not that where there are fewer edges
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2.11 Modularity Measure

between the communities; it is where there are more edges within communities

than between the communities [4]. Modularity is defined as the difference between

number of edges falling inside the communities of the network and the number of

edges expected to fall inside the communities in an equivalent random network.

The reason of this definition is that number of connections inside the community

should be larger than the what is expected for a random network. So the algorithm

works by comparing the fraction of connections or edges inside the communities to

the expected fraction of edges in a random graph where the degrees of individual

nodes are equal to the degrees of nodes in the original network [4, 20].

In a random graph having equal number of edges, m of original network, the

probability for having a connection between two nodes i and j with degrees di

and dj respectively is didj/4m
2. Accordingly, the expected fraction of edges inside

a community c is (dc/2m)2, where dc =
∑

i∈c di is the sum of node degrees in

community c.

As modularity is measured by comparing fraction of edges inside the commu-

nity with expected fraction of edges in random model, the modularity contribution

by community c is given in Eq. (2.3).

Qc =
lc
m
−

(

dc
2m

)2

(2.3)

where, m is total number of edges in the network and lc is total number of edges

within the community c. So lc/m is fraction of edges or connections in community

c. Based on the above, the modularity of the cover can be computed as the sum

of contribution for all communities, as mentioned below:

Q =
∑

c∈C

Qc =
∑

c∈C

[

lc
m
−

(

dc
2m

)2
]

(2.4)

Eq. (2.4) can also be written in a different form with summation over the

individual nodes as:

Q =
1

2m

∑

c∈C

∑

ij

(

Aij −
didj
2m

)

δicδjc (2.5)
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where, Aij stands for the corresponding value in adjacency matrix. δic indicates

whether the node i belongs to community c or not. δic = 1, if node i is part of

community c and δic = 0, when it is not.

The modularity measure suggested by Newman and Girvan may be considered

as appropriate for disjoint communities as, the value of δic in Eq. (2.5) can only be

1 or 0, which indicates a node can be part of a single community or none. But in

case of overlapping communities a node may belong to more than one community.

So δic needs to be evaluated in a way so that it can measure how much fraction

of node i is dedicated to community c. Recently few modularity measures are

proposed which takes this overlapping case into consideration [2, 15–17, 20, 33].

2.11.2 Modularity Measure by Nepsuz et al.

Modularity measure proposed by Nepsuz et al. [13] generalizes the concept of

Newman and Girvan for overlapping communities by proposing a fuzzy modularity

measure, where a node can be member of several communities. This type of

assignment of nodes are called fuzzy assignment. If a node is member of more

than one community, then it is distributed among those communities.

In this type of assignment, each node has a total membership degree of 1. If

a node belongs to a single community, it’s membership for that community is 1

and if it belongs to more than one community, it’s membership value is divided

among those communities. Maximum membership value of a particular node

to a community can be 1, if it belongs to only that community and minimum

membership value to a community can be 0, if it is not at all a part of that

community. If a node belong to more than one community, then it will be having

membership values between 1 and 0 to those communities it belongs to. If αic

represents the membership value of node i to community c, then constraints for

αic can be:

0 ≤ αic ≤ 1, ∀c ∈ C, i ∈ V (2.6)
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and
∑

c∈C

αic = 1 (2.7)

For disjoint community structure, value of αic will be 0 or 1. So this αic

is counter part of δic in Eq. (2.5) for overlapping community structure, which

indicates that how much fraction of node i is included in community c. So the

modularity for overlapping community structure is evaluated as:

Q =
1

2m

∑

c∈C

∑

ij

(

Aij −
didj
2m

)

αicαjc (2.8)

The idea proposed by Nepsuz et al. [13] to calculate αic is to divide the member-

ship values of a node equally among communities the node is part of, independently

of the underlying network as per following equation

αic =
1

qi
(2.9)

where, qi denotes the number of communities, node i is associated with.

2.11.3 Modularity Measure by Chen et al.

One more approach is proposed by Chen et al. [16] to compute the membership

value αic. In this approach, connections within the communities i.e., between

community members and connections between the communities are also considered

to compute αic which is calculated as,

αic =
kic

∑

c∈C kic
(2.10)

where, kic =
∑

j∈cAij and Aij is the value in adjacency matrix corresponding to

node i and j. Modularity is calculated using Eq. (2.8) where αic ic computed using

Eq. (2.10).

2.11.4 Modularity by Shen et al.

An approach to calculate αic is proposed by Shen et al. [2]. They have considered

maximal cliques present in the network to compute αic. Since maximal cliques
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are highly connected, if two community shares a maximal clique then they must

represent one community. So it is assumed that each and every maximal clique

is part of only one community. Here αic is calculated considering the maximal

cliques as follows,

αic =
1

αi

∑

j∈V

Oc
vw

Ovw
Aij (2.11)

with,

αi =
∑

c∈C

∑

j∈V

Oc
vw

Ovw
Aij (2.12)

where, Ovw denotes total number of maximal cliques containing edge (i, j) and

Oc
vw denotes number of maximal cliques present within the community c and also

contains edge (i, j). Aij is adjacency matrix value. The term αi is used for the

normalization purpose, so that αic satisfies the constraints described in Eq. (2.6)

and Eq. (2.7)

2.11.5 Parition Density by Ahn et al.

Another modularity measure for overlapping communities has been recommended

by Ahn et al. [15]. It is founded on link density of the communities. A network

consisting m links (edges), n nodes with a cover, C consisting of |C| communities

is division or partition of network’s links into |C| groups. Link or partition density

of community c is calculated as:

Dc =
lc − (nc − 1)

nc(nc − 1)/2− (nc − 1)
(2.13)

where lc and nc denotes number of nodes and edges within the community c

respectively.

The link or partition density, D for the entire network is calculated as average

of all Dc, weighted by the fraction of edges inside the communities as

D =
∑

c∈C

lc
m
Dc (2.14)
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2.11.6 Modularity by Lazar et al.

One more overlapping modularity measure has been proposed by Lazar et al. [17].

