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1.1 Introduction to Stock Market Prediction 
 
 
Financial Forecasting or specifically Stock Market prediction is one of the hottest fields of 

research lately due to its commercial applications owing to the high stakes and the kinds of 

attractive benefits that it has to offer. Forecasting the price movements in stock markets has been 

a major challenge for common investors, businesses, brokers and speculators. As more and more 

money is being invested the investors get anxious of the future trends of the stock prices in the 

market. The primary area of concern is to determine the appropriate time to buy, hold or sell. In 

their quest to forecast, the investors assume that the future trends in the stock market are based at 

least in part on present and past events and data [1]. However financial time-series is one of the 

most ‘noisiest’ and ‘non-stationary’ signals present and hence very difficult to forecast [2][3]. 

 

The Dow Jones Industrial Average (DJIA) index was launched in 1896 with 12 stocks and is 

now the worlds most often quoted stock exchange index, based on a price-weighted average of 

30 significant companies traded in the New York Stock Exchange (NYSE) and NASDAQ. The 

index gives a general indication of the behavior of the market towards different information. 

Another well known index, considered by researchers for prediction, is the Standard & Poor 

(S&P) 500.  Many researchers in the past have applied various statistical and soft computing 

techniques such as neural networks to predict the movements in these stock indices. Generally 

technical indicators like moving averages and relative strength indices derived from the time 

series of these indices is employed in this regard. 

 

 Financial time-series has high volatility and the time-series changes with time. In 

addition, stock market's movements are affected by many macro-economical factors such as 

political events, firms' policies, general economic conditions, investors' expectations, 

institutional investors' choices, movement of other stock market, psychology of investors, etc [4]. 

Nevertheless there has been a lot of research in the field of stock market prediction across the 

globe on numerous stock exchanges; still it remains to be a big question whether stock markets 

can really be predicted and the numerous challenges that exist in its everyday application on the 

stock floor by the institutional investors to maximize returns. Generally there are three schools of 

thoughts regarding such prediction. The first school believes that no investor can achieve above 
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average trading advantages based on historical and present information. The major theories 

include the Random Walk Hypothesis and the Efficient Market Hypothesis [5] [6]. 

 

 The second view is that of Fundamental Analysis. Analysts undertake in depth studies 

into the various macro-economic factors and look into the financial conditions and results of the 

industry concerned to discover the extent of correlation that may exist with the changes in the 

stock prices.  

 

 Technical Analysis presents the third view on market price prediction. Analysts attempt 

to extract trends in market using past stock prices and volume information. These trends give 

insight into the direction taken by the stock prices which help in prediction. Technical Analysts 

believe that there are recurring patterns in the market behavior, which can be identified and 

predicted. In the process they use number of statistical parameters called Technical Indicators 

and charting patterns from historical data.  

 

 

1.2 Application of Statistical and Soft Computing Techniques to Financial  

Forecasting 
 

As the underlying theory behind all these techniques is totally different they generally give quite 

contradictory results. More importantly, these analytical tools are heavily dependent on human 

expertise and justification in areas like, the location of reversal (or continuation) pattern, market 

pattern, and trend prediction. For such reasons researchers have stressed on developing models 

for accurate prediction based on various statistical and soft computing techniques. 

 

One such statistical technique employed in this regard is the Auto Regressive Integrated Moving 

Average (ARIMA) based model. Different time-series in practice have different frequency 

components. However, there is no systematic approach or a suitable class of models available in 

the literature to accommodate, analyze and forecast time-series with changing frequency 

behavior via a direct method. The virtue of ARIMA (Auto Regressive Integrated Moving 

Average) is well characterized by Vandaele: “… can be viewed as an approach by which time-

series data sifted trough a series of progressively finer sieves…” The aim of sifting some 
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components is to identify so called “white-noise-processes” which has merely stochastic 

influences on the time series. 

 

 The recent advancement in soft computing has given new dimension to the field of 

financial forecasting. Tools based on ANN have increasingly gained popularity due to their 

inherent capabilities to approximate any nonlinear function to a high degree of accuracy. Neural 

networks are less sensitive to error term assumptions and they can tolerate noise, chaotic 

components [7]. Banks and Financial Institutions are investing heavily in development of neural 

network models and have started to deploy it in the financial trading arena. Its ability to 'learn' 

from the past and produce a generalized model to forecast future prices, freedom to incorporate 

fundamental and technical analysis into a forecasting model and ability to adapt according to the 

market conditions are some of the main reasons for its popularity. Radial Basis Function (RBF) 

[8], Recurrent Neural Network (RNN) [9] and Backpropagation in Multilayer Perceptron (MLP) 

are the three most popular Artificial Neural Network (ANN) tool for the task. On top of these, 

evolutionary approaches such as Genetic Algorithm (GA) [10], confluence of statistics and 

ANN, are receiving attention as well.  
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A lot of research has gone into the development of models based on a range of intelligent soft 

computing techniques over the last two decades. Early models employed the Multi Layer 

Perceptron (MLP) architecture using Backpropagation algorithm, while a lot of recent work is 

based on evolutionary optimization techniques such as Genetic Algorithms (GA). This section 

describes briefly some of work that has gone into the field of application of ANN to stock price 

prediction. 

 

In Japan, technology major Fujitsu and investment company, Nikko Securities joined hands to 

develop a stock market prediction system for TOPIX, the Tokyo based stock index, using 

modular neural network architecture [14]. Various economic and technical parameters were 

taken as input to the modular neural network consisting of multiple MLP used in parallel. 

