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Abstract

Correlations are very significant from the earliest dayssame cases, it is
essential as it is difficult toneasure the amount directly, and in other cases it is
desirable to ascertain the results with other tests throagkelations. Soft computing
techniques are now beinged as alternate statistical toaidanew techniques sucs
artificial neural network¢ANN), support vector machine (SVM), multivariate atieg
regression splines (MARS) has beamployed fordeveloping the predictive models to
estimate the needeg@arameters. In this report, four geoteickal problems like
compaction parameters of sandy soil, compression index of clay, relative density of
clean sand and side resistance of drilled shaft have been mddetlee.first problem,
compaction parameters (i.e. MDD and OMC) of sandy soil have feelicted from its
index properties such as coefficient of uniformity, percentage of sand and fines content
with reference to compactive effort and MARS shows better predictability. In the
second problem, the relative density,)(df clean sand has beegredicted from
coefficient of uniformity, mean diameter of grain size with reference to four levels of
compactive effort and predictability of ESVM is found to be very accurate. In third
problem, compression index of clay has been predicted from comgidimits, natural
moisture content and initial void ratio and the developed ANN shows better prediction.
In the fourth problemsideresistance of drilled shaft has been predicted from effective
stress and undrained shear strength and the MARS modi@irpgbetter than the other
models.Various error criteria such as mean absolute error (MAE), root mean square
error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (R)
have been considered for the comparison of different modiemglly different
sensitivity analysis has been shown to identify the significance of different input

parameters that affects the developed modéls.performance comparison showed that



the soft computing system is a good tool for minimizing the uncédaiim the soil
engineering projects. The use of soft computing may provide new approaches and

methodologie$o minimize the potential inconsistency of correlations
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CHAPTER 1
INTRODUCTION

1.1 Introduction

In geotechnical engineering, empiricabnnectionsare frequently used toevaluaé
certain engineering properties of soiBy means ofdata from extensive laboratory or field
testing, these correlations agenerallyderived with thehelp of statistical methods. Atrtificial
neural networks (ANNSs), support vector machine (SVM) and multivariate adaptive
regression splines (MARSJre the forms of artificial intelligence.These techniquekearn
from datacases preentedto them in orderto capturethe functional intera¢ions among the
dataevenif the fundamental relationships are unknown or the physical meaning is toughto
explain. This isin contrastto mosttraditional empirical and statisticalmethods, which need
prior information about the nature of the relationships among the data. Al is thus well
suited to model the mmplex performanceof mostgeotechnicalengineeringmaterialswhich,
by their very natre, exhibit extreme erraticism. This modeling capabilty, as well as the
ability to learnfrom experiene, have given Al superiority over most traditional modeling
approachessince there is no need for making assumptions about what the primary rules
thatgoverntheproblemin handcould be.

ANN is still consicered as dlack boxdsystemwith poorsimplification, thowh various
efforts madefor modification and explaretions. Recently supportvedor machine (SVM),
based on statsticd learning theoy and structura risk minimization is being usedas an
aternate prediction model. TheSVM usesconstraned mnimization, penalizing the error
margin during training. The error function being a convex function bettergeneralization
usedto observan SVM comparedo ANN.

Though Al techniqueshas proved to have the superior predictive capability than

other traditional methodsfor modelng compex performanceof geotechnical engineering



maerials, still it is facing somecriticism due to the lack of transpaency, knowledge

extradion and modeluncertainty. To overcome this thee is a developmendf improvised Al

techniques.

1.2 Origin of Project

A Empirical relationships arrequentlyused to estimate certain engineering properties

of soilsin geotechnical engineering

A Computational techniques learn from da@mplespresented to them in order to

capture the functional relationships among the data even flitttamentalelationships are

unknown or the physicaensas difficult to clarify.

A Most traditional emirical and statistical methodseed prior knowledge about the

nature of thenteractionsamong the data.

A Softcomputing techniques arsuitable to model the complex behavior of most

geotechnial engineering materials whigxhibit extreneinconsistency

1.3 Obijective

A To apply various softomputing techniques like ANN, MARS and SVM in
parametric estimation of Geotechnical problems.

A To model for relative density of granular soil from grain size distribution and
compaction energy.

A To modé for compaction parameters (Maximum Dry Density and Optimum Moisture

Content) of granular and csoils from index properties and compaction energy.

A To model for compression Index from various physical properties of clayey soil.

A To model the side resistance of drilled shaft from effective stress and undrained shear
strength.

A To comparehe efficiency of different models.



1.4 Applications in Geotechnical Engineering

Various geotechnical problems whedt computinghas been ap@d are:

u For forecasing the axial andlateral load capacitiesn compressiorand uplift of pile
foundations.
a Conwentional constitutive modeling basedon the elasticity and plastcity theoriesto

propery simulatethe performanceof geanaterals.
u For estmating severalsoil properties inclding the shearstrength, stresshistory, pre-
consolidaton presure, swell pressue, compaction and pemeability, soil

classificationand soil densty.

a Predictingliquefaction potential.
a Bearng cgpacity and Settlanentpredicton of shdlow foundations.
u Other applications of Atrtificial Intelligence in geotechnical engineeling include

retainng walls, dams, blasting, mining, geo-ervironmental engineering, rock
mechants, site characterizabn, tunnels and undemground openings and slope
stability.
1.5 Methodology for Soft -Computing

A Artificial Neural Network (ANN)
A A universal function approximator and fast to evaluate new examples.

A Multivariate Adaptive Regression Spline§MARS)
A Capacity to find complex data mapping and produce simpletedsierpret

models.

A Support Vector Machine

A The quality of generalization and ease of training of S¥Metter.

1.6 Software used
For the above modeling MATLAB R2008tas beemised.



CHAPTER 2
METHODOLOGY

2.1 Artificial Neural Network (ANNS)
2.1.1 An overview of ANNs

In the last decades, Artificial Intelligence (Al) techniques such as Artificial Neural
Networks (ANNs) have received a great deal of attention. In essence, ANNfsramation
technology that mimics the human brain and nervous system in learning from experience and
generalizes from previous examples to generate new outputs by abstracting essential
characteristics from inputs in the pattern of variable interconneet®ights among the
processing elements. ANNs are more powerful than traditional methods in the situations
when the problem requires qualitative or complex quantitative reasoning where the
conventional statistical and mathematical methods are inadequdtes grarameters are
highly interdependent and data is intrinsically noisy, incomplete or error prone (Bailey and
Thompson, 1990).

ANNs have many advantages over traditional methods of modeling. Firstly, as
opposed to the traditional mathematical and stediistnethods, ANNs are dathiven self
adaptive methods, which can capture subtle functional relationships among the data even if
the underlying relationships are unknown or hard to describe. Secondly, ANNs are able to
capture complex nonlinear relatiomnshvith better accuracy (Rumelhart et al. 1994). Thirdly,
the most important advantage of ANNs over mathematical and statistical models is their
adaptability. ANN systems can automatically adjust their weights to optimize their behavior
(Boussabaine, 1996Neural networks have been utilized for classification, clustering, vector

guantification, pattern association, function approximation, control, optimization and search.



2.1.2 Basic Concepts of ANNs

An artificial neural network is a computational modeffided by four parameters:
type of neurons, connection architecture, learning algorithm and recall algorithm (Mehrotra,
et al., 1997).
2.1.2.1 Artificial Neural Systems

ANNSs is an information processing technology that simulates the human nervous
system. 1 is built on three basic componentsocessing elements (P&hich are an artificial
model of human neurorninterconnectionswhose functions are similar to the axon and
synapsewhich are the junctions where an interconnection meets a PE. Each PEseceive
signals from other PEs that constitute an input pattern. This input pattern stimulates the PE to
reach some level of activity. If the activity is strong enough, the PE generates a single output
signal that is transmitted to other PEs through an intessziiom.
2.1.2.2Processing Elements

Figure 1 describes a typical artificial neuron. The input signals come from either the

environment or outputs of other PEs and form an input vector:

A=(a,......... - a) (1.1)

Where, a, is the activity level of they PE or input. There are weights bound to the

input connectionsw,,W,,.....w,. The neuron has a bias b. The sum of the weighted inputs
and the bias form the net input sigrél,
X=b,+q w, a =W3 A+b (1.2)
i=1

The input signal is then sent to a transfer function, which serves as-laean

threshold. The transfer function calculates output signal of the PE (j) as:

0, =f(X) (1.3)



Where Qis the output signal from PE()); f is a transfer function and X is the net input

signal to PE()).

i

Figure 2.1 Generic processing elemerf neural network

2.1.2.3Threshold functions

There are many threshold functions adopteANNs. The two most commonly used
transfer functions are linear and sigmoid.
1 Thelinear threshold functionf(x) = x
1 The sigmoid functianLog-sigmoid transfer functionand Tan-Sigmoid transfer
functionis commonly used in backpropagation networks, partly because in backpropagation,
it is important to be able to calculate the derivatives of any transfer function used (Demuth

and Beale, 2000). They can be expressed as the following equations:

1
Logistic function: f(x) =
g 0) =~
Hyperbolic tangent:f (x)= eX “€ .
e*+e

2.1.2.4 Architecture of ANNs

The architecture of an ANN is the organization that assembles PEs into layers and
links them with weighted interconnections. The architecture deterrhim@scomputations
proceed. A common ANN architecture is determined by three distinguishing characteristics:

connection types, connection schemes and layer configurations.



The most commonly used ANN paradigm is multilayer perceptions (MLPs). A MLP
consistsof an input layer, at least one hidden layer and one output layer. The neurons in each
layer are usually fully connected to the neurons in another layer. Among themlagleee
feed forward network is the most popular. Feed forward network is a typetvodrikein
which connection is allowed from a node in layer i only to nodes in layer i+1. The three
layers are input layer, hidden layer and output layer. Input layer is the layer that receives
input signals from the environment. Output layer is the layat #mits signals to the
environment. Hidden layers are layers between the input and output layers.
2.1.2.5 Learning Rules

Learning makes possible modification of behavior in response to the environment. A
learning rule is a procedure for modifying the weggof connections between the nodes and
biases of a network. These are three broad learning categories: supervised learning,

unsupervised learning and reinforcement learning.

2.1.3 ANN Model Equation
A model equation is developed using the weights framéd neural network model

(Goh et al. 2005). The mathematical equation relating input parameters to output parameter

can be written as

(14)
where y = predicted value of output,=f transfer function, h = no. of neans in the
hidden layer, X= value of Inputs, m= no of input variablesy wconnection weight between
it layer of input and & neuron of hidden layer, M connection weight betweer, keuron of
hidden layer and single output neurop, $ bias at the k neuron of hidden layer ang b

bias at the output layer.



2.1.4 Methodology of ANN

The sequences of modeling AN are given in the flow chart below.