According to them in a well structured cover, members of a community should

dedicate most of their links to the community they are part of instead of dedicating

more of it’s links to other communities they are not part of [17]. And communities

are expected to be dense i.e., they should have more connections within themselves

than between themselves. [11, 17]. So necessary conditions of a good community

structure are following:

1. Links of a node must primarily go inward to the community, it is part of.

2. Communities need to be dense.

The first condition tells how excusable it is to assign the node i(∈ c) to the

community c. It is the difference between the edges going inward to the community

and the edges going outward from the community, associated with node i divided

by the node degree, di. So every node i contributes to the community c with which

it is associated by following value:

∑

j∈c,i 6=j Aij −
∑

j /∈c Aij

di
(2.15)

where, Aij denotes the adjacency matrix value. An overlapped node contribute

with positive values to more than one communities. So because of overlapping

areas the whole network’s modularity value increases [17].

For the second condition; communities need to be dense, density of each com-

munity or module is interpreted as lc

(nc

2
)
. Where, lc is number of edges and nc is

number of nodes within the community c. So
(

nc

2

)

indicates maximum number of

edges, possible with nc nodes.

To avoid the problem of resulting cover with only a few communities with high

modularity values, one more criteria has been added. The criteria is that each

and every node must belong to at least one community. To fulfill this criteria all

left-out nodes together are considered as a separate community at the end [17].
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In case of overlapping cover, nodes may belong to multiple communities. So

Eq. (2.15) need to be divided by the number of communities node i is associated

with, i.e., qi [17]. So, the modularity of a community, c is measured by the average

of Eq. (2.15) over the community members, multiplied by the link density inside

c as given in equation below:

Qc =

[

1

nc

∑

i∈c

∑

j∈cAij −
∑

j /∈cAij

di · qi

]

lc
(

nc

2

) (2.16)

The overall modularity of a cover is the average of Qc over all the communities

in the cover as given by Eq. (2.17). Where |C| is number of communities consisted

in cover C.

Q =
1

|C|

∑

c∈C

Qc (2.17)

2.11.7 Modified Version of Lazar et al.

The modularity measure proposed by Lazar et al. described above has a draw-

back which is eliminated by Toth et al. [20] by proposing a slight modification of

the above approach. The drawback is that it does not consider the size of the

communities. All communities are treated equally irrespective of their different

sizes. This may create problem when a huge size community rises propagating the

entire network. The individual modularity for the huge size community given in

Eq. (2.16) will be surely low, as the link density will not be higher than the overall

link density in the network [20]. But modularity value should not be low because

of the less contribution from the huge sized community irrespective of presence

of few small good quality communities. To prevent this another version of Q in

Eq. (2.17) is proposed by Toth et al. [20]. Rather than treating all communities

equally, they are weighted by the fraction of links in the community, as given by:

Q̂ =
∑

c∈C

lc
m
Qc (2.18)
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2.12 Summary

In this chapter few concepts related to community detection have been discussed.

These concepts have been used throughout the thesis. Overlapping modularity

measures addressed here are used rigorously to evaluate the quality of community

structure or cover. Considered overlapping modularity measures are summarized

in Table 2.1 with the abbreviation used in later chapters.

Table 2.1: Overlapping Modularity Measures Summarized

NP Modularity proposed by nepsuz et al. [13] given in Eq. (2.8), where mem-
bership value, αic is assessed according to Eq. (2.9)

CHN Modularity by chen et al. [16] given in Eq. (2.8). αic is computed using
Eq. (2.10)

SHN Modularity proposed by shen et al. [2] in Eq. (2.8). Here αic is computed
using Eq. (2.11)

AHN partition density proposed by ahn et al. [15] given in Eq. (2.14)
LZR overlapping modularity measure proposed by Lazar et al. [17] given in

Eq. (2.17)
MLZR Modularity proposed by Lazar et al. [17] and modified by Toth et al. [20]

given in Eq. (2.18)
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Chapter 3

Overlapping Community
Detection Based on Fuzzy
Assignment of Nodes

3.1 Introduction

In general, communities can be divided into two types based on the assignments

of nodes into communities. Assignments of nodes can be crisp (non-fuzzy) assign-

ment or fuzzy assignment [14]. In case of crisp assignment, binary relationship is

being held between a node and a community. A node can belong to at-most 1

community and at-least 0 community (none). But in case of fuzzy assignment, a

node may belong to more than one community. A node associated with a commu-

nity by some factor. Type of community structure where the assignment of nodes

is fuzzy is known as overlapping community structure.

Members in social network are usually part of multiple communities. For

example a person is supposed to have connections to several communities like

his/her family, friends, office colleagues etc. So in social network an individual may

belong to unlimited number of communities as a person can simultaneously be a

member of as many groups as he/she wants. So when considering social networks,

attention should be given to overlapping community detection algorithms which

discover a set of clusters that are not required to be disjoint.

Clique percolation method (CPM) is one of the first and most commonly used

algorithm for overlapping community detection. This is a simple and efficient
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algorithm which has been used often in this area. But this algorithm suffers from

a disadvantage. In this work a new approach is proposed which extends CPM to

cover it’s disadvantage.

3.2 Research background

In this section, concepts related to the proposed work are described.

3.2.1 Clique and k-clique

Clique in a graph is a subset of nodes where each pair of node is connected through

an edge, that is a complete sub-graph. Finding all cliques with a given size in a

graph, is an NP-hard problem [34].

The notation, k-clique used in the community detection technique is completely

different from the k-distance clique in graph theory. Here k-clique indicates size

of the clique i.e., the clique consist of k nodes e.g. a 3-clique indicate a complete

sub-graphs having 3 nodes [34].

Figure 3.1 shows an example network having 3-clique and 4-clique. Six 3-cliques

are (1, 2, 3), (1, 2, 8), (2, 4, 5), (2, 4, 6), (2, 5, 6) and (4, 5, 6) and one 4-clique

is (2, 4, 5, 6).

1 2

3

4

5

6

7

8

Figure 3.1: An example network
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3.2.2 Clique Percolation Method (CPM)

CPM is a clique based overlapping community detection algorithm used mostly in

this field. [11].