 

A study was done on the effect of change of network parameters of an ANN Backpropagation 

model on the stock price prediction problem [15]. The paper gives insights into the role of the 

learning rate, momentum, activation function and the number of hidden neurons to the 

prediction. 

 

In addition to ANN using Backpropagation, the Probabilistic Neural Network (PNN) has also 

been employed to stock prediction [16]. In their work, the model is used to draw up a 

conservative thirty day stock price prediction of a specific stock: Apple Computers Inc. Due to 

their bulky nature owing to the large training data, the PNN are not popular among forecasters. 

 

In the process lots of newer architectures came to the fore. (Ornes & Sklansky) [17] in their 

paper present a Visual Neural Network (VNN), which combines the ability of  multi expert 

networks to give low prediction error rates with visual explanatory power of nonlinear 

dimensionality reduction. They conclude that the VNN is a powerful means of interactive neural 

network design, which provides both better prediction accuracy and good visual explanatory 

ability.   

 

Another architecture introduced to the prediction problem is the Multi Branch Neural Network 

(MBNN) proposed by (Yamshita, Hirasawa & Hu, 2005) [18] and applied to the TOPIX (Tokyo 
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Stock Exchange). The simulations show that MBNN, based on the concept of Universal 

Learning Networks (ULN), have higher accuracy of prediction than conventional NNs.   

 

In their paper, (Chen, Dong & Zhao, 2005) [19] investigate how the seemingly chaotic behavior 

of stock market could be well represented using Local Linear Wavelet Neural Network 

(LLWNN) technique. They considered the NASDAQ-100 index and S&P CNX NIFTY index 

(India).  The LLWNN is optimized by using Estimation of Distribution Algorithm (EDA). 

Results show that the LLWNN model performs marginally better than conventional NN models. 

Hybrid architectures are also being deployed in recent times. (Raymond Lee, 2004) [20] propose 

a Hybrid Radial Basis Function Recurrent Network (HRBFN) stock prediction system called the 

iJADE stock advisor. The stock advisor was applied to major Hong Kong stocks and produced 

promising results in terms of efficiency, accuracy and mobility.   

 

Another Hybrid AI approach to the implementation of trading strategies in the S&P 500 index 

futures market is proposed by (Tsiah, Hsu & Lai,) [21]. The Hybrid AI approach integrates the 

rule-based systems techniques with Reasoning Neural Networks (RN) to highlight the 

advantages and overcome the limitations of both the techniques. They demonstrate that the 

integrated futures trading system (IFTS) based on this hybrid model outperforms other 

conventional NN. 

 

There are instances of application of fuzzy logic based models to the stock market prediction as 

well. Hiemstra proposes a fuzzy logic forecast support system to predict the stock prices using 

parameters such as inflation, GNP growth, interest rate trends and market valuations [22]. 

According to the paper, the potential benefits of a fuzzy logic forecast support are better decision 

making due to the model-based approach, knowledge management and knowledge accumulation.  

 

Another effort towards the development of fuzzy models for stock markets has been made by 

(Alaa Sheta, 2006) [23] using Takagi-Sugeno (TS) fuzzy models. Sheta uses the model for two 

non-linear processes, one pertaining to NASA and the other to prediction of next week S&P 500 

index levels. The two steps involved in the process are 1) the determination of the membership 

functions in the rule antecedents using the model input data; 2) the estimation of the consequence 

parameters. Parameters are estimated using least square estimation.  
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The application of evolutionary optimization techniques such as Genetic Algorithm has given an 

entirely new dimension to the field of stock market prediction.  (Badawy, Abdelazim & Darwish) 

[24] conducted simulations using GA to find the optimal combination of technical parameters to 

predict Egyptian stocks accurately. (Tan, Quek & Ng, 2005) [25] introduce a novel technique 

known as Genetic Complementary Learning (GCL) to stock market prediction and give 

comparisons to demonstrate the superior performance of the method. GCL algorithm is a 

confluence of GA and hippocampal complementary learning. 

 

Another paper introducing Genetic algorithm approach to instance selection (GAIS) (Kyoung-

jae-Kim, 2006) [26] for ANN in financial data mining has been reported. Kim introduces this 

technique to select effective training instances out a large training data set to ensure efficient and 

fast training for stock market prediction networks. The GA also evolves the weights that mitigate 

the well known limitations of the gradient descent algorithm. The study demonstrates enhances 

prediction performance at reduced training time. 

 

A hybrid model proposed by (Kuo, Chen & Hwang, 2001) [27] integrates GA based fuzzy logic 

and ANN. The model involves both quantitative factors (technical parameters) and qualitative 

factors such as political and psychological factors. Evaluation results indicate that the neural 

network considering both the quantitative and qualitative factors excels the neural network 

considering only the quantitative factors both in the clarity of buying-selling points and buying-

selling performance. 

 

Another hybrid model involving GA proposed by (Hassan, Nath & Kirley, 2006) [28] utilizes the 

strengths of Hidden Markov Models (HMM), ANN and GA to forecast financial market 

behavior. Using ANN, the daily stock prices are transformed to independent sets of values that 

become input to HMM. The job of the GA is to optimize the initial parameters of HMM. The 

trained HMM is then used to identify and locate similar patterns in the historical data.  