DETERMINATION OF MODEL INPUTS

v
DIVISION OF DATA

v
DATA PRIPROCESSING

v
DETERMINATION OF MODEL ARCHITECTURE

v
MODEL OPTIMIZATION J

v
STOPPING CRITERIA J

v
MODEL VALIDATION J

Figure 2.2 Flow chart of neural network modelling

2.1.4.1 Determination of Modellinputs

A subset of input varigbles can significantly improve model performance.A large
number of input variables usually increase the network sizeresultng in a deceasein
processing speednd a reduction in the efficiency of the netvork. Anotherapproachs to
train with differentcombinationsof input variablesandto selecthe network thathasthe best
performance. The network that performs thebestis thenretained. This processs repeated
for an increasing umber of input varigbles, wntil the addition of other varigblesresultsin no
improvementin model perbrmance.
2.1.4.2 Division of Data

ANNSs accanplish bestwhenthey do not genedlize beyondtherange ofthe dataused

for stendardization.Therefore, thegurposeof ANNS is to non-linearly introduce (generalze)



in high-dimensbnal spacébetweenthe datausedfor calibraton. A discrete valilationsetis
neededto ersure that the malel can generalize within the range of the data used for
calibraton. It is commonpracticeto split the exiging datainto two subsets;a trainingsd, to
construct the neral network model, andan independent valilation setto evduate the model
performance.Usually, two-thirds of the dataare suggestedfor model training and one-third
for validation.
2.1.4.3 Data Preprocessing

Oncethe presenteddata have beendivided into their subsets (i.e. training, testing
and valdation), it is significant to pre-processthe datain a appropriateform. Data pre-
processing isnecessaryto ensureall variables obtain equal atention during the training
processand itusually speedaup the learning process. Preprocessing canbe in the form of
data scaling, normalization and transfmation. Scalingthe output datais esential, asthey
have to be eual with the limits of the transferfunctions usedin the output layer (e.g.
betweeni 1.0 to 1.0 for the tanh transferfunction and0.0 to 1.0 for the sigmoid transfer
function). In same cases, the input data needto be normally distributed in orderto obtan
optimal results.To improve the performancansbrmation ofthe input data can be done to
same known forms (i.e. linear,log, exponential, etc.)
2.1.4.4 Determination of model architecture

Determinng the network architectureis most essential and difficult job in ANN
model development. It neals selecton of the ideal rumber of layers and the rumber of
nodes. Itis usually achievedby fixing the number of layers and choosing the rumber of
nodesin eachlayer. For MLPs, thereare always two layerssignifying the input and autput
variables inany neural network.
2.1.4.5 Model optimization

The processof improving the connecton weights is known as trainingor learnng.



The aim is to find a global solution to what is usuallya highly non-linear optimizaion
problem.The tecmigue most commonly usedfor finding the optimumweight grouping of
feed-forward MLP neural networksis the ba&-propagaton algorithm.
2.1.4.6 Stopping criteria

Stopping criteria are used to adgt when to break the training process. They
detemine wheher the model hasbeen optimally or sub-optimally trained.Training can be
stopped: after the perbrmance ofa fixed number of trainingrecords,whenthe training error
reachesan effecively small value; or when no or minor charnges in the training eror
occur.
2.1.4.7 Model Validation

Once the training segment of the model has been effectivdy accomplished, the
performance of the trainedmodel stould be validated. The purpose of the modd validation
phase isto confirm that themodel hasthe ability to simplify within the imits set by the
trainingdaa. The error criteria such asoefficient of correlaton (R), the root meansquared
error (RMSE), and the mean absoluteerror (MAE) are often used to evalwste the
performanceof models. The coefficient of corelationis ameaure thatis usedto detemine
the relative correlation and the goadness-of-fit betveen the expectedand experimental
data.
2.2 Details of Support Vector Machine (SVM)

2.2.1 Support Vector Machine (SVM)

SVM hasbeenutilized to solve a regression probleniet us considem trainingset

(X, Y1), (%, ¥,)....(Xy » Yy ) froma vecor, X; * RN with correspondingargetsy,, i = 1,2,...
. N. USVR determines linear function definedn X as,

f(X) = (W,X) +b (15)

where w is a higldimensional weight vector and"bR as the bias such that there is

10



at mo s t U distance from the acttheadotpddutt.a and
Nocareist aken as | ong as errors are | ess than
accepted. Flatness means the value of w should be as small as possible. This can be written as

convex optimization problem:

Minimize%”wﬂz
. w Who o -
Subjecedto DO & & -

In this caseit is assumedhat a functionf exists which approximatesthe data s

(Xi,yi) with Uprecision. Introducinglack variabless;, , * the problemcanbe stated as,
Minimize %”v\,ﬂz FCH (X +X) (16)

~

o o -
A

e-

%
Subjecedto Q) hwO

®
ChE o

The parangter C controls the tradeoa betweenthe patness of £ and tolerance level
of error U This dealswith a Uinsendive lossfundion expresse as,

Qs -
3% 55 -REniovQi Q

The graphical presetationof the Qinsensitve loss functionis shown in the Figure
2.3. The optimization problemd e y nire (6) is easily solvedin its dual formulation.

The dualoptimization problemcanbe writtenas,

11



Loss

Figure 2.3 Soft margin losssdting for a linear SVM

w1 . .
8 @-a@;-anx.x)
Maximize (1.7)

p- eé (ai +ai*)+é. Yi (ai - a:)
w

Subjecedto § (a, - a;)=0anda,,a; I [0,C]

whereare| h * Lagrangemultipliers. In the above equationsxj and Xj areinput
vector spaces.

To address norlinear regresson problems, the linear SVR is prolonged to

nonlinear SVR by mappingthe input spaceinto a high dimensionalfeaturespacethrougha

kernel function G(x). In such case (X, xt) is replaced by Kk(Xx, xt). Distinctive kernel functions
usedin theSVR are RBF,polynomial, linearandd e y re® d

Polynomial Kernel

In machine learning thepolynomial kernelis akernel functionrcommonly used
with support vector machindSVMs) and othekernelizedmodels, that representthe
similarity of vectors (training samples) in a feature space over polynomials of the original

variables, allowing learning of ndmear modelsintuitively, the polynomial kernel looks not
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only at the given features of input samples to determine their similarity, but also

combinations of these.
For degreeal polynomials, the polynomial kernel is defined as

K(x y)=(x"y+c) (1.8)

wherex and y are vectors in the input space, i.e. vectors of features computed from
training or test samples? Ois a constant trading off the influence of higloeder versus

lower order terms in the polynomial. When ¢ = 0, the kernel is called homogenous. (A further

generalized pohkernel divides Xy by a usesspecified scalar parameter a.)

As a kernel, K corresposdan inner product in a feature space based on some

mapping UG:

K(x y)={ ¥/ (¥))

The nature of G4 can be glanced from an ex
of the quadratic kernel. Then
an 62 n noi-1 n
K(x)=88 XY, +c§ =& X'y’ +a & V2%V \/2Xy; +a& 20X y/2cy, +C?
ci=1 = =1 i=2 j=1 i=1 (1_9)
Radial Basis Function Kernel
In machine learningthe Gaussian radial basis functiokerne| or RBF kernel, is a
popularkernelfunctionused insupport vector machingassification
The RBF kernel on two samplgsndx’, represented as feature vectors in sompat
spaceis defined as
2 [x- X[, §
" — &i 2 O
K(x,X') exp 2 557 6
¢ - (1.10)

where||x- x||§ may be recognized as the squared Euclidean distance between the two feature

vector s. 0 i The parametead] én repraentsaheagpreaeiaf Gawsdan kernel.
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An equivalent, but simpler definition involves a parameter

K(x X') =exp @||x- x'||§) (111)
Since the value of the RBF kernel decreases with distance and ranges between zero
(in the limit) and one (whex=x'), it has a ready interpretation assimilarity
measureThefeature spacef the kernehas an infinie number of dimensions; far=1, its
expansion is:

(X" x)!
j!

al 120 . a 1,,20 & 1,.20
ool Y-8 00 ool L Boud L8

(1.12)
2.2.2 Least Square Support Vector Machine (LS SVM)

LSSVM models are an alternate formulat@hSVM regression (Vapnik and Lerner,

1963) proposed by Suykens et al. (2002). Consider a given training set of N data points
{xk ,yk},f':lwith input datax, I R™and outputy, I r where R" the N-dimensional vector space
is and r is the ondimensional vector space. For prediction of output using multiple parameters,
x=[inputs] andy=[output].

In feature space LSSVM models take the form

y(X)=w'/ (X)+b (1.13)

Where the notlinear mapping/ (.) maps the input data into a higher dimensional

feature spaceM R":bi r;w = an adjustable weighector; b = the scalar threshold. In LSSVM

for function estimation the following optimization problem is formulated:

- - - 1 T 1 -’:‘ 2
Minimize: EW w+g—a €
k=1

Subjecedto: y(X)=w'/ (x.)+b+e_ ,k=1......... N (1.14)

Where ¢, = error variable andy= regularization parameter. The following equation
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for output prediction has been obtained by solving the above optimization problem (Scholkopf

andSmolg 2002 Vapnik, 1988).

N
C.=y(¥=4 a, K(xx)+b (1.15)
k=1
e ’g
Where K (X, X) = expé b= 4 X” B Tla, ko= 1, 666N é6@16)
e 'y H

0 is the width of radial basis function abilis the Lagrange multiplier.

In LS-SVM regression algorithm, the regularization parametand RBF kernel
parameterd® have to be tuned in order to achieve an accurate solution. An integrated
parameter optimization approach via simplex i.e. multidimensional unconstraindithesn
optimization (Nelder and Mead965) and 10 fold crosglidation is used to minimize
generalization error. The optimum values of parameters’] afid bias values have been
used for the models developed herein.

2.3 Multivariate Adaptive Regression Splines (MARS)

MARS is a norparametric regression technique introduced by Friedman (1991). It
essentially detects relation between a dependent variable and a set of predictors by fitting
piecewise linear regressions. In particular, MARS builds flexible modeldibgling the
whole space of each covariate into various subsets and then defining a different regression
equation for each area. In this way, separate regression slopes in distinct intervals of the
predictors space are individuated (Hastie et al. 200Re\Aconcept is the notion of knots
that are the points that bound each interval of data in which a distinct regression equation is
calculated, i.e. where theehaviorof the modelled function changes.

In this way, the space of predictors is split is&veral regions in which truncated
spline functions or basis functions (BFs) are fit. A truncated BF consists ofsadiedt (.17)

and a rightsided (.18 segments defined by a knot t:

15



:’ 0 otherwise (1.17)
é a

bg(x t)=[+(x t)]ﬂ:i(x t)9, if X<t.
i0 otherwise L18)

where by (X - t) and ba (X - t)are the BFs describing the regions to the left and the right

of the knot t, g indicates the power (>0) to which the BFs are raised in order to manipulate the
degree of smoothness of the resultant regression models. The general MA& S quadion

is given as

m=0 (1.19)

where y is the dependent variable predicted through the MARS model, M is the
number of BFs incbiusiedheé nt onpis¢ theeaoeffioadenithe, UU
m™ truncated BF and &x) is the ni' truncated BF that may be a single spline function or a
product (interaction) of two or more spline functions.

The optimal MARS model is built by a twsiage process: a forward selection
procealure followed by a backwaipruning procedure. The forward procedure starts with just
the constant term in the model and then, by an iterative way, selects the best pairs of BFs that
improves the global model. This forward stepwise selection of BFs leasdry complex
and over fitted model that has poor predictive abilities for new data. So, in the backward
stage, the nAl ack of fito criterion is wused
descriptive abilities of the model and the BFs with tiveelst contribution are removed one at
atime.

The Al ack of fito criteri on-validted(G®W MARS
criterion, i.e. the mean square error divided by a penalty dependent on the model complexity.