As the connection between the nodes within the community is dense, it is

obvious that edges within a community form cliques (complete subgraph) due to

their high density. But it is unlikely that edges between communities i.e., inter-

community edges form cliques. The assumption based on which clique percolation

method works is that a community comprises of overlapping sets of fully connected

subgraphs. So this algorithm detect communities by searching for adjacent cliques

[11]. It begins by exploring all the k-cliques (clique of size k) in the network. When

all the k-cliques have been found a new graph commonly referred as clique-graph

is constructed where each vertex represents a k-clique. Two nodes in this clique-

graph is connected or adjacent if they share (k − 1) members. Each connected

component in the clique-graph represents a community [11]. The overall process

of the approach is described below in Algorithm 1.

Algorithm 1 Clique Percolation Method

Input: The network, G and the clique size, k
Output: Community structure, C

Step 1: All k-cliques present in the network G are identified.

Step 2: A new network, referred as clique-graph, GC is formed where each
node represents an identified clique and two nodes (clique) in the network, GC

are connected by an edge, if they share k − 1 members.

Step 3: Connected components in GC are identified.

Step 4: Each connected component in GC represents a community. Set of
communities forms the identified community structure for the network, G.

For example, the network shown in Figure 3.1 have six 3-cliques which repre-

sents individual node in clique graph. Six cliques are,

a:(1, 2, 3); b:(1, 2, 8); c:(2, 4, 5); d:(2, 4, 6); e:(2, 5, 6); f :(4, 5, 6)
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c e

f d

a

b

Figure 3.2: Corresponding Clique Graph of example network

If two cliques share minimum of 2 nodes (as k=3 here) then they are connected

by an edge. Clique a and b share two nodes(node 1 and 2). So these two clique

nodes will be connected through an edge. In the same way other cliques also make

connection with each other to form the clique graph, GC as shown in Figure 3.2.

Connected components in GC are (a, b) and (c, d, e, f). Connected components

represent communities. So, in this case two connected components correspond to

two communities which are,

c1 : (1, 2, 3, 8)

c2 : (2, 4, 5, 6)

The community structure or cover is C = {c1, c2} and node 2 is overlapped

between these two communities. Node 7 is not included to any community as it

is not a part of any 3-cliques.

3.2.3 Community Similarity

Community similarity defines how much similar are two communities. There are

various ways to measure similarity between two entities. In this paper Jaccard

index has been considered as similarity measure [32]. If ci and cj are two commu-

nities in community structure C then similarity between these two communities

is defined as,

s =
|ci ∩ cj |

|ci ∩ cj |+|ci − cj |+|cj − ci|
(3.1)

|ci ∩ cj | indicate number of common members i.e., members present in both the

communities. |ci− cj | and |cj − ci| indicate the numbers of members present only

in one or the other community.
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3.2.4 Belonging Coefficient

This measure defines how strongly a node is associated with a community. For a

community c and a node i, belonging coefficient is measured as

B(i, c) =

∑

i∈c Aij

ki
(3.2)

with constraint,

0 ≤ B(i, c) ≤ 1

Where, ki is defined as,

ki =
∑

c∈C

∑

j∈c(v)

Aij (3.3)

Aij is appropriate element of adjacency matrix. If all neighbor nodes of node

i are inside the same community c, then B(i, c) = 1 and if none of it’s neighbor is

included in the community c, then B(i, c) = 0.

For example, in Figure 3.3, three communities are (1, 2, 3, 4), (7, 8, 9, 14) and

(11, 12, 13, 15) as represented in different colors. Node 6 has one one neighbor

node in two communities. So it is having belonging coefficient 0.5 to both the

communities, (1, 2, 3, 4) and (7, 8, 9, 14). Accordingly node 5 has belonging

coefficient 1 to communities (1, 2, 3, 4). Node 10 has belonging coefficient 0.5, 0.25

and 0.25 to community (1, 2, 3, 4), (7, 8, 9, 14) and (11, 12, 13, 15) respectively.

3.3 Proposed Method: Extended Clique Perco-

lation Method (ECPM)

The k-clique method only considers the fully connected subgraphs of size k. It may

happen that a node is associated to a community by some edges, but it does not

form any clique of size k. So CPM algorithm leads to a community structure which

may not include many member of the network, though they are linked with some

communities. The proposed approach aims to cover all the connected members of

the network by including them to at least one community.

The approach is based on fuzzy assignments of nodes. A node can take part

in multiple communities and is associated with each community by some fraction.

23



3.3 Proposed Method: Extended Clique Percolation Method (ECPM)
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Figure 3.3: An example of network showing three initial communities detected by
CPM with k=4. Communities are represented by different colors.

This fraction is the belonging coefficient. The idea is a node can participate in

several communities and is associated with each communities with some value. It

is assumed that each node can have maximum attachment value of 1 and mini-

mum attachment value of 0. And it can be attached with a community with an

attachment value between 0 to 1. If the node is not part of any community then

attachment values of this node to all the communities is 0. If the node is part

of few communities then sum of all the attachment values need to be 1. So if

there are two communities in a cover and a node is part of both the communities

then, a node can have attachment values to two communities as 0.2 and 0.8 as

(0.8+0.2=1) but can not be 0.3 and 0.8 (as 0.3+0.8 6= 1). Here this attachment

value is described as belonging coefficient. So one more constraint for belonging

coefficient is

∑

c∈C

B(i, c) = 1 (3.4)

where c indicates the communities in cover C and i indicate a particular node.
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The method proposed here comprises of three major components which are,

a. Finding the initial community structure: The initial communities are

detected for networks using CPM for the given value of k, the clique size.

b. Updating the initial communities: If initial community structure includes

all the members in the network into some community then there is no need of

this step. When some nodes are not included in any of the initial communities

because of not forming a clique of size k in the network, this step includes

those left out nodes into at least one community. Belonging coefficient is used

to decide the deserving membership of left out nodes.

c. Merging similar communities: When all nodes are included into some

community, it may be possible that two or more communities are very much

similar. If two or more communities are similar more than a threshold then

these communities are merged into a single one. Similarity is measured using

Eq. 3.1.