 

A similar study investigates the effectiveness of a hybrid approach based on Time Delay Neural 

Networks (TDNN) and GA (Kim & Shin, 2006) [29]. The GA is used to optimize the number of 

time delays in the neural network to obtain the optimum prediction performance. 
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Other studies and research in the field of stock market prediction using soft computing 

techniques include comparative investigation of both the ANN and the statistical ARIMA model 

(Schumann & Lohrbach, 1994) [30] for the German stock index (DAX).The ANN method uses 

the four layer counter propagation network.  The paper compares the results provided by both the 

methods and concludes that the efficient market hypothesis does no hold good. A Data 

Compression Techniques for stock prediction (Azhar, Badros & Glodjo, 1994) [31] has been 

reported that uses the vector quantization method as an example of lossy data compression and 

Lempel-Ziv method as an example of lossless data compression technique to predict most of the 

well known indices across the globe. 
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3.1 Introduction to FLANN based model for stock market prediction 

 
This study proposes a Functional Link or FLANN architecture based model to predict the 

movements of prices in the DJIA and S&P500 stock indices.  The functional link ANN is a novel 

single neuron based architecture first proposed by Pao [11]. It has been shown that this network 

may be conveniently used for functional approximation and pattern classification with faster 

convergence rate and lesser computational load than a Multi-layer Perceptron (MLP) structure. 

The structure of the FLANN is fairly simple. It is a flat net without any need for a hidden layer. 

Therefore, the computations as well as learning algorithm used in this network are simple. The 

functional expansion of the input to the network effectively increases the dimensionality of the 

input vector and hence the hyper-planes generated by the FLANN provide greater discrimination 

capability in the input pattern space. Various system identifications, control of nonlinear 

systems, noise cancellation and image classification systems [12] have been reported in recent 

times. These experiments have proven the ability of FLANN to give out satisfactory results to 

problems with highly non-linear and dynamic data [13]. Further the ability of the FLANN 

architecture based model to predict stock index movements, both for short term (next day) and 

medium term (one month and two months) prediction using statistical parameters consisting of 

well known technical indicators based on historical index data is shown and analyzed. 

 

3.2 Structure of Functional Linked ANN 
 

FLANN is a single layer, single neuron architecture, first proposed by Pao [11], which has the 

exceptional capability to form complex decision regions by creating non-linear decision 

boundaries.  The architecture of the FLANN is different from the linear weighting of the input 

pattern produced by the linear links of the better known Multi Layer Perceptron (MLP). In a 

FLANN, each input to the network undergoes functional expansion through a set of basis 

functions. The functional link acts on an element or the entire pattern itself by generating a set of 

linearly independent functions. The inputs expanded by a set of linearly independent functions in 

the function expansion block, causes an increase in the input vector dimensionality. This enables 

FLANN to solve complex classification problems by generating non-linear decision boundaries. 

In our experiment, the functional expansion block comprises of a set of trigonometric functions. 
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Figure 3.1 the figure shows 
the structure of FLANN with 
single output. 
 

 

 

 

 

The basis functions for the FLANN, ( ){ L A }i i xB φ ∈= ∈  is to be selected keeping the following 
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=

= ∈ is a linearly independent set, 
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N
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B φ
=

=  be a set of basis functions to be considered to the FLANN as shown in fig. 1. Thus, 

the FLANN consists of N basis functions 1 2 3{ , , ,......, }N NBφ φ φ φ ∈ with following input-output 

relationship for the jth output 

( )ˆ ;j jy Sρ=  

Where,                    ( )
1

N

j ji i
i

S w Xφ
=

=∑                       (1) 

 

Where nX A R∈ ⊂ , i.e., 1 2 ...
T

nX x x x⎡ ⎤= ⎣ ⎦ is the input pattern vector, ˆ my R∈ , i.e., 

1 2ˆ ˆ ˆ ˆ[ ... ]T
my y y y=  is the output vector and 1 2[ ... ]j j j jNw w w w=  is the weight vector associated with 

the j th output of the network. The non-linear function considered in this case ( ) tanh( )ρ • = • . 

 

Considering the m-dimensional input vector, (a) can be written as 

 

                       S W= Φ                                   (2) 
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Where W is (m×N) weight matrix of FLANN given by, 1 2[ ... ]T
mW w w w= , 

( ) ( ) ( )1 2[ ... ]T
NX X Xφ φ φ φ= is the basis function vector, and 1 2[ ... ]T

NS S S S= is a matrix of linear 

outputs of FLANN. The m-dimensional output vector ŷ  may be given by  

 

                   ( )ˆ ( )Wy S f Xρ= =                 (3) 

 

 

3.3 Learning with Functional Linked ANN 

 
The learning of ANN can be described as approximating a continuous, multivariate function f(X) 

by an approximating function ( )Wf X .Given a function the objective of the learning algorithm is 

to find the optimum weights such that ( )Wf X  obtained approximates f(X) within an error e. This 

is achieved by recursively updating the weights. Let the training sequence be denoted by { kX , 

ky } and the weight of the network be W(k), where k is the discrete time index given by k= κ  + 

λ K  where λ =0,1,2,….., and κ = 0,1,2,…,K.  From (1) the j th output of FLANN t a given time 

k can be given as  

 

                         
1

ˆ ( ) ( )
N

j ji i k
i

y w k Xρ φ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  

                              ( ( ) ( ))T
j kw k Xρ φ=                (4) 

 

For all X A∈ and j =1,2,3,…,m where ( ) ( ) ( )1 2[ ... ]k k N kX X Xφ φ φ φ= .Let the corresponding 

error be denoted by ˆ( ) ( ) ( )j j je k y k y k= − .The Least Mean Square (LMS) update rule for all the 

weights of the FLANN is given by  

 