It is given by:
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n 2

ch(lvl)zlié}l(yi ) (1.29
ng CM)o
g n H
Where n is the number of observations in the data set, M is the number-of non
constant BFs, and C(M) is the castmplexity measure of the model containing M BFs.
C(M) increags with the number of BFs and has the purpose to penalize model complexity in
order to avoid ovefitting. It is defined as:
CM)=M+dxM (1.22)
Where d is a cost penalty factor fafding a BF. The higher value of d reduces the
number of BFs in the final model.
2.4 Performance criteria
The present studyses various statistical error measure criteridike R, MAPE and
RMSE to compare different developed models. A good model should have; R value

(expresses degree of slarity between predted and actual values) close 1 and bw

MAPE andRMSE values(indicate high confidence in modptedicted valugs

Root mearsquarecerror RMSH is used to compute the squareor of the prediction
compared to actual valuas well as thequare root of the summation valdéwus the(RMSE

is expressed using the following equation:

RMSE= /%a (v,- y) (1.22

Mean Absolute Percentage Er(®iAPE) is a measuref closeness opredictiors to
actual valuesThe mean absolute error is given by
108

2
MAPEz—a%/p y§3100 (1.23
Niag™ ¥ =+

17



The Coefficient of correlation R) value isa measuref linear relationship between

the predictions and the actual values. TheaRe is calculated using the following formula:

n@yy,)-@ya@ay,

R=
JInd v?- @ ina v, - @ v,)%

(1.24)

Mean of the observed datagi:%é_ (y)

i=1

Total sum of squares SS,,, =& (V. - Y)°

i=1
Explained sum of squaresSS,, =8 (Y, - y)?
i=1

n

Residual sum of squaresSS,.,..=a (V; - yp)2
i=1

SSesidual

Coefficient of determination @R = 1- ss
otal

wherey andy, are the atwial and the predicted value§;and §/p areaverageof the

actual and the predictecluesrespectivelynis the sample size

2.5 Sensitivity analysis
Different methods have been adopted for knowing the importafribe input

parameters for the developed models.

2.5.1 Variance based sensitivity analysis
Iman and Hora (1990) investigate the performance of a sensitivity measure based on
the percentage variance fnexplained by any variable Xi. This technique is kmoas
measure of importance, and its use is associated with the estimation of the quantity
s, =Varx\i/ LErg |)Xi)] (1.25)
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where E(f |X;) indicates the expectation valuefafthen the ' variable is fixed to the
value X, Var,;[f]stands for the variance of the argument over all the possible valugs of X

and Var{) is the unconditional (total) variancefofin the present paper, the outcomes infthe

are observed by keeping mean of theadue fixed for other arguments varying.

2.5.2 Rate of change of input

The sensitivity tests are carried out to determine the relativefisggrce of each of
the inputs ando find the inputs that affect the modgberformance. The sensitivity test is
carried out on the all data by varying each of the input, one at a time, at a constant rate of
20%. For every input, the percentage change in the output is observed. The se{®itvity

each input is calculated by the following:

00 . ~
S:i .. 2% changelj gutputg3 100
N~ &% changen input = (1.26)

whereN = number of datasets used in the study.
2.5.3 Connection weight approach

Calculates the product of the raw iniudden and hiddeoutput connection weights
between each input neuron and output neuron and sums the praduzds all hidden
neurons Qlden and Jackson, 2002b).
2881 ' AOOI 160 Al Cl OEOEI

Partitions hidderoutput connection weights into components associated with each

input neuron using absoluteluas of connection weight§&arson, 1991).
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Input-Hidden
Connection Weights

Weights

Connection

Hidden-Output

Connection Weight
Products

Figure 2.4St eps f

X Hidden A Hidden B Hidden C Hidden D Hidden E
Input 1 -0.93 -1.49 0.37 -0.91 0.37
Input 2 -0.57 -1.96 -0.14 1.18 1.26
Input 3 -0.85 1.74 -1.86 -0.05 0.10
Input 4 0.25 -3.01 -0.99 -1.34 -1.65
Input 5 -0.82 0.09 0.86 -0.41 -0.05
X

Hidden A Hidden B Hidden C Hidden D Hidden E
Output -1.75 -1.08 -1.13 2.90 3.37
XY | HiddenA Hidden B Hidden C Hidden D Hidden E
Input 1 1.63 1.62 -0.42 2.64 1.24
Input 2 1.00 2.12 0.16 -3.43 4.25
Input 3 1.48 -1.89 2.10 0.14 0.34
Input 4 -0.43 3.26 1.12 3.90 -5.57
Input 5 1.43 -0.09 -0.97 1.18 -0.16

5 :
Input,, =3 Hidden PPt = —JHlddenM
X XY Y=A &
Y=4 Z |Hldden o |
z=1
Importance | Rank Importance | Rank
Input 1 6.71 1 Input 1 0.88 4
Input 2 4.10 2 Input 2 1.11 2
Input 3 2.18 3 Input 3 0.94 3
Input 4 2.28 4 Input 4 1.50 1
Input 5§ 1.38 -] Input§ 0.57 5
Connection Weight Garson’s
Approach Algorithm
or connection weight

(Olden, Joy and Death, 2004)

approach

Sensitivity analysis is performed for choice of important input variables. Different

methodologies have been recommended to select the important input variables. Goh (1994)

and

Shahi

n

et al

(2002)

have

used

Gar sonos

hidden and hidden output weights of traine®dN model are segregated and the absolute

values of the weights are taken to select the significant input variables, and the details with
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example have been presented in Goh (1994). It does not provide evideriee affett of

input variables in terms of direct or inverse relation to the output. Olden et al. (2004)
suggested a connection weight approach based on the Neural Interpretation Diagram (NID),
in which the actual values of input hidden and hidden outpujhiiare taken. It sums the
products across all the hidden neurons, which is defined;.ash8 relative inputs are
corresponding to absolute\&lues, where the most important input corresponds to highest S

value. The details of connection weight appitoare presented in Olden et al. (2004).
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CHAPTER 3
PREDICTION OF COMPACTION PARAMETERS OF SANDY SOIL

3.1 Introduction

Compacted soils are used in many projects such as highway embankments, railway
subgrades, airfield pavements, earth dams and landfill liners. The granular materials are
generally used as fill material in earth work. In the field, soils are usually cordpasitey
rollers and other various equipments. To evaluate compaction in the field, laboratory
compaction parameters are required using the Standard Proctor and Modified Proctor
compaction which requires large efforts and time. A standard amount of cormpefbbirt is
applied to produce soil density with which site values can be compared. The compaction
parameters of soils are influenced by many factors such as water content, compactive effort,
and index properties. For a certain compactive effort, a tlypozapaction curve that relates
the water content of the solil to its dry unit weight is usually obtained. The most important
point on the compaction curve is the optimum compaction point in which two important
parameters, maximum dry unit weight (MDD) aogtimum water content (OMC), are
obtained, and they represent compaction behavior.

In recent years attempts have been made to correlate Index properties of soil and
gradation to obtain MDD and OMC of compacted sandy soils. Several researches have been
doneto correlate compaction parameters with index properties ofgfia@ed soils (Wang
and Huang1984; Blotz et al.1999; Nagaraj et al. 2006; Sivrikaya et al. 2008; Sivrikaya 2008).
On the other hand, prediction models of coapsened soils are rare (Koatis and
Manikopoulos 1982; Omar et al. 2003). In recent years, Atrtificial Intelligence (Al) has been
applied successfully to several problems in geotechnical engineering. Sevecanspfiting
methods like Artificial Neural Network (ANN), Support Vectbtachine (SVM), Genetic

Programming (GP), Adaptive Neuro Fuzzy Inference System (ANFIS), Regression Tree,
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Multivariate Adaptive Regression Splines (MARS) are continuously used in modeling of

geotechnical problems. These techniques have been used foripgethietbearing capacity

of piles, permeability of compacted clay liners, settlement prediction of shallow foundations
on granular soils, swelling pressures of soil, compaction parameters of soils, slope reliability
analysis, ultimate capacity of driverigs in cohesionless soils, OCR prediction of clay.

This study investigates the capability of ANN, MARS and LSSVM for determination
of compaction parameters of coaggained soils with an emphasis on the influence of soill
properties and compaction effoMARS is a flexible, more accurate, and faster simulation
method for both regression and classification problems (Friedman, 1991). Different models
has been developed and observed that MARS gives a better predictability as compared to
regression equation drother nodinear models from ANN and MARS.

The laboratory experiment was conducted by Muataet al. (2013) for the
determination of compaction parameters, grain size distribution and Index properties of sandy
soil. The compaction parameters were deteettiat different compaction enerdgyE) level
(592 kNm/m® & 2696 kN-m/m’) and performing regression analysis, the potential input
parameters were identified which affect the output parameters. Based on the analysis a
regression model equation wasveloped for MDD and OMC. The model equations were as

follows:

MDD (kN/m?®)=4.49log(C, ) +1.51log(CE) +10.2 (3.1)
log(OMC) (%)=1.67- 0.1930g(Cu)- 0.1530g(CE)

whereC, = coefficient of uniformity

From the crossorrelation matrix, it is observed that two other parameters also affect
the compaction parameters ifimes (%) and Sand (%) along wit@, andCE. In the present
study, two models were taken into consideration consisting of the indexrimspand

compaction energy. The inputs of the two models are as follows:
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Model i | Cu, CE

Model 1 1l Fines(%), Sand (%), C,, CE

Model-lll: Fines (%), Sand (%), Dso, Cy, CE

The data available in literature (Mujtabtial., 2013) are taken with input and output

parameters. The total number of data points considered is 220 out of which 160 are taken for

training and 60 are taken for testi®@me of the data base of the experiment has been shown

in Table3.1 and he maximum, minimum, average, and standard deviation for the data used

are shown in Tabl8.2 and it can be seen that it covers a wide range of values. The successful

application of a method depends upon the identification of suitable input parameters. Table

3.2 shows the cross correlation between the inputs and output; it can be sdgredl{éd),

sand (%)Dso, Cy andCE are found to be important input parameters for prediddbd and

OMC.