The overall algorithm has been described in Algorithm 2 where, G is the con-

sidered network, k is the clique-size and t is the threshold value for community

similarity.
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Algorithm 2 Extended Clique Percolation Method

Require: The network G, the clique size, k and the similarity threshold, t
Ensure: Community structure or cover, C
1: C ←Compute initial cover using CPM for given k.
2: |C|←Number of initial communities.
3: {Updating communities by adding left out nodes}
4: Lf ← Compute list of nodes which does not belong to any initial community.
5: while Lf 6= ∅ do
6: for each i in Lf do
7: ∀c ∈ C, Find belonging coefficient , B(i, c).
8: Find the maximum B(i, c).
9: if maximum B(i, c) = 0 then
10: N = 0
11: else
12: N ← Count the number of B(i, c) with maximum value.
13: end if
14: if N = 1 then
15: Include node, i to the community, c for which B(i, c) is maximum and

remove i from Lf . {both Lf and C is updated.}
16: else if N > 1 then
17: Include i to all those communities for which B(i, c) is maximum and

remove i from Lf . {i is overlapped between multiple communities.}
18: else
19: do nothing
20: end if
21: end for
22: end while
23: {Merging of similar communities}
24: for each two communities ∈ C do
25: Find similarity.
26: if similarity ≥ threshold, t then
27: Merge these two communities and update the cover.
28: end if
29: end for
30: return C

For example, in the network shown in Figure 3.3, three communities found

initially by CPM with k = 4 are

c1 : (1, 2, 3, 4)

c2 : (7, 8, 9, 14)

c3 : (11, 12, 13, 15)
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with Cover, C = {c1, c2, c3}

Left out nodes are Lf = (5, 6, 10, 16, 17, 18)

Table 3.1: Belonging Coefficients to initial communities

Node B(i, c)
c1 c2 c3

5 1 0 0
6 0.5 0.5 0
10 0.5 0.25 0.25
16 0 0 0
17 0 0 0
18 0.33 0.33 0.33

Belonging coefficient of nodes in Lf to three initial communities are given

in Table 3.1. Node 5 having maximum B(5, c) with c = c1 will be included to

community c1. Node 6 has B(6, c1) = 0.5 and as well as B(6, c2) = 0.5. So node 6

will be included to both c1 and c2. Node 10 shares it’s maximum to community c1,

B(10, c1) = 0.5. So node 10 is included to c1. In the same way node 18 is included

to all the three communities c1, c2 and c3 as all three communities having same

belonging coefficient of 0.33. Node 16 and 17 are not included to any community

in this step as they are having belonging coefficient 0 to all the three communities.

In next step the communities are updated as

c′1 : (1, 2, 3, 4, 5, 6, 10, 18)

c′2 : (6, 7, 8, 9, 14, 18)

c′3 : (11, 12, 13, 15, 18)

and left out nodes are Lf = (16, 17)

Table 3.2: Belonging Coefficients to updated communities

Node B(i, c)
c′1 c′2 c′3

16 0.5 0.5 0
17 1 0 0

In next step again, belonging coefficients are computed for nodes ∈ Lf as given

in Table 3.2. So node 16 is included to both community c′1 and c′2 and node 17 is
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included to community c′1 resulting communities

c′′1 : (1, 2, 3, 4, 5, 6, 10, 16, 17, 18)

c′′2 : (6, 7, 8, 9, 14, 16, 18)

c′′3 : (11, 12, 13, 15, 18)

The final cover, C = {c′′1, c
′′
2, c

′′
3}, with overlapped nodes as 6, 16 and 18. As all

the nodes are covered the algorithm stops here. This algorithm ensures that all

connected nodes will be included to at least one community.

3.4 Implementation

3.4.1 Preprocessing of Network

In any real-world network there may have some isolated nodes that is members

having no connection. Surely these nodes are not going to be part of any commu-

nity as they are not connected to any one else in the network. In the proposed

method all left out nodes have been considered to include in community struc-

ture. For isolated nodes belonging coefficient will always be zero and they will

not be included to any community. The algorithm described in Algorithm 2 will

stop only when there will be no left out nodes. The algorithm will never stop

if isolated nodes are considered as these nodes will always be in left out list. So

isolated nodes are removed from the network before searching for communities in

the network.

3.4.2 Implementation

Communities are detected for networks using the proposed approach for different

value of k, the clique size. Minimum permitted value for k is 3. In literature it is

found that generally value of k ranges from 3 to 6 [5, 20]. Here k value is taken

as 3 and 4. Here threshold value, t is taken as 0.8 that is two communities are

similar to the extent of 80% will be merged.

NetworkX package and Pyplot library of Python language has been used for

network manipulation. implementation of algorithms and visualization.
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3.5 Result and Analysis

The method, proposed in this paper has been experimented on three classic real

world networks which are used as benchmark networks for community detection

[16]. Details of the experimental dataset is given in section 1.4.

3.5.1 Zachary’s Karate Club Network

The method proposed in this chapter is evaluated on this network. Initially with

k = 4, CPM detects three communities which are (1, 2, 3, 4, 8, 14), (24, 30, 33,

34) and (9, 31, 33, 34) as represented in Figure 3.5 with different colors. Node

33 and 34 are overlapped between last two communities. Total 22 nodes are

not included in any community, though they are connected to the network i.e.,

their friends are part of some community. Proposed method includes these nodes

into initial communities on the basis of their belonging coefficient as discussed in

Algorithm 2. The updated communities are (1, 2, 3, 4, 8, 14, 5, 6, 7, 10, 11, 12,

13, 18, 20, 22, 17), (24, 33, 34, 30, 10, 15, 16, 19, 21, 23, 26, 27, 28, 29, 32, 25)

and (33, 34, 9, 31, 10, 15, 16, 19, 21, 23, 29). Here it can be observed that second

and third detected communities are very much similar as they share most of the

members. Similarity between these two communities is found as 0.81. So these

two communities are integrated into a single community as (9, 10, 15, 16, 19, 21,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34). Finally according to the proposed

method, two communities are found in the network which are (1, 2, 3, 4, 8, 14, 5,

6, 7, 10, 11, 12, 13, 18, 20, 22, 17) and (9, 10, 15, 16, 19, 21, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34). This indicates the actual partition in the network [25].