                 ( 1) ( ) ( ) ( )kW k W k k Xμδ φ+ = +               (5) 
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Where, 1 2[ ( ) ( )... ( )]T
mW w k w k w k=  is the M×N dimensional weight matrix of the FLANN at the 

k-th time instant is 

                 1 2( ) [ ( ) ( )... ( )]T
mk k k kδ δ δ δ= , 

                  And 2ˆ( ) (1 ( ) ) ( )j j jk y k e kδ = −              (6) 

 

Similarly the Recursive Least Square (RLS) update rule for all weights of the FLANN is given 

by 

                ( 1) ( ) ( ) '( )jW k W k e k zzk k+ = +               (7) 

Where, ( ) ( ) /(1 )zzk k z k q= + , ( ). ( )q X k zk k=  and ( ) ( ). ( )zk k R k X k=               (8) 

 

The autocorrelation matrix R(k) is updated with the equation, 

                ( 1) ( ) ( ). ( ) 'R k R k zzk k zk k+ = −               (9) 

Which is initialized using the expression,  (0) .R Iη=   where I is the identity matrix and η  is a 

constant. 

 

The motivations for using trigonometric polynomials in the functional expansion stage are 

explained below. Of all the polynomials of N-th order with respect to an orthonormal system 

{ } 1
( ) N

i i
xφ

=
the best approximation in the metric space 

2

L is given by the N-th partial sum of its 

Fourier series with respect to this system. Thus, the trigonometric polynomial basis functions 

given by {1,cos( ),sin( ),cos(2 ),sin(2 ),...., cos( ),sin( )}x x x x N x N xπ π π π π π  provide a compact 

representation of the function in the mean square sense. However, when the outer product terms 

are used along with the trigonometric polynomials for function expansion, better results were 

obtained in the case of learning of a two-variable function. 
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        The data for the stock market prediction experiment has been collected for two stock indices 

namely Dow Jones Industrial Average (DJIA), USA, Standards & Poor’s 500 Index (S&P 500), 

USA.  The time series data of all the stock indices were collected from 3rd January 1994 to 23rd 

October 2006. Thus there were 3228 data patterns for both DJIA and S&P 500 index. The data 

collected for the stock indices consisted of the closing price, opening price, and lowest value in 

the day, highest value in the day and the total volume of stocks traded in each day. ( Note that 

one day’s closing price of the index can be slightly different from next day’s opening price, due 

to introduction of after hours trading between institutions private exchanges). The proposed 

forecasting model is developed to forecast the closing price of the index in each day of the 

forecasting period.  

  

Different technical and fundamental indicators are used as inputs to the network. Technical 

indicators are any class of metrics whose value is derived from generic price activity in a stock 

or asset. Technical indicators look to predict the future price levels, or simply the general price 

direction, of a security by looking at past patterns. Out of the many technical indicators used by 

traders, 10 indicators have been chosen as input to the network which has been used before by 

many researchers for stock market forecasting problems. The details of the parameters and how 

they are calculated from the available data is given below: 

 

• Simple Moving Average (SMA): 

It’s the simple average of the values by taking a window of the specified period. The various 

SMAs used in the experiment are: 

                   1. 10 days (SMA10) 

        2. 20 days (SMA20) 

        3. 30 days (SMA30) 

 

 

• Exponential Moving Average (EMA): 

It is also an average of the values in the specified period but it gives more weight to recent 

values. Thus it approaches the actual values more closely. 
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Formula Used: 

EMA= (P * A) + (previous EMA * (1 – A))                      (10) 

 

P=> current price 

A=> smoothing factor = 2/(1+N) 

N=> no. of time periods 

 

 

• Accumulation/Distribution Line(ADO): 

It measures money flow in the security. It attempts to measure the ratio of buying to selling by 

comparing price movements of a period to the volume of that period. 

 

A/DO = ((Close – Low) – (High – Close))/ (High – Low) * Period’s Volume    (11) 

Every day’s ADO has been taken in the experiment. 

 

 

• Stochastic Oscillator( STOC): 

Stochastic Oscillator is a momentum indicator that shows the location of the current close 

relative to the high/low range over a set of number of periods. Closing levels that are consistently 

near the top of the range indicates accumulation (buying pressure) and those near the bottom of 

the range indicate distribution (selling pressure). 

There are two lines: %K and %D 

 

Formula Used: 

 

%K = [(Today’s Close – Lowest low in K periods)/ (Highest high in K periods – Lowest low in      

K periods)] * 100                                                                (12) 

%D is the SMA of %K for a particular period. 

 

For this study: %K = 10 days and % D = 3 days 
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• On Balance Volume (OBV): 

It is a momentum indicator that relates volume to price change.  

Calculation of OBV: 

If today’s close > Yesterday’s Close 

OBV = Yesterday’s OBV + Today’s Volume 

If today’s close > Yesterday’s Close 

OBV= Yesterday’s OBV – Today’s volume 

 

 

• Williams %R( WILLIAMS): 

It is a momentum indicator that measures overbought/oversold levels. 

 

Calculation of Williams %R = 

 (Highest high in n periods – Today’s close)*100                   (13)     

 (Highest high in n-periods – Lowest low in n-periods)  

 

For this experiment: n= 9 days 

 

 

 

• Relative Strength Index (RSI) : 

 

It calculates the internal strength of the security. It has been used in most of the research papers.  