Table 3.1. somef the compaction of test data and index properties of soil

Sample Gravel Sand Fines Dgg Dso D3 Dy MDD (m) OMC (m) MDD (s) OMC (s)
No. (%) (%) (%) (mm) (mm) (mm) (mm) (KN/m? (%) (kN/m® (%)
1 0 67 33 0.12 0.1 0.06 0.0319 18.2 11 17.2 14
2 3 64 33 0.15 0.11 0.06 0.014 20.1 9 19.1 12
3 0 91 9 0.11 0.1 0.09 0.075 16.3 13 15.4 16.5
4 0 92 8 0.11 0.1 0.09 0.075 16.0 135 15.2 16.5
5 2 82 16 0.2 0.17 0.1 0.06 17.9 12 17.0 16
6 0 84 16 0.2 0.17 0.1 0.04 18.1 11.5 171 15
7 4 68 28 0.27 0.2 0.08 0.024 20.0 8 18.9 11
8 0 70 30 0.21 019 0.08 0.02 20.0 9 18.9 11.5
9 2 70 28 0.22 019 0.08 0.019 20.4 9.5 19.3 12
10 0 57 43 0.16 0.1 0.055 0.021 20.0 9.5 18.9 12
11 0 96 4 0.12 0.11 0.1 0.08 16.3 14.5 15.4 18
12 0 94 6 0.11 0.1 0.09 0.08 16.2 155 15.4 18
13 0 92 8 0.7 0.58 0.27 0.085 19.8 11 18.8 12.5
14 0 92 8 0.17 0.14 0.1 0.075 16.3 14 15.6 17.5
15 3 52 45 0.16 0.09 0.04 0.017 20.4 9.5 19.5 10.5
16 2 79 19 0.21 0.19 0.1 0.05 18.2 10 17.3 12.5
17 2 72 26 0.2 0.18 0.09 0.045 18.9 11 18.1 14
18 0 83 17 0.21 0.2 0.15 0.05 17.9 11 17.0 14
19 0 54 46 0.15 0.095 0.058 0.027 19.0 9 18.1 12
20 0 71 29 0.2 0.16 0.08 0.021 19.2 9 18.2 12
21 2 74 24 0.2 0.16 0.09 0.038 18.5 9 17.6 11
22 3 77 20 0.195 0.15 0.092 0.05 17.6 11 16.7 14
23 2 60 38 0.15 0.11 0.06 0.026 18.8 9.5 17.9 12
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0.9
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0.425
0.26
0.8
0.24
0.39
0.4
0.5
0.28
0.5
0.29
0.31
0.21
0.7
0.425
0.28
0.3
0.3

0.2
0.22
0.28

0.3

0.2

0.201

0.2

0.7
0.25

0.3

0.3

0.19
0.21
0.18
0.23
0.21
0.29
0.6
0.4
0.57
0.24

0.09
0.19
0.21
0.2
0.21
0.425
0.3
0.4
0.19
0.35
0.78
0.15
0.25
0.32
0.2
0.6
0.2
0.3
0.3
0.39
0.2
0.37
0.21
0.29
0.19
0.5
0.31
0.2
0.23
0.21
0.75
0.19
0.19
0.2
0.2
0.14
0.18
0.19
0.48
0.19
0.21
0.19
0.8
0.8
0.14
0.2
0.17
0.21
0.2
0.21
0.425
0.3
0.4
0.19

0.05
0.11
0.17
0.14
0.18
0.21
0.21
0.22
0.1
0.21
0.4
0.11
0.19
0.2
0.15
0.32
0.13
0.18
0.19
0.21
0.14
0.21
0.15
0.18
0.13
0.35
0.21
0.14
0.16
0.15
0.3
0.12
0.12
0.12
0.11
0.054
0.11
0.12
0.21
0.08
0.11
0.062
0.425
0.425
0.075
0.15
0.1
0.16
0.11
0.18
0.2
0.2
0.22
0.1

0.026
0.05
0.051
0.08
0.09
0.083
0.11
0.15
0.06
0.14
0.19
0.08
0.14
0.1
0.09
0.15
0.082
0.1
0.1
0.12
0.09
0.15
0.09
0.1
0.081
0.17
0.15
0.08
0.09
0.085
0.085
0.09
0.08
0.079
0.06
0.02
0.09
0.085
0.1
0.03
0.05
0.03
0.09
0.11
0.033
0.05
0.07
0.07
0.08
0.09
0.08
0.13
0.15
0.06

19.0
17.4
17.9
17.7
17.4
19.4
18.7
18.5
18.7
18.4
18.3
17.3
17.5
18.9
18.2
195
18.3
17.9
17.9
17.9
17.3
17.8
17.3
17.4
17.4
18.3
17.9
17.9
17.7
17.7
20.7
16.2
16.7
175
18.5
19.2
16.7
16.9
18.9
19.2
19.7
20.0
20.2
20.0
18.6
19.2
16.9
16.8
16.6
16.7
18.6
18.2
18.4
17.3

11.5
13
12
12
9.5

10.5
12
9.5

10.5
11

12.5
11
10

125
8.5
10
11
10
12
10
9.5
11
12
13

10.5
11
9.5
10
10

155
14.5
9.5
10

13
12
11
9.5

8.5
10.0
10.5

9.5
115

11
135
10.5

10.5
11
115

18.1
16.6
16.8
16.7
16.6
18.4
17.8
17.6
17.8
17.4
17.4
16.4
16.6
18.1
17.3
18.5
17.3
16.9
17.0
17.0
16.4
16.8
16.4
16.6
16.5
17.4
17.0
17.1
16.7
16.7
19.6
15.2
155
16.7
17.3
18.1
15.9
16.0
18.0
18.2
18.7
19.0
19.3
19.0
17.6
18.1
15.6
15.9
15.7
15.9
17.6
17.3
17.4
16.4

11
15
16
15.0
15.0
12
13
15.0
12
13
14
15.5
14
125
16
11
13
14.5
13
15.0
13
12
145
15.0
16.5
13.5
14
12
125
125
115
18.5
18
12
12
11.5
16
15
14
115
12
11.5
12
12.5
13
12
14.5
135
17
135
11.5
135
135
14.5
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78 1 97 2 0.44 0.35 0.2 0.15 18.3 10.5 17.4 13

79 2 95 3 0.85 0.7 0.4 0.21 17.3 9 16.3 11
80 0 94 6 0.2 0.15 0.1 0.08 17.5 10.5 16.7 13

m: modified Proctor tesk: standard Proctor test

Table 3.2 Summary of Statistical values of input and output parameters

Fines(%) Sand (%) Dso Cy CE MDD OMC
Maximum 100 46 0.8 11.765 2696 20.75 18.50
Minimum 50 0 0.09 1.375 592 15.17 8.00
Average  88.5 10.44 0.274 4.55 1644 17.62 12.19
Standard 11.63 11.48 0.166 2.51 1054.4 1.183 2.18

Deviation

Table 3.3Cross correlation between the inputs and output

Sand (%) Fines (%) Dso C, CE MDD %\/ﬂ )C
Sand (%) 1
Fines (%) -0.995 1
Dso 0.40154 -0.4269 1
Cy -0.556 0.5448 0.324 1
CE 0 0 0 0 1
MDD -0.447 0.431 0.332 0.774 0.42 1
OMC (%) 0.309 -0.284 -0.205 -0.455 -0.643 -0.76 1

3.2 Database preprocessing
The database has been normalized between 0 to 1 f&VIMs model by using the
formula:

X - ><min

%n = X X
max ~ min

For ANN and MARS modeling, the actual database has been used.
3.3 Developed model equations
3.3.1 ANN model equation

In the neural network model, Levenbévtarquartdbackpropagation has been used
for minimization of error for both the models. The hyperbolic tangent sigmoid transfer
function for inputhidden layer and linear transfer function for hidden laydput layer has

been used to construct the model equatrbrch is found to be optimum for both the models.
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The final ANN model equation can be given as follows:

A;=-11.167a- 13.829b - 99.4175C, + 0.00034CE + 1363.383
A, =3.808a-3.1%6 b - 7.536C, - 0.000B33L CE-328.613
Az =0.03571a + 0.0228b - 0.3913C, - 0.000%8 CE -1.6421
A,=51.96l a + 39.188b + 32.941C, - 2.336CE -1.28%
MDD = -0.884L tanh(A) + 0.893L tanh(Ay) - 4.8144tanh(Ag) - 0.8341tanh(A;) + 20.2B
(3.2)
Ay =-11.2872a+ 10.0223b- 2.7313C, - 0.3716CE + 28.6707
A,=1.2647a+ 1.1810b - 2.5487C, - 0.0005CE - 118.8911
A3 =-0.0542a - 0.0574b + 0.0154C, + 0.0149CE - 37.0904
A= 3.2903 + 2.9314b - 3.6901C, + 0.0005CE - 295.7113

OMC =-3.1872tanh(A) + 3.8722tanh(A) -26.9176tanh(Ag) + 1.4801tanh(Al) +
11.7996 (3.3)

3.3.2 LSSVM model equation

For the LSSVM model, Radial basis kernel function has been used for transformation
of the inputs in the prediction of MDD and OMC. The optimum values of bias, regularization
parameter and with of radial basis function is given below andvahess for Lagange
multiplier for all the inputs havieeen represented Figure3.1and3.2:

For prediction oMDD

9 901.8988
b 1.967575
&2 19.42052
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3.3.3 MARS model equation

For developing the MARS 9land 16@basis functions have been introducedoirward
phase for modeling MDD & OMC respectively and in backward elimingtivese, 6 and 5
basis functions have been removed fromM#RS model. So, the final MARS contaid8
and 11basis functionsespectively for MDD and OMCTheoptimal MARS model is given
below
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Table 3.4 Basis functions of MARS model

Basis MDD OMC

Functions

BF; max(0,C, -5.33) max(0,CE-592)

BF; max(0, 5.33C,) max(0,C, -3.29)x max(0,b -2)
BF3 max(0, 2706CE) max(0,C, -3.29)x max(0, 2-b)
BF,4 max(0,b -5) BF, x max(0,C, -3.53)

BFs max(0, 5-b) BF, x max(0, 3.53C,)

BFs BFs x max(0,C, -2.93) max(0,C, -3.29)x max(0,C, -3.64)
BF; BFs x max(0, 2.93C,) max(0,C, -3.29)x max(0, 3.64C,)
BFs BF; x max(0,b -38) max(0, 3.29C,) x max(0,b -2)
BFg BFs x max(0,a-94) max(0, 3.29C,) x max(0, 2-b)
BF1o BFs x max(0, 94-a) max(0, 3.29C,) x max(0,a -95)
BFi11 BFy x max(0, 2.23C,) max(0, 3.29C,) x max(0, 95-a)
BF12 BF; x max(0,C, -4.17)

BFi3 BF, x max(0, 4.17C,)

MDD = 18.2 + 0.438BF; - 0.377 BR, - 0.000473 B+ 0.0327 Bk + 0.19 Bk - 0.0857 Bk
- 0.766 BF + 0.0411 Bk + 0.0461 Bl + 0.603 Bk + 0.173 Bh3 - 0.00906 Bk, - 0.0478
BFi3 (3.4)
OMC = 13.6- 0.00131 BF - 0.0203 BE - 0.516 BR + 0.00271 BE+ 21.7 Bk - 0.0304 Bk
-41.2 BR +0.743 B - 1.37 BR + 0.592 Bh( - 0.858 Bk (3.5)
Then all the models for the prediction of Maximum Dry density (MDD) were
compared as per Rodean Square Error (RMSEnd Mean Absolute Percentage Error
(MAPE).
3.4 Performance comparison among all the models
The error criteria like MAE, MAPE, RMSE, R and® or all the models in the
prediction ofMDD and OMC are presented in Table 3.5 and 3.§pextively.The results of
MARS have been compared wikNN and LS-SVM model developed. The comparisons
have been done in termsMeanAbsolutePercentag&rror MAPE), and Root Mean Square
Error (RMSE).Figure 3.7 and 3.8 depicthe bar chart oMAPE and RMSE for training
dataset, respectively. It is observed fromurgy3.7 and 3.8that the developed MARS

outperform ANN and LSSVM models. MARS does not give a generalizing function for the
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entire dataset, but splits the whole model into linear regiongpatilices discrete functions

for each of the produced linear area. Researches emphasized that regression equations
obtained by the MARS technique make robust and coherent parameter valuagans 3.5

and 3.6 represents the actual versus predicted vdlddDD and OMC respectively and

Figure 3.3 and 3.4 presents the performance of MARS model in the predictitib»&nd

OMC respectively.