Details of community structure for both CPM and ECPM is given in Table 3.3.

The cover detected by ECPM is presented in Figure 3.6.

With k = 3, three communities have been found initially. Node 1 and 32 are

found as overlapped nodes. This community structure does not include node 10

and 12 into any community. Proposed method covers these two nodes by including

node 10 and 12 to initial communities. Node 10 included as overlapped between
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3.5 Result and Analysis

two communities as it shares one connection to both the communities. Proposed

method results three communities with three overlapped nodes. Detailed outcome

of both the algorithm, CPM and ECPM is given in Table 3.3.

Table 3.3: Community Structure Details of Karate Club Network

k CN(%) UNC |C| OV
CPM ECPM CPM ECPM CPM ECPM CPM ECPM

3 94 % 100 % 2 0 3 3 2 3
4 35 % 100 % 22 0 3 2 2 1
CN: % of nodes covered; UNC: Number of nodes uncovered; |C|: Number of communities

OV: Number of overlapped nodes; ECPM: Proposed algorithm (Extended CPM)

The details of community structures detected by CPM and ECPM for Karate

network for k value 3 and 4 are summarized and compared in Table 3.3. It is visible

that proposed method ECPM covers all nodes in connected network resulting 100%

node coverage i.e 0 uncovered node.
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Figure 3.4: Modularity values for community structures detected using CPM and
ECPM in karate club network.

As modularity defines the quality of the detected community structure, mod-

ularity is measured for each community structures. As there are no universal

modularity measure, more than one overlapping modularity measures are consid-

ered to assess the quality of the covers. Here six overlapping modularity measures

have been considered. For both k = 3 and k = 4, overlapping modularity measures

have been computed for detected community structures using CPM and ECPM.

Modularity values are shown in Figure 3.4. Meaning of NP, CHN, SHN, AHN,

LZR, MLZR is defined in Table 2.1. For both the cases with k value as 3 and 4,
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modularity values for covers, detected using ECPM are greater than the modu-

larity values for CPM cover. It indicates ECPM results better quality detection.
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Figure 3.5: Communities detected using CPM in Karate Club Network with k = 4.
Node colored white are uncovered that is not part of any community. Node 33
and 34 are overlapped.
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Figure 3.6: Communities detected using proposed method in Karate Club Network
with k = 4. Node 10 is overlapped between two communities.
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3.5.2 Dolphin Social Network

The method proposed in this paper is also evaluated on dolphin network. With

k = 4, initially CPM detects four non-overlapping communities which are (0, 10,

42, 47), (33, 34, 37, 38, 40, 43, 14, 16, 50), (5, 6, 9, 13, 17, 54, 41, 57), (45, 15,

18, 51, 21, 24, 29). Only 45% nodes are covered in this initial cover. Total of

34 nodes are not covered, which are covered when proposed method is applied

resulting 100% coverage. Proposed method detects four overlapping communities

with three overlapped nodes. Identified communities are (33, 34, 37, 38, 40, 43,

14, 16, 50, 3, 7, 12, 20, 46, 49, 52, 53, 58, 44, 28, 61, 8, 36), (5, 6, 9, 13, 17, 54, 41,

57, 1, 7, 22, 25, 31, 32, 39, 48, 56, 60, 19, 26, 28, 27, 30), (45, 15, 18, 51, 21, 24,

29, 4, 11, 23, 35, 55, 59) and (0, 10, 42, 47, 2, 28, 30) and overlapped nodes are

28, 30 and 7. Details of community structure for both CPM and ECPM is given

in Table 3.4.

For k = 3, 74% nodes are covered using CPM with 16 uncovered nodes, six

overlapped nodes and four communities. Where, proposed method gives 100%

coverage of node with four communities having nine overlapped nodes. Table 3.4

summarizes the outcomes of CPM and ECPM for dolphins network.

Table 3.4: Community Structure Details of Dolphins Social Network

k CN(%) UNC |C| OV
CPM ECPM CPM ECPM CPM ECPM CPM ECPM

3 74 % 100 % 16 0 4 4 6 9
4 45 % 100 % 34 0 4 4 0 3
CN: % of nodes covered; UNC: Number of nodes uncovered; |C|: Number of communities

OV: Number of overlapped nodes; ECPM: Proposed algorithm (Extended CPM)

Modularity measures for both k = 3 and k = 4, have been computed for

detected community structures using CPM and ECPM. Modularity values are

shown in Figure 3.7. Meaning of NP, CHN, SHN, AHN, LZR, MLZR is defined in

Table 2.1. For the covers with k = 3, ECPM performs better than CPM in case

of modularity NP, CHN, SHN but CPM performs better in other three cases. For

the covers with k = 4, ECPM gives better modularity value for all the measures
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Figure 3.7: Modularity values for community structures detected using CPM and
ECPM in dolphin network.

except AHN. So if considered overall, ECPM gives greater modularity values than

CPM, which indicates ECPM results better quality detection.

3.5.3 Les-Miserable Network

This is another benchmark network on which proposed method is tested. With

k = 4, CPM identifies 4 overlapping communities with 4 overlapped nodes. But

it covers only 74% nodes with 20 uncovered nodes. ECPM effectively place 20

uncovered nodes into initial communities resulting 100% coverage. ECPM includes

some node as overlapped node resulting total 11 overlapped nodes. Again for k = 3

also CPM is able to cover only 62% nodes with total 29 uncovered nodes. ECPM

includes all uncover nodes to initial communities ensuring 100% coverage. The

detail comparison of CPM and ECPM for both k = 3 and k = 4 is given in

Table 3.5.