 

Basic formula for RSI calculation: 

 

RSI = 100 – (100/(1+ (U/D))                   (14) 

 

For this study the periods have been taken as 9 days (RSI9) and 14 days (RSI14). 
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• Price Rate of Change (PROC): 

 

The PROC indicator displays the difference between the current price and closing price x-time 

periods ago. 

 

Calculation:  

 

( Today’s  close – Close x-periods ago)  * 100        (15) 

(Close x-periods ago) 

 

Through experimental results it’s found that x=12 is considered best for technical analysis. 

 

 

 

• Closing Price (CPACC) and High Price (HPACC) Acceleration: 

 

It’s the acceleration of the closing prices and the high prices in the given period. 

 

 

Apart from these technical parameters which depend on the past value of the data for forecasting, 

it has been shown by Nial O’ Connor and Michael G. Madden (2006) that there are Fundamental 

Analysis Factors as well which affect the stock market and hence forecasting can be improved by 

incorporating them. 

 

Fundamental analysis is the study of economic, industry, and company conditions in an effort to 

determine the value of a company's stock. Fundamental analysis typically focuses on key 

statistics in a company's financial statements to determine if the stock price is correctly valued. 
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Most fundamental information focuses on economic, industry, and company statistics. Some of 

the fundamental factors included in this project work are: Monthly average oil price, Quarterly 

Gross Domestic Product (GDP) growth rate, Quarterly corporate dividend rate, Monthly interest 

rates and inflation figures in terms of Commodity Price Index (CPI). 

 

Table 4.1 Technical indicators and their calculation formulae 
Technical  
Indicators 

                     Formula  

Simple Moving Average (SMA) 

1

1 N

i
i

x
N =
∑  

N = No. of Days.                ix = today’s price 
Exponential Moving Average (EMA) ( ) (Previous EMA (1- ))P A A× + × ; A=2/(N+1)  

P – Current Price, A- Smoothing factor, N-Time Period 

Accumulation/ Distribution Oscillator 
(ADO) 

(C.P - L.P) - ( H.P - C.P))
(H.P - L.P)  (Period's Volume)×

 

 
C.P – Closing Price, H.P – Highest price, L.P – Lowest price 

Stochastic Indicator 
(STOC) 

(Today's Close - Lowest Low in K period)% 100
(Highest High in K period - Lowest Low in K period)

K = ×  

 
     %D  = SMA of %K for the Period. 

On Balance Volume 
(OBV) 

If Today’s Close > Yesterday’s Close 
OBV = Yesterday’s OBV + Today’s Volume 

If Today’s Close < Yesterday’s Close 
OBV = Yesterday’s OBV – Today’s Volume 

 
 
WILLIAM’s %R 

(Highest High in n period - Today's Close)% 100
(Highest High in n period - Lowest Low in n period)

R = ×  

Relative Strength Index 
(RSI) 

100RSI = 100 - 
1 + (U/D)

 

Price Rate Of Change 
(PROC) 

(Today's Close - Close X-period ago) 100
(Close X-period ago)

×  

Closing Price Acceleration 
(CPAcc.) 

( Close Price - Close Price N-period ago) 100
(Close Price N-period ago)

×  

High Price Acceleration 
(HPAcc.) 

( High Price - High Price N-period ago) 100
(High Price N-period ago)

×  

  

Table 4.1 gives a list of technical indicators along with the formula used to calculate them form 

the raw data in the form of daily open, close, high and low price. 
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5.1 Experiment Model Setup  

 
We use the Functional Link Neural Network architecture (FL-ANN) (Citation). It is single 

neuron architecture. Each input is split up into five branches each being a distinct function of the 

primary input. Thus effectively we now have five times the primary inputs we had considered 

that go as inputs to the single neuron. For our experiment we have taken 13 input parameters for 

each pattern. For a 13 different statistical parameters of the stock index lag values, the total input 

to the single neuron FL-ANN is 65 plus a bias. This gives us 66 weights that are to be trained 

using a suitable adaptive algorithm for a particular stock index. The neuron adds up the input-

weight products and bias. The sum is then taken up by a suitable activation function to give the 

output of the network. For this particular case we used the tan hyperbolic activation function.The 

five distinct function applied to the each of branched input can be chosen as trigonometric 

functions, exponential functions, Chebychev polynomial functions.  

 

In the FLANN model of stock market prediction, four trigonometric functions namely Cos πx, 

Cos 2πx, Sin πx and Sin 2πx were used along with the variable x itself. An optimum value of the 

convergence coefficient was taken as 0.1 for all the prediction experiments. 

 

The inputs have to be normalized for the proper behavior of the network. The inputs are 

normalized to values between +1 and -1. This can be done by a number of normalization 

techniques. One of the popular techniques we used was expressing the data in terms of the 

maximum and minimum of the data set.  

All the values are normalized by using the following equation 

 

     Y = 2*X – (Max + Min)                              (16) 

                  (Max + Min) 

 

Y: - normalized values. 

X: - present value. 
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The total data set of a particular stock market index is split up into two, one for training of the 

network and the rest for testing the performance of the network after freezing the weights. In this 

experiment we take approx 2500 daily statistical data of the stock index as training set. The rest 

600 values are set aside for testing.  