Table 3.5Results of Different Models for Prediction of MDD of sandy soil

Correlation  Coefficient of

Model
Model MAE RMSE MAPE coefficient determination
Inputs )
(R) (R)
Mujtaba et .
C.,, CE Regression 0.432 0.512 2.46 0.9 0.81
al. (2013)
Training 0.436  0.52 2.48 0.9 0.81
ANN
Testing 0.4 0.49 2.31 0.9 0.81
Training 0.41 0.494 2.35 0.911 0.829
Modell  C,, CE SVM
Testing 0.45 0.54 2.526 0.89 0.767
Training  0.35 0.43 2 0.936 0.875
MARS
Testing 0.353 0.42 2.2 0.923 0.853
Training 0.335 0.43 1.89 0.935 0.872
ANN
Testing 0.35 0.43 2.04 0.926 0.858
a, b, G, Training 0.322 04 1.845 0.934 0.871
Model Il SVM
CE Testing 0.415 0.486 2.38 0.928 0.853
Training  0.32 0.39 1.82 0.94 0.887
MARS
Testing 0.33 0.4 1.91 0.937 0.877
Training  0.35 0.44 2 0.935 0.87
ANN
Testing 0.39 0.47 2.24 0.92 0.815
Model a, b, Dy, SUM Training  0.36 0.45 2.06 0.92 0.848
i Cu, CE Testing 0.369 0.462 2.11 0.93 0.86
Training 0.314 04 1.79 0.93 0.877
MARS
Testing 0.3 0.41 1.72 0.94 0.89

a: Sand (%), b: Fines(%)
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Table 3.6Results of Different Models for Prediction of OMC of sandy soil

Model Correlation  Coefficient of
Model Inputs MAE RMSE MAPE  coefficient determination
(R) (R
Mujtaba
et al. C,CE Regression 0.963 1.21 7.85 0.83 0.69
(2013)
ANN Training 0.91 1.18 7.62 0.855 0.71
Testing 1.05 1.2 8.9 0.857 0.687
Trainin 0.94 1.17 7.72 0.84 0.705
Modell C,CE  SVM 'ng
Testing 0.931 1.174 7.44 0.85 0.719
Training 0.81 0.98 6.75 0.89 0.79
MARS
Testing 0.756 0.93 6.24 0.91 0.825
ANN Training 0.856  1.08 6.93 0.874 0.76
Testing 0.851 1.05 7.18 0.871 0.745
Trainin 0.865 1.09 7.06 0.867 0.751
Modell & P & gym 9
CE Testing 0.91 1.12 7.606 0.855 0.72
Training 0.74 0.94 6.17 0.903 0.815
MARS
Testing 0.72 0.95 5.97 0.896 0.8
ANN Training 0.845 1.05 6.92 0.88 0.77
Testing 0.82 1.01 6.93 0.879 0.764
Model a, b, Dy, SUM Training  0.83 1.08 6.71 0.87 0.758
[} C., CE Testing 0.859 1.05 7.11 0.868 0.753
Training 0.75 0.934 6.15 0.907 0.822
MARS
Testing 0.77 0.93 6.52 0.9 0.8
22 OTraining dataset (R =0.94)
| ATesting dataset (R = 0.937) s
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Figure 3.3 Performances of MARS model for prediction of MDD
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Figure 3.8 Comparison of different models in terms of (a) MAPE and (b) RMSE for the
prediction of OMC
It is seen that model Il and Il gives better correlation as reflected by highelies

for bothMDD and OMC as compared to model I. When compared in terms of over fitting
ratio (i.e. ratio of RMSE for testing and training data), the value of over fitting ratio of model
Il is very closer to 1. Model Il has an advantage of having 4 inputs. The basis funétions o
model are presented rable3.5.The MARS model equations for the predictionwidD and
OMC are given by uations 10 & 11.
3.5 Sensitivity Analysis

Iman and Hora (1990) have investigated the performance of a sensitivity measure
based on the percentagariance inf explained by any input variable;.XThis technique is
known as measure of importance, and its use is associated with the estimation of the quantity

s, =Vafx\i/§((‘;|)xi)] 3.6

where E(f | X;) indicates the expectation valuefokhen the | variable is fixed to the value

Xi, Var,[|stands for the variance of the argument over all the possible valuesaoid X

Var(f) is the unconditional (total) variancefofin the present paper, the outcomes inf thiee
observed by keeping mean of the vélue fixed for other arguments varying. From the

sensitivity analysis, it is found that the value of sandfaresare more sensitive towards the
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evaluation ofMDD (i.e. 89% and 596 respectively) andDMC (25% and57% respectively)
followed byC, and compaction energy. The sensitivity of all the input variables is presented
in Figure 3.9. Hence for the prediction, the values of sand (%) famek (%) have to be

determined very precisely in the laboratory.

Sensitivity of parameters
100

EMDD
BO0MC

Sand(%) Fines(%) Cu

Figure 3.9 Sensitivity of the parameters in predictiorof MDD and OMC

3.6 Discussion

The performances of the developed models are better than other models and gives
very promising result in pdiction. In the present study, model equations has been developed
and compared with the regression model given by Mujtaba et al. (2013). Based on the
developed MARS model, the following conclusion may be drawn:
. MARS gives a simplified equation for predmi of MDD andOMC.
. The predictability of MARS equation is found to be better than the empirical equations.
Based on sensitivity analysis, it is observed that sand (%) aNd2B and both sand and

fines (%) affectOMC.
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CHAPTER4
PREDICTION OF RELATIVIBENSITY OF CLEAN SAND

4.1 Introduction

Field compaction of sands usually involves different equipments with the compaction
energy varying significantly. The relative density is the better indicator for specifying the
compaction of granular soil. If thelagive density can be correlated simply by any index
property of the granular soll, it can be more useful in the field. The relative density is defined
in terms of voids ratio and the minimum and maximum voids ratio depend on the mean grain
size. Thereforethe effect of mean grain sizB) on the relative density of sand has been
studied at different compaction energi€s. (Relative density of sand is greatly affected by
particle shapes, sizes and their packing.

Several publications have appeared inerécyears documenting the prediction of
compaction parameters of coagained soils (Korfiatis and Manikopoulos 1982; Omar et
al. 2003). Very limited researches have been done to predict the relative density of sand.
Present work ien attempt to develop single empirical correlation for relative density of
clean sands. In this paper a model is developed to predict the relative density uSWYILS
which proves to be very effectivéhe empirical correlation given by Patra et al. (2010) is
given by

D, = ADg; (4.1)
where A and B are the functions of compaction energy. A = 0.2E610.85 and B 3

0.03 InE + 0.306.
4.2 Selection of the input parameters

The maximum, minimum, average, and standard deviation for the data set used for
modeling are shown in Tabkel. The successful application of a method depends upon the

identification of suitable input parameters. The selection of the input parametased dn
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the correlation coefficient (R) with output. This is shown in Tak® The more the absolute
value of correlation coefficient is close to value 1, the stronger will be the linear correlation
while closer to 0 will be very poor correlation betwélea tested variables. From Talle, it

is observed thabs, C,, Dsp andE are the important input parameters for predicindpaving
crosscorrelation values of 0.2320.188, -0.196 and 0.846 respectively. Out of these
variables, two parametei3so and E are considered for development of model for direct
comparison with the regression model reported by Patra et al. (A2BEO)aining dataset has
been reported in Table 4.3.

Table 43 statistical values of parameters

Gs Cy Dso E Dy
Mean 2.633 3.606 0.880 1240 65.7
Standard Deviation 0.061 2.233 0.614 913 18.1
Minimum 2535 1420 0.340 360 33.7
Maximum 2.764 9.830 2.600 2700 97.7

Table 44 crosscorrelation between different parameters

Gs Cu Dso E Dy
Gs 1.000
Cu -0.718 1.000
Dsg  -0.682 0.895 1.000
E 0.000 0.000 0.000 1.000
D, 0.232 -0.188 -0.196 0.846 1.000

4.3 Database preprocessing
The database has been normalized between 0 to 1 #&VMs model by using the

formula
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For ANN and MARS modeling, the actual database has been used.

Table 4.3 Training database considered for the model development

S..No.| G C, Dso E D, Vathes
1 | 2662 | 1.88 | 039 | 360 | 42.76 | -15.05
2 | 2726 | 1.44 | 035 | 600 | 67.88 | -5.86
3 | 2668 | 1.61 | 035 | 360 | 434 | -30.37
4 | 2634 | 1.82 | 054 | 360 | 42.81 | 29.96
5 | 2662 | 1.88 | 039 | 2700 | 95.16 | 64.19
6 | 2564 | 439 | 11 | 600 | 5422 | -22.54
7 | 2556 | 393 | 08 | 360 | 3597 | -0.67
8 | 2705 | 157 | 035 | 2700 | 9453 | 17.76
9 | 2.726 | 1.44 | 035 | 2700 | 87.3 |-106.97
10 | 2581 | 455 | 1 600 | 5457 | -17.66
11 | 2.717 | 209 | 055 | 2700 | 80.61 | -85.23
12 | 2702 | 1.77 | 036 | 360 | 4585 | 21.55
13 | 2692 | 1.74 | 036 | 1300 | 82.01 | 16.25
14 | 2586 | 7.27 | 1.95 | 2700 | 81.96 | 16.56
15 | 2.702 | 1.77 | 036 | 600 | 69.67 | 38.58
16 | 2.652 | 1.94 | 058 | 2700 | 80.01 | -82.80
17 | 2556 | 393 | 08 | 2700 | 77.88 | -38.84
18 | 2556 | 468 | 1.25 | 2700 | 78.65 | -25.07
19 | 2652 | 1.94 | 058 | 600 | 64.16 | 38.70
20 | 2697 | 153 | 041 | 360 | 41.97 | -37.25
21 | 2.656 | 1.65 | 036 | 1300 | 83.83 | 45.68
22 | 2663 | 1.77 | 036 | 360 | 41.22 | -55.67
23 | 2.764 | 1.54 | 0.375 | 2700 | 89.09 | -58.06
24 | 2564 | 439 | 1.1 | 2700 | 77.08 | -43.94
25 | 2696 | 1.74 | 035 | 600 | 68.83 | 19.36
26 | 2578 | 983 | 24 | 2700 | 8419 | 2.06
27 | 2554 | 4 125 | 1300 | 69.02 | 10.00
28 | 2.649 | 2.05 | 035 | 360 | 42.79 | -18.98
29 | 2566 | 438 | 1.2 | 1300 | 71.26 | 25.83
30 | 2627 | 229 | 07 | 1300 | 72.97 | 263
31 | 2589 | 7.33 | 1.7 | 600 | 5822 | 820
32 | 2655 | 213 | 058 | 2700 | 88.32 | 58.68
33 | 2554 | 4 125 | 600 | 533 | -26.48
34 | 2717 | 209 | 055 | 600 | 58.9 | -57.67
35 | 2711 | 1.67 | 038 | 2700 | 91.45 | -11.39
36 | 2566 | 438 | 1.2 | 360 | 3855 | 4503
37 | 2688 | 2.26 | 06 | 360 | 37.34 | -31.20
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38 2711 | 1.67 0.38 1300 | 80.42 | -2.96
39 2592 | 741 1.6 360 37.43 | 8.57
40 2575 | 3.27 0.49 2700 87.2 39.14
41 2.59 6.67 11 1300 | 75.32 | 14.18
42 2729 | 1.44 | 0.365 600 69.82 | 33.23
43 2589 | 7.33 1.7 2700 | 80.88 | -11.69
44 2729 | 144 | 0.365 | 2700 | 94.73 | 26.69
45 2.697 | 2.05 0.35 1300 | 82.11 | 19.47
46 2.574 | 4.39 1.25 2700 | 78.29 | -20.52
a7 2684 | 2.05 0.38 600 66.69 | 8.40
48 2.697 | 1.53 0.41 600 63.23 | -54.61
49 2.586 | 7.27 1.95 1300 73.5 -3.48
50 2576 | 4.44 0.78 600 54.66 | -16.34
51 2.535 3.8 1.3 2700 | 76.54 | -23.30
52 2.574 5 11 1300 | 76.52 | 83.90
53 2702 | 1.77 0.36 1300 | 74.07 | -115.79
54 2.662 | 1.88 0.39 600 63.34 | -50.83
55 2.584 | 8.08 1.4 600 59.96 | 6.57
56 2711 | 1.67 0.38 600 65.59 | -24.61
57 2707 | 161 0.34 360 46.17 | 12.38
58 2.59 4.55 0.93 1300 | 68.44 | -40.51
59 2.649 | 2.05 0.35 600 63.75 | -51.64
60 2668 | 1.61 0.35 600 63.92 | -67.08
61 2.576 | 4.44 0.78 360 36.1 0.53
62 2.668 | 1.61 0.35 2700 | 96.45 | 51.18
63 2.663 | 1.77 0.36 1300 | 79.39 | -27.07
64 2.556 | 3.93 0.8 1300 69.5 | -25.66
65 2.679 1.8 0.35 600 65.86 | -27.83
66 2.584 | 7.37 2.4 1300 | 73.63 | 11.90
67 2655 | 213 0.58 600 63.82 | 36.01
68 2.554 4 1.25 360 34.31 | -15.62
69 2.649 | 2.05 0.35 2700 | 89.46 | -46.50
70 2.574 5 11 600 61.26 | 90.84
71 2584 | 7.37 2.4 360 36.27 | 11.38
72 2696 | 1.74 0.35 360 45.14 | 4.93
73 2.679 1.8 0.35 360 43.42 | -20.82
74 2576 | 4.44 0.78 1300 | 69.59 | -30.43
75 2.601 3 0.41 360 39.76 | -9.04
76 2.589 | 6.67 2.6 2700 | 81.67 | -0.36
77 2592 | 741 1.6 1300 | 73.16 | -21.56
78 2.566 | 4.38 1.2 2700 | 86.09 | 108.90
79 2592 | 741 1.6 2700 | 80.63 | -22.21
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80 2764 | 154 | 0.375 | 1300 | 78.33 | -40.68
81 2726 | 1.42 0.75 2700 | 79.84 | 0.00