Table 3.5: Community Structure Details of Les-Miserable Network

k CN(%) UNC |C| OV
CPM ECPM CPM ECPM CPM ECPM CPM ECPM

3 74 % 100 % 20 0 4 4 4 11
4 62 % 100 % 29 0 4 4 3 8
CN: % of nodes covered; UNC: Number of nodes uncovered; |C|: Number of communities

OV: Number of overlapped nodes; ECPM: Proposed algorithm (Extended CPM)

Modularity values for community structures detected by CPM and ECPM for

both k = 3 and k = 4 is also computed. Modularity value for different modularity

measures for covers of Les-Miserable network, detected by CPM and ECPM is
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compared in Figure 3.8. Covers detected by ECPM gives better modularity values

which indicates better detection.
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Figure 3.8: Modularity values for community structures detected using CPM and
ECPM in Les-Miserable network.

3.6 Summary

In this chapter a new approach to detect overlapping communities has been pro-

posed which extends the existing clique percolation method algorithm. The pro-

posed algorithm includes all connected members of the network to at least one

community and still maintain the properties of community. Three classic real

world networks are tested by the proposed method. The proposed method ef-

ficiently detects overlapping communities and assures 100% node coverage for

connected networks. The quality of the community structures is evaluated us-

ing modularity measures. For Karate club network proposed method gives the

original partition with increased modularity where detection using CPM gives

lower modularity with 22 uncovered nodes. Other two tested network; Dolphin

network and Les-Miserable network also gives comparable results. It is observed

that based on the modularity measure and node coverage, proposed method gives

better community structure compared to existing Clique Percolation Method.
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Chapter 4

Overlapping Community
Detection Using Genetic
Algorithm

4.1 Introduction

In this chapter a different approach has been used to detect overlapping commu-

nities. The method is based on genetic algorithm which is completely different

from the graph based approaches used in previous chapter. Conventional genetic

algorithm based approaches work by node clustering but those lead to disjoint

community structure. The approach used here is based on edge clustering. Each

edge represents an unique relationship between two nodes. Edge clustering will

discover similar edges. So nodes will automatically belong to multiple communities

resulting overlapping communities.

4.2 Research Background

4.2.1 Adjacent Edge

In undirected graph two edges are adjacent if they share one node. For example

adjacent edges of edge (1,2) in Figure 4.1 are (1,3) and (2,3).
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Figure 4.1: An example graph, G

4.2.2 Line Graph

Line graph, L(G) corresponding to an undirected graph G is another graph where

each node in line graph, L(G) represents an edge of G, and two nodes of L(G)

are adjacent if their corresponding edges share a node in G. That is in line graph,

links represent the adjacent edges in original graph. The original network with all

the information content can be recovered easily from the line graph.

For example, an example graph, G is shown in Figure 4.1 where edge labels

indicates the edge numbers. The line graph, L(G) of G is shown in Figure 4.2.

Line graph, L(G) contains six nodes corresponding to six edges in original graph,

G. In the line graph, two nodes are connected by an edge if they share a node in

graph, G. For example, there is an edge between the nodes in L(G) labeled (3, 4)

and (4, 5) because they share node 4 in G.

1,2

2,3

1,3

3,4

3,5

4,5

Figure 4.2: Line Graph, L(G) corresponding to graph, G
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4.3 Genetic Algorithm for Community Detec-

tion

Genetic algorithm is an artificial intelligence technique generally used to optimiza-

tion and search problems. It is derived from evolutionary biology which generates

exact or approximate solutions to optimization problems. Genetic algorithm uses

the techniques which are inspired by natural evolution, such as inheritance, mu-

tation, selection, and crossover.

To detect overlapping communities effectively by using genetic algorithm, here

a special kind genetic representation has been used. The representation include

a specific encoding schema to encode the edges of the network and corresponding

decoding schema. This encoding and decoding schema reduces the search space

effectively and helps to find the solution effectively.

4.3.1 Objective Function

Genetic algorithm solves an optimization problem. In case of community detec-

tion an optimum solution gives highest modularity value. So here the problem

is to maximize the modularity value. As discussed in section 2.11 there are few

overlapping modularity measures. These modularity measures can be used as ob-

jective function. Here modularity measure be Chen et al. discussed in section

2.11.3 and summarized in Table 2.1 has been used as objective function.

4.3.2 Genetic Representation

In this section, the genetic representation schema used here has been discussed.

The schema includes encoding of edges and decoding them to identify the com-

munities.

4.3.2.1 Encoding Phase

Conventional genetic algorithm representations for community detection is node-

based. Here unlike node-based genotype edge-based representation has been used.
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4.3 Genetic Algorithm for Community Detection

In this representation, each individual of the population comprises of m genes

where, m is the number of edges present in the network. An individual is repre-

sented as {g0, g1,...,gi,...,gm−1}. Where i identify the edge number. Value assigned

to gi is restricted to the adjacent edges of ith edge. To obtain edge-based genotype,

line graph is used where each node represents an edge.

For example, for the graph G in Figure4.1 and it’s corresponding line graph

L(G) in Figure 4.2, one possible individual can be

Position 1 2 3 4 5 6

Genotype 2 3 1 6 4 5

where position indicates the edge number. Edges are numbered in the Figure 4.1.

Edge (1,2) is edge 1, edge (2,3) is edge 2 and so on. For i = 1 that is for edge 1

possible value for gi can be 2(edge 2 that is (2,3)) and 3(edge 3 that is (1,3)). It can

be seen from the line graph that possible value for edge (1,2) is the nodes directly

connected to it in line graph. In above individual, for edge 1(edge (1,2)) gi is taken

as 2. Accordingly for other edges value of gi is assigned to build an individual. So

in this encoding schema edges are encoded unlike nodes in node-based schema.

4.3.2.2 Decoding Phase

In the decoding phase an genotype is transfered to partition consist of link com-

munities. In this phase all components corresponding to the genotype are found.

The nodes participating to the same component represents one community.