 

5.2 Training Process 

 
The training of the network takes place in the following fashion. The weight update is epoch 

based. The initial weights of the network are taken as 66 random values between -1 to +1. The 

input data set are also normalized prior to the network training. The weights remain unchanged 

till all of the training data set is fed into the network, compared with the desired output and their 

respective error stored. The mean error for the entire epoch is calculated, and then the adaptive 

weight update takes place. The Least Mean Square (LMS) update algorithm used in our 

experiment updates the weights by adding the product of the convergence constant, the 

respective input with the mean error for the epoch to the weights of the previous epoch. The cost 

function for the training process is the Mean Square Error (MSE). It is suitable to end the 

training of the network when the minimum level of the cost function is observed. Thus for each 

iteration (epoch), the mean square error is calculated and plotted. Each of the iterations involves 

training the network with the 2500-odd patterns, calculation of mean error, weight update and 

representing the MSE. The number of iteration is decided upon by gradient of the MSE curve. If 

it is observed that there is no significant decrease in the MSE then the training experiment can be 

stopped. There exists a trade-off between the time taken and quality of training. High number of 

iterations tends to give better training of the network at the cost of time taken to train.  
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Figure 5.1 Plot of predicted vs. actual stock price at the last iteration of training for DJIA 

 
 
 
 

 
 

Figure 5.2 Plot of Mean Square Error of FLANN during training. 
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5.3 Testing Process 
 
          At the end of the training process of the network, the weights are frozen for testing the 

network on inputs that were set apart from the training set. The testing set patterns are the input 

to the network and the output, the predicted index close price is compared with desired output or 

actual close price. The percentage of error is recorded for each data set. The criteria for judging 

the quality of prediction shown by the model is the mean of all the percentage error of the testing 

data set. . The Mean Absolute Percentage Error (MAPE) is used to gauge the performance of the 

trained prediction model for the test data.The effort is to minimize the MAPE for testing patterns 

in the quest for finding a better model for forecasting stock index price movements The MAPE is 

given as 

 

1

ˆ1 | | 100
N

j j

j j

y y
MAPE

N y=

−
= ×∑    (17) 
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6.1 Prediction Performance 
 
 
6.1.1 EXPERIMENT 1: One day in advance prediction with Least Mean  
         Square (LMS) update 
  

 
Table 6.1 Results for one day advance prediction with LMS update 

 
Stock Index 

 
 Input Variables To FLANN 

 
Testing Period 

 
 MAPE 

DJIA EMA10, EMA30, ADO, CPAcc, HPAcc, STOC, 
RSI9, PROC 12, PROC 27.  

390 days 0.64% 

DJIA EMA10, EMA20, EMA30 ADO, CPAcc, HPAcc, 
RSI9, RSI14, PROC12, PROC27, Williams. 

658 days 0.74% 

S&P 500 EMA10, EMA30, ADO, CPAcc, HPAcc, STOC, 
RSI9, PROC 12, PROC 27.  

390 days 0.61% 

S&P 500 EMA10, EMA30 ADO, CPAcc, HPAcc, STOC, 
RSI9, PROC12, PROC27. 

658 days 0.65% 

 

 
 

Figure 6.1 Plot of Predicted vs. Actual Stock prices for testing dataset of DJIA (one day in 
advance) 
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Figure 6.2 Plot of Predicted vs. Actual Stock prices for testing dataset of S&P500 (one day in 

advance) 
 
6.1.2 EXPERIMENT 2: One month in advance prediction with LMS update 
 

Table 6.2 Results for one month advance prediction with LMS update. 
 
Stock Index 

  
Input Variables To FLANN 

 
Testing Period 

 
MAPE 

DJIA EMA10,EMA20,EMA30,ADO, 
CPAcc,HPAcc,RSI9,RSI14 

650 days  2.91% 

DJIA EMA10, EMA20, EMA30 ADO, CPAcc, HPAcc, 
RSI9, RSI14, PROC12, PROC27, WILLIAMS, 
OBV,STOC 

650 days  2.75% 

DJIA EMA10,EMA20,EMA30,Proc12, Proc 27, 
RSI9,RSI14,STOC 

650 days  3.029% 

DJIA EMA10,EMA20,EMA30, 
ADO,RSI9 

650 days 2.92% 

DJIA EMA10,EMA20,EMA30 650 days 2.88% 

DJIA ADO, CPAcc, HPAcc, RSI9, RSI14, PROC12, 
PROC27, WILLIAMS, OBV,STOC 

650 days 16.6% 

DJIA EMA10, EMA30 ADO, CPAcc, HPAcc, RSI9, 
PROC12, PROC27,OBV,STOC  

650 days 3.61% 

DJIA EMA10, EMA30 ADO, CPAcc, HPAcc, RSI9, 
PROC12, PROC27,OBV,STOC , WILLIAMS 

650 days 5.9% 
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DJIA  11 VARIABLES EXCEPT EMA20 AND 
WILLIAMS 

650 days 6.3% 
 

DJIA EMA 10, EMA 20, EMA 30, ADO, CP Acc, HP 
Acc, RSI 9, WILLIAMS  

60 days 1.39% 

S&P 500 EMA10, EMA20, EMA30 ADO, CPAcc, HPAcc, 
RSI9, RSI14, PROC12, PROC27, WILLIAMS, 
STOC 

658 days 2.95% 

S&P 500 EMA10, EMA20, EMA30 ADO, CPAcc, HPAcc, 
RSI9, RSI14, PROC27, WILLIAMS  

658 days 2.66% 

S&P 500 EMA10, EMA20, EMA30 ADO, CPAcc, HPAcc, 
RSI9, RSI14, PROC27, WILLIAMS  

60 days 2.22% 

S&P 500 EMA10, EMA20, EMA30 ADO, CPAcc, HPAcc, 
PROC12, PROC27, RSI9, RSI14. 