82 2.581 | 4.24 1 600 53.14 | -41.74
83 2.652 | 1.94 0.58 1300 | 74.83 | -13.47
84 2652 | 194 0.58 360 41.58 | 24.94
85 2584 | 7.37 2.4 2700 | 8297 | 17.12
86 2.607 | 4.86 1.4 1300 | 7152 | 9.71

87 2.589 | 6.67 2.6 360 36.48 | -4.96
88 2.617 | 7.69 1.15 360 36.9 | -11.93
89 2.578 | 9.83 2.4 1300 | 71.23 | 1.73

90 2.627 | 2.29 0.7 360 41.03 | 54.77
91 2.656 | 1.65 0.36 360 44.48 | -7.03
92 2.537 | 3.66 1.3 360 3449 | -1.94
93 2586 | 7.27 1.95 360 34.94 | -15.77
94 2729 | 144 | 0.365 | 1300 | 80.76 | -4.44
95 2.587 | 7.37 2.4 2700 81 -15.73
96 2.587 | 7.37 2.4 600 56.15 | -16.62
97 2.7 1.85 0.34 2700 | 95.34 | 36.21
98 2.662 | 1.88 0.39 1300 | 83.03 | 47.18
99 2584 | 7.37 2.4 600 58.36 | 20.24
100 2.59 4.55 0.93 2700 | 77.64 | -43.29
101 2581 | 455 1 1300 | 71.28 | 10.47
102 2697 | 2.05 0.35 600 69.91 | 51.10
103 2.607 | 4.86 1.4 2700 | 77.86 | -41.76
104 2.627 | 2.29 0.7 600 62.49 | 56.43
105 2.564 | 4.39 11 1300 | 68.75 | -21.03
106 2711 | 1.67 0.38 360 43.57 | -14.51
107 2592 | 741 1.6 600 57.53 | -9.63
108 2.688 | 2.26 0.6 600 60.57 | -8.75
109 2.68 1.57 0.35 2700 | 96.78 | 55.28
110 2.535 3.8 1.3 1300 | 66.58 | -16.76
111 2.566 | 4.38 1.2 600 59.56 | 68.29
112 2.617 | 7.69 1.15 2700 | 84.36 | 10.56
113 2.589 | 6.67 2.6 1300 | 71.54 | -6.45
114 2.693 | 1.65 0.35 600 69.94 | 34.65
115 2.663 | 1.77 0.36 2700 | 91.75 | -14.95
116 2.627 | 2.29 0.7 2700 | 85.61 | 67.05
117 2697 | 2.05 0.35 2700 | 94.37 | 35.39
118 2764 | 154 | 0.375 600 68.93 | 25.26
119 2.693 | 1.65 0.35 1300 | 81.88 | 9.14

120 2.584 | 8.08 1.4 2700 | 82.83 | 1.55

121 269 | 1.74 0.35 2700 94.4 | 21.93
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122 2729 | 1.44 | 0.365 360 46.66 | 21.24
123 2.68 1.57 0.35 360 48.66 | 55.43
124 2.601 3 0.41 2700 | 85.27 | -35.31
125 2586 | 7.27 1.95 600 56.36 | -9.90

126 2.656 | 1.65 0.36 600 66.78 | -13.84
127 2693 | 1.65 0.35 2700 93.4 1.77

128 2578 | 9.83 2.4 360 35.19 | -1.39

129 2.655 | 2.13 0.58 1300 | 77.56 | 34.00
130 2.7 1.85 0.34 600 69.67 | 33.85
131 2684 | 2.05 0.38 1300 | 81.85 | 26.77
132 2.68 1.57 0.35 1300 | 83.86 | 41.58
133 2.556 | 4.68 1.25 1300 | 68.57 | -32.33
134 2.574 5 11 2700 87.3 | 107.98
135 2634 | 1.82 0.54 600 64.39 | 25.15
136 2.557 | 5.56 1.25 2700 | 81.13 | -9.86

137 2.668 | 1.61 0.35 1300 | 82.43 | 17.99
138 2707 | 161 0.34 2700 | 97.72 | 66.04
139 2.554 4 1.25 2700 | 80.28 | 28.38
140 2726 | 1.42 0.75 600 54.63 | -45.71
141 2684 | 2.05 0.38 360 44.2 13.78
142 2.557 | 5.56 1.25 600 54.26 | -36.35
143 2726 | 1.42 0.75 360 36.15 | -29.39
144 2581 | 455 1 360 349 | -18.90
145 2.679 1.8 0.35 1300 | 83.33 | 35.08
146 2.556 | 4.68 1.25 600 54.53 | -19.98
147 2575 | 3.27 0.49 600 59.18 | -17.12
148 2.535 3.8 1.3 360 34.43 | -7.07

149 2697 | 2.05 0.35 360 46.98 | 50.90
150 2.59 6.67 11 360 38.66 | 17.79
151 2.589 | 6.67 2.6 600 58.29 | 0.70

152 2702 | 1.77 0.36 2700 | 88.47 | -69.65
153 2726 | 1.44 0.35 1300 | 77.94 | -57.56
154 2574 | 4.39 1.25 600 5591 | 8.23

155 2.68 1.57 0.35 600 70.3 38.08
156 2.59 4.55 0.93 360 35 -17.10
157 2764 | 154 | 0.375 360 45.73 | 13.83
158 2576 | 4.44 0.78 2700 | 79.15 | -22.98
159 2697 | 153 0.41 1300 | 79.77 | -2.41

160 2717 | 2.09 0.55 360 38.72 | -26.42
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4.4 Different developed model equations

The different model equations developed from ANN, SVM B#RS are presented
in the next segments.
4.4.1 ANN Model equation

In the neural network model, Levenbeviarquartdbackpropagation has been used
for minimization of error. The hyperbolic tangent sigmoid transfer function for -iniolaien
layer and linear transfer function for hidden lagetput layer has been used to construct the
model equation. The final ANN modetjuation can be given as follows:

A1=0.0258 C; 7 0.0149Ds01 0.0052E + 2.5603
A>=-0.1201C, + 0.0784Dso 1 0.0005664 + 1.608
A3=-9.4862C, + 1.7756Dso 1 0.000566E + 24.5579
A4 =0.1203C, + 3.5595D5, 1T 0.000243%E 1 1.0608

D, = 69.4104 18.4647 taniy) i 12.1131 tanty) + 1.4698 tanks) i 11.4156 taniiy)
(4.2)

4.4.2 LSSVM Model equation

For the LSSVM model, Radial basis kernel function has been used for transformation
of the inputs. The optimum values of bias, regularization parameter and with of radial basis
function is given below and the values for Lagrange multiplier for all thetsnipas been
represented ifigure4.1:

b=-0. 089599 020482817
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4.4.3 MARS model equation

C walue ferghe bSFSY¥M maglel for prediction of D,

For developing the MARS,3lbasis functions have been introducedarward phase

and in backward elimination phasebdsis functions have been removed from Mh&RS

model. So, the final MARS contains 9 basis functions. dpmal MARS model is given

below

+0.024 4BFs

BF; = max(0,E -600)
BF, = max(0, 600GE)
BF; = max(0, 0.75 Ds)
BF, = BF1x max(0, Z00-E)
BFs = max(0, 3- C)
BFs = BF. x max(0, 0.4 Ds)
BF; = BFs x max(0,C, -2.26)
BFs = BFs x max(0, 2.26 C,)
BFy = max(0, 5 C,)
D, =58.1 +0.0114BF; -0.088A&BF, +26.7<BF3 +6.14e006xBF, +7.83xBF5

+258xBF; -2.64xBFg -2.98xBFg
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4.5 Result comparison and discussion

The statistical performances i.e. Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), Correlation Coefficient (R) amwefficient of efficiency (B for the model
are presented inable4.4.