Position 1 2 3 4 5 6

Genotype 2 3 1 6 4 5

In the above individual, g1 = 2 indicates edge 1 is connected with edge 2. g2 = 3

indicates edge 2 is connected with edge 3. g3 = 1 indicate edge 3 is connected

with edge 1. Accordingly edge 4 connected with edge 6, edge 5 connected with

edge 4 and edge 6 connected with edge 5. This results two components which are

(1, 2, 3) and (4, 5, 6). For the first component participating nodes are 1, 2 and 3

and for the second component participating nodes are 3, 4 and 5. This results two

communities which are (1, 2, 3) and (3, 4, 5) and node 3 is an overlapped node.
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The components and the community structure corresponding to this individual is

shown in Figure 4.3 and Figure 4.4 respectively.

1,2

2,3

1,3

3,4

3,5

4,5

Component 1 Component 2

Figure 4.3: Components to corresponding individual

1

2

3

4

5

Figure 4.4: Communities in Graph G

4.3.3 Operators

In this work networks are considered as simple undirected connected graph. Ac-

cording to the genetic representation, the operators are as follows

4.3.3.1 Initialization

The initialization process takes in account the effective connections of the nodes

in the social network. Generally initial generation of individual is done by ran-

dom generation. But in this case random generation of individuals may generate

components which are not at all connected in the original graph. As discussed,

the value gi = j in the ith position indicates edge i and j are adjacent to each
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other. A randomly generated individual may produce the value of gi = j in the

ith position, irrespective of i and j are not adjacent.

To avoid this problem, once an individual is generated randomly, it is repaired.

A check is done to verify whether there is a connection between i and gi in the

line graph, that is i and gi are adjacent links in original graph. If not then value

of gi is substituted with one of the neighbors of i. Individual generated by this

procedure is a safe individual as it will not consist of connections which does not

exist in the original network. Using of safe individual reduces the search space.

4.3.3.2 Uniform Crossover

Uniform crossover has been used. Because of the repairing step each individual

in the population is safe that is if an ith gene contain value j then ith and jth

edges are adjacent or inversely (i, j) link exist in link-graph. Thus crossover is

performed with two selected safe parents. A random binary vector with same

length as the individual is generated. Uniform crossover then exchanges the genes

of two parents where the vector value is 0 to create two safe children. At each

position, i of the individual, both the child contains the value of gene, gi = j from

either the first parent or the second. Thus adjacency between edge (i, j) exists

which implies two safe children is generated from two safe parents.

Position 1 2 3 4 5 6

Parent 1 3 1 4 5 6 3

Parent 2 2 3 1 6 4 5

Vector 1 0 1 0 0 1

Child 1 2 1 1 5 6 5

Child 2 3 3 4 6 4 3
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4.3.3.3 Mutation

The mutation operator randomly change the value of gi. But again the value of

gi is restricted to the neighbors of i in link-graph that is only the adjacency edges

of edge i is allowed. For mutation, randomly a gene is selected and it’s value

is replaced by one of permitted values. This repaired mutation guarantees the

generation of a safe mutated child.

4.3.4 Algorithmic Description

The algorithm works by generating a population which is initialized at random and

then repairing each individual to produce safe-individual. After this the fitness

for each individual is evaluated. The fitness is evaluated on the original graph, G,

not on the line graph, L(G). Thus each individual translated into an overlapping

division of G and then fitness value is computed using the objective function. The

modularity value used as objective function is need to be maximized. Variation

operators have been used to optimize the modularity value, used as objective

function. Overall framework of the process is defined in Algorithm 3.

Algorithm 3 Framework of GA Based Overlapping Community Detection

1: Compute the line graph L(G) associated with G.
2: Create an initial population of random individuals. Where length of each

individual equals the number of edges in G.
3: while generation number < iterations required do
4: for each individual I = {g1, g2..., gi, ..., gm} of the population, components

are identified and corresponding node communities are found.
5: evaluate the fitness of individuals by applying fitness function on the com-

munities for the individual.
6: create a new population of individuals by applying the GA operators
7: end while
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4.4 Result and Analysis

Implementation of the above algorithm has been done in Python language. Net-

workX package has been used for graph manipulation. Networks are considered

as simple, undirected and unweighted. Parameters considered for the genetic al-

gorithm are, crossover rate 0.8, mutation rate 0.2, elite reproduction 10% of the

population size. The population size is taken as 50 and the number of generations

is taken as 60.

4.4.1 Zachary’s Karate Club Network

The GA based algorithm is effective enough to detect overlapping communities.

For karate club network this algorithm identifies two overlapping communities

with six overlapped nodes. Two detected communities are (2, 31, 1, 3, 4, 8, 22,

6, 17, 11, 20, 7, 18, 14, 13, 5, 32, 9, 12) and (24, 30, 9, 34, 20, 26, 28, 25, 32,

3, 33, 19, 10, 29, 21, 14, 15, 23, 16, 31, 27). Six overlapped nodes are 32, 3, 9,

14, 20 and 31. The algorithm detects two communities nearly correct. Though

it identifies several nodes as overlapped nodes than the actual overlapped nodes,

but it correctly discover two partitions. The algorithm results 100% node coverage

i.e., all nodes are part of some community. The detected community structure is

shown in Figure 4.5.

As modularity quantifies the quality of the community structure, various mod-

ularity are measured for the detected cover. Overlapping modularity measures as

summarized in Table 2.1 are evaluated with the detected cover.

Details of the detected community structure and value of different modularity

measures are descried in Table 4.1.

Table 4.1: Community Structure details of Karate Club Network, GA

CN |C| OV NP CHN SHN AHN LZR MLZR
100 % 2 6 0.306 0.331 0.365 0.130 0.154 0.160
CN: % of nodes covered; |C|: Number of communities; OV: Number of overlapped nodes

NP, CHN, SHN, AHN, LZR, MLZR are modularity measures described in Table 2.1
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Figure 4.5: Communities detected using genetic algorithm in Karate Club Net-
work. Red and Yellow colored nodes represent two different community. Nodes
colored in magenta are overlapped nodes

4.4.2 Dolphin Social Network

Dolphin social network, another benchmark network for community detection,

is also tested with the genetic algorithm based overlapping community detection

algorithm. Genetic algorithm based algorithm detect three communities in dolphin

network with twelve overlapped nodes. Various modularity are measured with

detected community structure. Details of detected cover and modularity values

for detected cover are given in Table 4.2. This algorithm covers all nodes for this

networks also.