60 days 2.09% 

 

 
Figure 6.3 Plot of Predicted vs. Actual Stock prices for testing dataset (60 days) of DJIA (one 

month in advance) 
 
 

6.1.3 EXPERIMENT 3: Two months in advance prediction with LMS update 
 
                     

Table 6.3 Results for two month advance prediction with LMS update. 
 
Stock Index 

  
Input Variables To FLANN Model 

 
Testing Period 

 
MAPE 

DJIA EMA20, EMA30, ADO, CPAcc, RSI9, RSI14, 
OBV, PROC 27, Williams.  

60 days 2.25% 
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Figure 6.4 Plot of Predicted vs. Actual Stock prices for testing dataset (60 days) of S&P500 (one 
month in advance) 

 
 

 
 

Figure 6.5 Plot of Predicted vs. Actual Stock prices for testing dataset (60 days) of DJIA (two 
months in advance) 
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6.1.4  EXPERIMENT 4: Variable Days in Advance prediction with Recursive  
          Least Square (RLS) update 
 

Table 6.4 Comparison of performance varying the number of days in advance prediction 
with RLS update 

Stock 
Index 

 Input Variables To 
FLANN Model 
 (Technical Indicators) 

Input Variables To 
FLANN Model 
(Fundamental 
Factors) 

Testing 
Period 

MAPE 
using 
RLS 

Prediction 
No. of Days 
in Advance 

DJIA EMA10, EMA30, ADO, 
CPAcc, HPAcc, STOC, 
RSI9, PROC 12, PROC 
27. 

Oil price 390 days 0.58% 1 day 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27 

Interest rate 60 days 2.66% 15 days 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27 

Interest rate, Oil price, 
GDP rate. 

60 days 2.19% 30 days 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27 

Interest rate 60 days 1.46% 35 days 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27 

Interest rate 60 days 1.05% 40 days 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27 

Interest rate 590 days 2.66% 40 days 

DJIA EMA20, EMA30, ADO, 
CPAcc, RSI9, RSI14, 
OBV, PROC 27, 
Williams. 

Oil Price 60 days 2.49% 60 days 
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6.1.5 EXPERIMENT 5: One month in Advance prediction using both 
technical parameters and fundamental factors with RLS update 

 
Table 6.5 Stock market predictions for one month in advance (using technical and 

fundamental factors) with RLS update. 

 
 

Table 6.6 Stock market predictions for one month in advance using combinations of 
technical and fundamental factors with RLS update. 
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6.1.6 EXPERIMENT 6: Effect of RLS initialization constant on one month in 
          advance prediction. 
 

 
Table 6.7 comparison of prediction performance varying the RLS initialization constant 

(one day advance prediction)  
Stock 
Index 

 Input Variables To 
FLANN Model 
 (Technical Indicators) 

Input Variables To 
FLANN Model 
( Fundamental 
Factors) 

Testing 
Period 

MAPE 
using 
RLS 

RLS  
Initialization
constant 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.58% 0.001 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.01% 0.005 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.06% 0.01 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.09% 0.1 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.18% 1 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.19% 10 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.19% 100 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.19% 1000 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 2.19% 10000 

DJIA EMA10, EMA20, 
EMA30, ADO, CPAcc, 
HPAcc, RSI9, PROC12, 
PROC27. 

Oil price, Interest rate, 
GDP growth rate. 

60 days 53.3% 100000 
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6.1.7 EXPERIMENT 7: Comparison of computations required for training 
between RLS and LMS update. 

 
 

Table 6.8 Computation Comparison between LMS and RLS algorithm for prediction 
problem 

Experiment Details 
 

LMS computations 
(training set * iterations 
required for training) 

RLS Computations 
(training set * iterations 
required for training) 

One day ahead with 
technical parameters 

 

 
2510*4000 
=10040000 

 
2510*5 
= 12550 

One month ahead with 
technical parameters 

 

 
2510*3500 
=8785000 

 
2510*15 
=37650 

Two months ahead with 
technical parameters 

 

 
2510*2000 
= 5020000 

 
2510*80 
= 200800 

 
Table 6.9 Comparison of prediction performance between RLS and LMS update 

Stock 
Index 

Input Variables To FLANN Days in 
advance 
prediction 

Testing  
Period 

MAPE 
(LMS) 

MAPE 
(RLS) 

DJIA EMA20, EMA30, ADO, CPAcc, RSI9, 
RSI14, OBV, PROC 27, Williams.  
 

60 days  60 days 2.25% 2.45% 

DJIA EMA10, EMA20, EMA30, ADO, 
CPAcc, HPAcc, RSI9, Williams.  
 

30 days 60 days 2.33% 2.54% 

DJIA EMA10, EMA30, ADO, CPAcc, 
HPAcc, STOC, RSI9, PROC 12, PROC 
27.  

1 day 390 days 0.64% 0.58% 

DJIA EMA10, EMA20, EMA30 ADO, 
CPAcc, HPAcc, RSI9, RSI14, 
PROC12, PROC27, Williams. 

1 day 658 days 0.74% 0.61% 

 
 
6.2 Discussion 

 
The purpose of Experiment 1 is to investigate the performance of the model for one day in 

advance prediction using LMS update algorithm by providing certain technical indicators as 

inputs. Different combinations of technical indicators were tried as inputs based on a trial and 

error method to distinguish which combination gives out the best result.  The model gives out a 

prediction performance with a best MAPE of 0.64% for DJIA and 0.61% for S&P 500 index. 