Table 4.4 Results of Different Models for Prediction of Relative density of clean sand

Model mggfs' RMSE | MAPE | (R) | (R) Ov‘ig;igi”g
Pa(tzrgleg)a" Dso, E Regression 523 | 738 | 96 0.92
ini 245 | 328 | 099 | 098

ANN 123,'%9 254 | 307 | 099 | 098 1.04

Model I | Do E | SvM R T o | 0%
ini 227 | 278 | 0992 | 0.984

MARS lasltri]rl:;g 221 | 2.94 | 0993 | 0985 0.97

ANN Training 2.31 2.9 0.992 0.984 091
Testing 2.1 2.48 | 0.993 | 0.985

Model Il | C.Dso E | SVM las't’l‘r':;g 2'227 2;5 gzggj 8:223 0.88
ini 221 | 264 | 0992 | 0985

MARS Igt?rlwr;g 213 | 2.87 | 0993 | 0.985 0.96
ini 23 | 29 | 099 | 0983

ANN Igt?,lqr;g 215 | 2.66 | 0.993 | 0.983 0.93

Model 1| C=GuPe0 | sum | T e T osms | 1S
ini 22 | 28 | 0993 | 0.986

MARS 123:129 218 | 25 | 0992 | 0.981 0.99

The model was compared in terms of correlation coefficient (R) and coefficient of
efficiency (R) to access the performance of mod@lse value of R has been determined by

using the following equation:

nC v.yp) ( N( Yp)

R=
JIn v A v yp)?

where y = observed value, ¥ predicted value, n = number of observations

Smith (1986) suggested that the value of R lies between 0 to 1. He suggested some
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gui delines for deciding the performance of t
0.2 < |R| < 0.8: correlatiokei st s and | R|] O 0.2: a weak corr
|IR| is greater than 0.9, then a very strong correlation exists between the variableBalbleom

4.3, it was observed that the value of |R| is nearly equal to 0.99; hence it shows aongry str

relation between inputs and outputs.
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Figure 4.4 Comparison between experimental and predicted value Bf

(Patra et al., 2010).

The error criteria MAPE and RMSE has been showfigare 4.2 and 4.3 for all the

models andtican be observed that the develop&SVM modelshows good correlation in

both traininghaving three inputse hi c h 1 s

comparatively

t he

of D; as compared to other modeEhe optimum values af , 2 anid b presented iBection

4.3.2 and the Lagrange multipliers are shoinrFigure4.1. By using these optimum values

and U, the relative de

nsity can be

nbei

predicte

value ofD; by regression model is shownkigure4.4 and the performance of th&-SVM

model in training and testing is shownkigure4.5for present studyl he variation of actual

and the predicted valdevebeen shown ifrigure 4.6.
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4.6 Sensitivity Analysis
The details of the sensitivity analysis have been given in section B®@ the
sensitivity analysis, it is found that the mean grain size ofCthé&0%) is more sensitive

towards the evaluation of Relative density compared to nlean grain size (42%),
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compaction energ\8o). Hence for the prediction, the value@fandmean grain size has to

be determined very preciselfhe sensitivity of different paramess has been shown in

Figure 4.7 Sensitivity of the parameters

4.7 Discussion

This study presents @ efficient approach for the prediction oflative density using
ANN LS-SVM and MARS.The proposed5VM model has shown good agreement with
experimental resultas corresponding correlation coefficients were found to B8 0he
proposed model is valid for the ranges of the experimental databastéousieeimodeling.
To obtainthe main effects of each varialie relative densitysensitivity analysidias been
performed. As a resultoefficient of uniformity and mean diameter of the sand particles
affect the model significantly. fie proposed model and formulatiéor relative density is

guite accuratandhencepracticaly applicablein thefield.
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CHAPTERDS
PREDICTION OF COMPRESSION INDEX OF CLAY
5.1 Introduction

Settlement due to expulsion of pore water is of engineering importance. Due to
increase in stress caused by the constructiofouofdations or other loads, the soil
compresses. The various causes of compression are deformation of soil particles, relocation
of soil particles, and expulsion of water or air from the void spaces. To calculate settlement
in clayey soil layers,laboratory consolidation tests which depict -dimaensional
compression behavior need to be performed on samples taken as representative.

As the oedometer test in laboratory takes a much longer time than simpler
index property testsvarious attempts have been made to estimate this index to obtain an
initial estimate and also to cross check the results of the consolidation test. Empirical
formulas relating various parameters to the compression index have been presented by
many researchers (Azzouz et al.,, 1976; Koppula, 1981; Herrero, 1980; Park and Lee,
2011; Nishida, 1956; Cozzolino, 1961; Sower, 1970; Ahadiyan et al., 20a8hafdi
and Andersland, 1992; Yoon and Kim, 2006; Ozer et al., 2008). Howeluer to fact that
the index is affected by multiple parameters and highlylinear, simple regression
analysis is not sufficient and hence Horear regression such AN, SVM and MARSare
more effective.The advantage of thesechniquesis the ability of learning complex
relationships between mullimensional dataand has been applied in a number of
geotechnical problems where mathematical models sustain simplifications, lack of robustness
or are not available at all.

The data set (Kalamg 2012) consists of consolidation test data for soil samples
collected from 125 construction sites in province of Mazandaran,Diefierent modelshave

been developed using this set of data. The results from the developed model have been
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compared withthe results obtained by using various empirical equations available in
literature. It is found that the ANN model gives better prediction and finally the model
equation is presented.
5.2 Data base selection

In the current paper, 391 experimental resultsashpression index have been used. The
data set is subdivided into two groups as training data set (290 data) and testing data set (101
data). Liquid Limit (LL), Plasticity index (PI), natural water content)(and initial void ratio
(ep) are consideredsanput and compression index@s output parameter. From the cross
correlation matrix (Tablé.l), it is observed that the above inputs and @ with cross
correlation values of 0.75 and 0.82 respectively affegtnm@re than the other input
parametergi.e. LL and PIl). Henceéhree models(considering two inputs, three inputs and
four inputs as shown in Table 5.8)e selected for the prediction of compression index. The
statistical values of all the input and output parameters are given inS2ble

Table 5.1 crosscorrelation matrix for all data

LL Pl Wh € Ce

LL 1.00

Pl 0.97 1.00

Wh 0.33 0.28 1.00

€ 031 0.26 0.90 1.00

Ce 040 036 0.75 0.82 1

Table 5.2 statistical value of the parameters
LL Pl Wh & Cec
Mean 39.8 18.58 28.61 0.767 0.206
Standard
Deviation 9.89 857 7.79 0.176 0.0774
Minimum 24 3 10.2  0.357 0.05
Maximum 81 50 70 1.882 0.628
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5.3 Database preprocessing
The database has been normalized between 0 to 1 #&VM model by using the

formula:

X, = X - Xmin

Xmax' Xmin
For ANN and MARS modeling, the actual database has been used.

Table 5.3 Database considered for modeling for training.

NSCIJI. LL | PH] W eo Ce va%:es l\?cl) LL | PH] W © Ce valltes
1 31| 12| 24,5 | 0.748| 0.266| 48.19 151 | 44 | 22| 28.8| 0.75 | 0.209| 5.83
2 44 | 21| 145 | 0.476| 0.126| 0.96 152 | 56 | 36 | 20.2| 0.498| 0.169| 19.04
3 42 | 21 | 20.5 | 0.601| 0.229| 48.48 153 | 32 | 12| 21.6| 0.665| 0.166| -0.41
4 34 | 13| 20.5 | 0.565| 0.076| -37.75 154 | 47 | 24 | 37.5| 0.915| 0.29 | 18.36
5 29 | 7 | 29.3|0.795| 0.186| -5.10 155 | 44 | 23| 10.2| 0.357| 0.08 | -23.58
6 | 35| 16| 25.6 | 0.803| 0.203| -13.18 156 | 58 | 36 | 34 | 0.867| 0.196| -47.69
7 29 | 8 | 20.5|0.717| 0.146| -21.72 157 | 29 | 11| 24.7| 0.71 | 0.19 8.13
8 43 | 21| 17.2 | 0.73 | 0.206| -7.17 158 | 32 | 12| 17.7| 0.74 | 0.159| -31.45
9 41 | 20 | 35.3 | 0.909| 0.226| -18.01 159 | 35 | 13| 30.8| 0.825| 0.2 -8.06
10 | 31| 10| 12.7 | 0.63 | 0.236| 40.86 160 | 52 | 28 | 17.6| 0.615| 0.21 | 31.81
11 | 62 | 34| 36.5 | 0.959| 0.375| 43.02 161 | 34 | 16| 27.6| 0.738| 0.189| -3.19
12 | 31| 12| 26.1 | 0.778| 0.189| -8.89 162 | 46 | 25| 23.8| 0.647| 0.123| -32.44
13 | 33| 16| 34 |0.894| 0.329| 55.46 163 | 43 | 22| 31.1| 0.964| 0.365| 51.02
14 | 43 | 20| 28.1 | 0.719| 0.156| -18.12 164 | 53 | 35| 23.1| 0.642| 0.169| -8.04
15 | 37 | 21| 16.6 | 0.507| 0.226| 53.92 165 | 36 | 16 | 31.8| 0.831| 0.206| -9.89
16 | 52 | 28 | 28.9 | 0.806| 0.28 | 33.59 166 | 36 | 20| 20 | 0.562| 0.163| 6.28
17 | 41 | 18| 27.1 | 0.666| 0.116| -29.36 167 | 39 | 20 | 32.1| 0.823| 0.236| 6.54
18 | 31| 12| 239 | 0.621| 0.156| 5.86 168 | 34 | 13| 18.7| 0.711| 0.22 | 17.73
19 | 35| 13| 35.3 | 0.841| 0.256| 27.58 169 | 28 | 5 | 30.8|0.751| 0.173| -2.21
20 | 40 | 21| 30.9 | 0.926| 0.379| 70.88 170 | 45 | 21| 23.4| 0.697| 0.176| -3.92
21 | 30| 8 | 23.9 | 0.605| 0.133| 0.40 171 | 52 | 29| 70 |1.882| 054 | 1.21
22 | 37 | 15| 30.8 | 0.784| 0.199| 0.02 172 | 43 | 21| 22.1| 0.643| 0.203| 24.19
23 | 51| 25| 19.2 | 0.586| 0.186| 27.75 173 | 28 | 7 | 22.8| 0.619| 0.153| 9.43
24 | 31| 11| 25.3|0.723| 0.169| -6.89 174 | 49 | 25| 39.6| 0.891| 0.26 2.41
25 |1 39| 21| 25.3|0.647| 0.259| 58.58 175| 29 | 11| 29.7| 0.778| 0.196| -0.90
26 | 34| 12| 19.5| 0.609| 0.189| 27.19 176 | 34 | 12 | 28.1| 0.824| 0.269| 36.67
27 | 40 | 18 | 40.7 | 1.045]| 0.259| -21.46 177 | 33 | 9 | 29.5|0.784| 0.143| -30.96
28 | 26 | 6 | 24.8 | 0.704| 0.226| 41.06 178 | 27 | 9 20 | 0.63 | 0.193| 26.24
29 | 46 | 25| 30.3 | 0.775]| 0.173]| -28.37 179 | 40 | 18 | 25.2| 0.588| 0.16 | 16.21
30 | 52 | 28 | 19.5| 0.517| 0.14 | 7.17 180 | 29 | 7 | 31.4|0.839| 0.15 | -39.57
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31 | 62 | 34| 37.2| 0.937| 0.345| 27.61 181 | 37 | 16 | 27.6| 0.748| 0.236| 28.75
32 | 34| 13| 27.2| 0.759]| 0.163| -19.71 182 | 44 | 24| 21.9| 0.686| 0.166| -17.55
33 | 34| 13| 22 | 0.675| 0.216| 30.61 183 | 53 | 28| 23 | 0.608| 0.16 | 5.27

34 | 67| 43| 39.1 | 0.939| 0.36 | 30.08 184 | 48 | 28 | 32.4| 0.85 | 0.249| -1.39

35 | 35| 15| 36.6 | 0.883| 0.246| 7.84 185 | 39 | 20 | 28.5| 0.653| 0.186| 14.30
36 | 53| 28 | 22.4 | 0.583| 0.169| 16.50 186 | 36 | 14 | 27.4| 0.777| 0.229| 19.33
37 | 37| 15| 33 | 0.88 | 0.209| -16.80 187 | 44 | 24| 27 | 0.629| 0.166| 2.61