Table 4.2: Community Structure details of Dolphin Social Network, GA

CN |C| OV NP CHN SHN AHN LZR MLZR
100 % 3 12 0.327 0.354 0.372 0.094 0.043 0.109
CN: % of nodes covered; |C|: Number of communities; OV: Number of overlapped nodes

NP, CHN, SHN, AHN, LZR, MLZR are modularity measures described in Table 2.1

43



4.4 Result and Analysis

4.4.3 Les-Miserable Network

One more benchmark network, Les-Miserable network is also used to evaluate the

algorithm. The algorithm detects eight overlapping communities with thirty five

overlapped nodes. Modularity measures are evaluated with detected cover. Details

of the cover and value of various modularity measures are enlisted in Table 4.3.

Again for this network also node coverage is 100%. This indicate that this GA

based algorithm covers all nodes in the network while finding communities.

Table 4.3: Community Structure details of Les-Miserable Network, GA

CN |C| OV NP CHN SHN AHN LZR MLZR
100 % 8 35 0.229 0.310 0.411 0.282 0.084 0.136
CN: % of nodes covered; |C|: Number of communities; OV: Number of overlapped nodes

NP, CHN, SHN, AHN, LZR, MLZR are modularity measures described in Table 2.1

4.4.4 Comparison with CPM and ECPM

In this section the genetic algorithm based overlapping community detection al-

gorithm is compared with two previously discussed algorithm, Clique Percolation

Method (CPM) and Extended Clique Percolation Method (ECPM).

Algorithms are compared on the basis of modularity measures. As modularity

measure quantify the quality of detected community structure or cover. Maximum

value of modularity for the cover indicates the better community structure. No

modularity measure is proved globally ideal. So quality of the cover should not be

quantified based on a single modularity. Here six overlapping modularity measures

have been considered to evaluate the quality of the covers.

Figure 4.6 shows various modularity measure values for three different covers

in Karate club network detected by CPM, ECPM and GA based algorithm re-

spectively. From the figure it is visible that modularity NP, CHN, SHN and LZR

maximizes for ECPM. CPM produces maximum value only for modularity AHN.

The GA based algorithm gives better modularity value than CPM algorithm for

all cases except AHN. But GA based algorithm does not gives better value than

ECPM. only in case of AHN and MLZR, GA based algorithm outperforms ECPM.
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As in most of the cases ECPM results better modularity value, it can be concluded

that ECPM algorithm gives better results for karate club network.
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Figure 4.6: Comparison of modularity values for community structures detected
using CPM with k = 4, ECPM and GA based Algorithm in karate club network.
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Figure 4.7: Comparison of modularity values for community structures detected
using CPM with k = 4, ECPM and GA based Algorithm in dolphin network.

Figure 4.7 shows various modularity measure values for three different cover

for the Dolphin network. Modularity NP, CHN, SHN, LZR, and MLZR maximizes

for ECPM algorithm. Only modularity AHN does not gives maximum value for
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4.4 Result and Analysis

ECPM. Modulaity AHN gives maximum value for CPM and CPM produces maxi-

mum modularity for one and only AHN. GA based approach performs better than

CPM as it gives better result than CPM in most of the cases. Again for this net-

work also ECPM performs better than both CPM and GA. GA performs better

than CPM but not better than ECPM.

Figure 4.8 shows various modularity measure values for three different cover for

the Les-Miserable network. For modularity measure SHN, GA based algorithm

gives better value and for modularity AHN, it gives better value than ECPM

algorithm though not better than CPM and for CHN it gives better value than

CPM. ECPM algorithm gives better modularity than GA based algorithm for

modularities NP,CHN,LZR,MLZR. So for this network ECPM perform better than

GA based algorithm. Again CPM produces better result with modularity AHN,

LZR, MLZR. ECPM also performs better than CPM in all cases except AHN and

LZR . So if considered overall, again ECPM performs better for this network as

well.
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Figure 4.8: Comparison of modularity values for community structures detected
using CPM with k = 4, ECPM and GA based Algorithm in les-miserable network.
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4.5 Summary

4.5 Summary

In this chapter another approach has been considered to detect overlapping com-

munities. the algorithm is based on genetic algorithm. Encoding and decoding of

network to perform GA operations has been discussed. Three classic real world

networks are tested with the implemented approach. This GA based approach can

detects overlapping communities and assures 100% node coverage for connected

networks. Quality of the community structures are evaluated using modularity

measures. The algorithm performs better than Clique Percolation Method algo-

rithm with respect to both node coverage and modularity. Though the algorithm

does not perform better than ECPM, but still it is effective enough to detect

overlapping communities.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this work overlapping communities are identified in social networks. Two over-

lapping community detection algorithm has been studied. To quantify the dis-

covered community structure various overlapping modularity measure has been

considered. Three classic real world networks are used to test the algorithms.

In the first part of work, a method is proposed which overcomes the poor-

coverage problem of one traditional method, clique percolation method. The

proposed method efficiently detects overlapping communities and assures 100%

node coverage for connected network. It is observed that based on the modularity

measure and node coverage, proposed method gives better community structure

compared to the clique percolation method.

In the second part, another proposed method, genetic algorithm has been used

to detect overlapping communities. From the results it has been observed that this

approach also detects overlapping communities effectively. Though this approach

does not always give better results than previous one (proposed in the first part)

but it also covers all nodes for the connected network.

It can be concluded from the result that the community structure depends

only on the considered network and vary from network to network.
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5.2 Future Work

5.2 Future Work

Overlapping community detection is still a challenge. Though there are several

proposed methods, but most of them take a huge amount of processing time. So

emphasis should be given to effective algorithms which will be able to detect com-

munities in a huge social network in allowable time. In this work only unweighted

and undirected networks has been taken into consideration. In future weighted

and directed networks are needed to be considered for community detection. Now

days almost all social networks are dynamic that is some members are joining and

some are leaving every moment. So it will be great if communities can be detected

in dynamic networks.
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