With many input parameter combinations, spikes were observed in the predicted output which 
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showed certain parameters had negative sensitivity towards the output. An exercise was made to 

identify those input parameters which were then removed as inputs to improve the performance 

of the network. Combinations of testing set length were used to gauge the robustness and 

generalization capabilities of the model. Table 6.1 shows that the model performed quite 

consistently both for a small testing set as well as a large testing set. 

 

 Experiment 2 investigates the performance for one month in advance prediction with 

LMS update and using technical indicators as inputs. Plotting the graphs of predicted and actual 

close prices, large deviations in the form of spikes were observed at numerous inflection points. 

Therefore, several more experiments were conducted, varying the selection of technical 

indicators as input to the network. This was done in an attempt to identify and eliminate less 

important statistical parameters and rogue parameters which adversely affected the network 

prediction performance. The results of such experiments, listed in the table clearly show that the 

network performance due to elimination of certain parameters does not vary considerably, 

rendering them unimportant to the prediction model. Parameters were also identified in the 

process which when eliminated caused considerable deterioration in the prediction performance. 

In an effort to reduce the number of input to the network and at the same time enhance the 

performance of the prediction model, the input parameters were varied on a trial-error basis to 

gain insight into the extent of usefulness of the technical indicators to the prediction model. The 

Stochastic Oscillators, SMA, On Balance Volume (OBV) and William’s technical indicators 

were not found to affect the prediction performance significantly.  On the other hand, technical 

indicators such as Exponential Moving Averages (EMA), Relative Strength Index (RSI) and 

Accumulation Distribution Oscillator (ADO) and Price Rate of Change (PROC) were found to 

be essential to the model. The best performance obtained in this case is 1.39% MAPE for DJIA 

and 2.09% for S&P500 index. It is also observed that the model performs much better on shorter 

testing sets than on larger testing sets. 

 Experiment 3 is carried out to check the model’s performance for even longer term 

prediction i.e. two months in advance prediction using LMS for weight update. The MAPE 

obtained in this case for DJIA is 2.25%. 

 

           Experiment 4 examines the stock price prediction performance of the model for variable 

days in advance ranging from next day to 15, 30, 35, 40 to 60 days using the more powerful 
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Recursive Least Square (RLS) weight update algorithm. The RLS is faster computationally but 

less stable than LMS algorithm.  It is observed that the RLS update algorithm provides 

comparable to if not better results than the LMS. The lowest MAPE of 0.58% is observed for 

next day prediction followed by MAPE of 1.05% for 40 days in advance prediction.  

 

          Experiment 5 is carried out to investigate the effect of including key fundamental factors 

in improving the prediction performance of the model. Five fundamental factors namely – oil 

price, interest rates, GDP growth rate (US), Commodity price index and corporate dividend rates 

are taken as input one at a time. The results are described in Table 6.5. The experiment highlights 

that including a single fundamental factor as input to the model along with other technical 

parameters does not cause significant drop in prediction error.  

 

An extension to the experiment is carried out by taking different combinations of technical 

parameters and fundamental factors. The exponential moving averages (EMA 10, 20 and 30) 

along are mainly considered for technical parameters. The best prediction (MAPE : 2.07%) is 

found to be with 8 variables including EMAs, OBV, oil price, interest rates, GDP rate and 

corporate dividend rate. 

 

           Experiment 6 involves comparing the prediction performance by varying the initialization 

constant of the RLS update equation for one month in advance prediction for DJIA. The 

initialization is varied from 0.001 to 100000. The results are shown in Table 6.7. It shows that 

while the lowest error is achieved with a initialization of 0.05, the MAPE remains constant for 

higher initializations from 1 to 10000. The model fails at an initialization of 100000. 

 

         Experiment 7 reaffirms the superiority of the RLS update algorithm over LMS in terms of 

computational efficiency in training. Table 6.8 compares the computation required for training 

for three cases: one day, one month and two months in advance. It is observed that the LMS 

takes roughly 800 times more computations in case of one day in advance prediction and 25 

times more computations for two months in advance prediction.  
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Figure 6.6 A Comparison of results obtained by other models. 

 
 

     
 
Figure 6.6 shows the comparison of performance of various stock market prediction models for 
short term prediction developed by researchers in recent years. It is seen that the FLANN based 
model for the prediction problem gives a performance that is better than many of the models 
described in the figure.  
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Chapter 7  
 
 
 
 
 
 
 
 

CONCLUSION 
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            The Functional Link Artificial Neural Network based stock market prediction model is 

introduced. With the use of FLANN, the model for prediction of stock market indices becomes 

simpler and involves lesser computations compared to other such model reported earlier. 

Experiments show that the FLANN based model gives enhanced performance with both LMS as 

well as RLS update algorithm for all three – one day, one month and two month advance stock 

market prediction problems. But using all the technical indicators as inputs to the model 

unnecessarily loads the network and diminishes prediction performance. Inclusion of certain 

fundamental factors to the inputs does not necessarily improve performance. However, some 

combinations of technical and fundamental parameters give better results. The RLS algorithm is 

computational much more efficient than the LMS but is susceptible to instability problems. The 

FLANN model is observed to give better performance with low initialization constants.  In all, 

the FLANN based stock market prediction model is an effective approach to foresee the market 

levels in short and medium term future.  
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