38 | 62| 44| 38.4 | 1.014| 0.326| -4.13 188 | 25 | 5 | 22.5| 0.595| 0.183| 34.81
39 | 39| 21| 21.6 | 0.552| 0.11 | -22.06 189 | 43 | 25| 25.1| 0.708| 0.156| -30.11
40 | 42 | 20 | 25.2 | 0.645| 0.159| -0.69 190 | 32 | 11| 28.8| 0.703| 0.206| 26.58
41 | 33| 8 | 27.2 | 0.881| 0.266| 26.02 191 | 36 | 17 | 28.8| 0.759| 0.21 | 6.48

42 | 46 | 24 | 33.6 | 0.847| 0.296| 38.12 192 | 29 | 8 | 26.7| 0.663| 0.12 | -20.25
43 | 36 | 19| 27.2 | 0.678| 0.153| -16.91 193 | 34 | 14| 24.6| 0.676| 0.226| 38.62
44 | 43| 24| 29.8 | 0.789| 0.22 | -2.39 194 | 58 | 33| 36.2| 0.894| 0.32 | 27.09
45 | 32| 11| 20.4 | 0.699]| 0.173| -4.21 195 | 53 | 27 | 39.8| 0.97 | 0.252| -29.34
46 | 37 | 16 | 23.5| 0.596| 0.05 | -60.57 196 | 30 | 11| 26.1| 0.752| 0.183| -4.82

47 | 62 | 36 | 34.4 | 0.806| 0.312| 43.79 197 | 30 | 8 | 20.3| 0.546| 0.149| 19.36
48 | 29| 9 | 26.1 | 0.786| 0.209| 7.52 198 | 36 | 17 | 26.5| 0.676| 0.159| -8.19

49 | 49 | 29| 32.1| 0.805| 0.233| -1.23 199 | 50 | 29| 31.2| 0.74 | 0.259| 33.68
50 | 37 | 17 | 28.3 | 0.734| 0.159| -20.19 200 | 36 | 14 | 33.7| 0.844| 0.203| -9.88

51 | 31| 12| 229 | 0.628]| 0.143| -5.69 201 | 43 | 19| 29.8| 0.828| 0.186| -24.93
52 | 45| 22| 11.5 | 0.537| 0.13 | -16.00 202 | 39 | 21| 21.6| 0.552| 0.11 | -22.06
53 | 35| 13| 23.2 | 0.652| 0.206| 32.81 203 | 44 | 26 | 32.1| 0.761| 0.199| -10.71
54 | 35| 16| 25.2 | 0.663| 0.14 | -17.94 204 | 40 | 21| 23.7| 0.585| 0.22 | 47.70
55 | 40| 19| 20 | 0.605| 0.196| 26.18 205 | 27 | 8 | 25.3| 0.661| 0.156| 1.73

56 | 34| 10| 42.1 | 1.013| 0.355| 53.34 206 | 42 | 20| 30.3| 0.755| 0.193| -2.40
57 | 34| 14| 22.1| 0.573| 0.123| -7.93 207 | 41 | 24| 16.4| 0.605| 0.173| -5.29

58 | 41| 20| 21.3 | 0.699| 0.14 | -35.28 208 | 34 | 13| 42.2| 1.161| 0.219| -67.95
59 | 46 | 24| 26.2 | 0.666| 0.126| -31.01 209 | 34 | 12| 25.2| 0.675| 0.229| 45.88
60 | 25| 5 | 48.7 | 1.222| 0.41 | 24.47 210 | 52 | 31| 45.7| 1.132| 0.379| 10.71
61 | 47 | 29| 31.4 | 0.826| 0.179| -44.72 211 | 45 | 22| 27.1| 0.809| 0.22 | -4.65

62 | 29| 9 | 2814 | 0.777| 0.14 | -34.82 212 | 34 | 12| 24.1| 0.668| 0.106| -35.58
63 | 45| 26 | 34.5| 0.808| 0.319| 59.15 213 | 45 | 22| 27.1| 0.652| 0.18 | 12.61
64 | 39 | 17| 41.1 | 0.993| 0.259| -8.31 214 | 33 | 12| 28 | 0.703| 0.103| -43.34
65 | 46 | 23| 18.5| 0.611| 0.173| 7.75 215 | 49 | 28| 34.4| 0.864| 0.223| -21.23
66 | 37 | 15| 29.6 | 0.761| 0.173| -12.26 216 | 53 [ 29| 39 | 0.98 | 0.26 | -29.57
67 | 29 255 | 0.643| 0.126| -14.02 217 | 28 | 9 |19.5] 0.73 | 0.113| -50.62
68 | 29 24,7 | 0.763| 0.259| 47.18 218 | 57 | 34| 35 | 0.88 | 0.256| -11.04
69 | 36 | 16 | 22.5| 0.599| 0.149| 1.81 219 | 51 | 32| 32 | 0.829| 0.31 | 40.25
70 | 36 | 13 | 25.9 | 0.762| 0.103| -60.26 220 | 56 | 35| 25.2| 0.569| 0.146| -6.84
71| 29| 11| 25.1 | 0.658| 0.149| -6.27 221 | 44 | 24 | 37.8| 0.965| 0.229| -34.74
72 | 34| 12| 216 | 0.83 | 0.28 | 32.83 222 | 35 | 15| 23.5| 0.507| 0.11 | -1.01
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73 | 42| 19| 40.3 | 1.04 | 0.27 | -14.86 223 | 31 | 11 | 41.5| 1.195| 0.259| -47.66
74 | 38 | 19| 35.4 | 0.859]| 0.249| 10.19 224 | 31 | 7 | 27.5]0.738| 0.173| 0.82
75 | 45| 22 | 19.7 | 0.661| 0.149| -19.36 225 | 30 | 10 | 54.3| 0.943| 0.282| -8.88
76 | 30 | 10| 31.1 | 0.874| 0.209| -12.49 226 | 81 | 50| 37.8| 0.966| 0.27 | -17.03
77 | 33| 10| 22.6 | 0.632| 0.116]| -19.19 227 | 54 | 31| 29.8| 0.755| 0.149| -42.91
78 | 52 | 31| 19.9 | 0.582| 0.166| 6.46 228 | 79 | 45| 57.4| 1.587| 0.628| 2.90
79 | 38 | 17| 21.8 | 0.563| 0.103| -20.69 229 | 32 | 8 | 39.4|0.979| 0.266| 2.58
80 | 27 11.1 | 0.519| 0.126| -6.52 230 | 40 | 20| 32.5| 0.793| 0.186| -17.42
81 | 27 22.4 1 0.196| -51.57 231 29 | 7 | 22.7|0.637| 0.183| 26.03
82 | 31| 11| 29.8 | 0.831| 0.176| -25.67 232 | 36 | 17 | 26.5| 0.676| 0.159| -8.19
83 | 36 | 15| 28.9 | 0.711| 0.216| 27.78 233 | 40 | 19| 19.4| 0.528| 0.149| 12.50
84 | 42| 21| 47.6 | 1.135| 0.37 | 32.20 234 | 58 | 35| 27.3| 0.807| 0.229| -1.45
85 | 55| 27| 25.3 | 0.719| 0.209| 14.85 235| 39 | 19| 28.5| 0.725| 0.183| -3.90
86 | 31| 11| 27.2 | 0.769]| 0.176| -12.02 236 | 39 | 17| 25.8| 0.73 | 0.196| 4.67
87 | 32| 14| 244 | 0.824| 0.276| 30.60 237 | 60 | 30 | 26.3| 0.733| 0.196| 2.59
88 | 32 | 11| 29.7 | 0.822| 0.213| 1.88 238 | 37 | 15| 27.6| 0.873| 0.329| 58.20
89 | 40 | 19| 26.7 | 0.669| 0.133| -22.94 239 | 39 | 17 |31.9|0.837| 0.2 | -14.83
90 | 57| 34| 39.2 | 1.091| 0.302| -39.42 240 | 46 | 25| 30.3| 0.775| 0.173| -28.37
91 | 39| 16 | 25.1 | 0.672| 0.13 | -22.06 241 | 49 | 28 | 32.8| 0.797| 0.309| 53.48
92 | 56 | 28 | 36.9 | 0.909| 0.27 | -3.39 242 | 47 | 26 | 29.8| 0.785| 0.173| -32.54
93 | 36 | 14| 27.7 | 0.677| 0.136| -15.67 243 | 29 25 | 0.691] 0.149| -10.29
94 | 31| 11| 38.2| 0.967| 0.266| 3.39 244 | 27 28.5| 0.735| 0.173| -1.20
95 | 36 | 12 | 21.3 | 0.502| 0.11 | 4.27 245| 40 | 19| 19 | 0.715| 0.219| 9.25
96 | 43| 20| 26.9 | 0.732| 0.163| -18.41 246 | 46 | 24 | 26.2| 0.666| 0.126| -31.01
97 | 61| 37| 23.2| 0.586| 0.159| 4.34 247 | 46 | 22 | 13.6| 0.407| 0.113| 3.50
98 | 39| 19| 30.1|1.012| 04 | 64.20 248 | 37 | 16 | 25.1| 0.738| 0.203| 6.10
99 | 47 | 25| 28.9 | 1.137| 0.402| 20.12 249 | 29 | 10| 30.1| 0.75 | 0.223| 25.73
100 | 34 | 14 | 24.6 | 0.676| 0.225| 37.95 250 | 56 | 34| 36.1| 0.983| 0.306| -5.70
101 | 58 | 35| 39 | 1.059| 0.385| 22.53 251 | 32 | 14| 29.5| 0.744| 0.173| -11.15
102 | 33 | 10| 31.4 | 0.768| 0.252| 44.88 252 | 57 | 33| 22.4| 0.697| 0.143| -28.13
103| 49 | 28 | 36.5| 0.97 | 0.29 | -3.87 253 | 44 | 25| 34.2| 0.816| 0.239| 5.23
104| 29 | 10| 27.2 | 0.77 | 0.183| -7.03 254 | 31 | 10 | 46.4| 1.232| 0.465| 78.27
105| 49 | 25| 20.1 | 0.638| 0.09 | -51.11 255 | 47 | 22| 20.5| 0.742| 0.196| -7.26
106 | 50 | 27 | 22.2 | 0.614| 0.166| 5.09 256 | 41 | 17| 28.6| 0.702| 0.146| -15.21
107 | 41 | 17| 30.6 | 0.727| 0.173| -2.22 257 | 62 | 36 | 32.7| 1.054| 0.355| 9.24
108 | 34 | 13| 22.1 | 0.66 | 0.173| 6.05 258 | 32 | 14| 30.8| 0.813| 0.272| 38.31
109 | 60 | 32 | 55.7 | 1.357| 0.5 | 11.65 259 | 31 | 15| 24.4) 0.711| 0.159| -20.81
110 | 57 | 35| 32.7 | 0.904| 0.282| 1.88 260 | 25 | 5 |30.8|0.869| 0.2 | -12.59
111| 54 | 30 | 31.2 | 0.776| 0.183| -24.87 261 | 36 | 15| 33.7| 0.835| 0.166| -34.02
112 | 24 | 3 | 10.6 | 0.368| 0.09 | -9.12 262 | 30 | 11| 25.2| 0.681| 0.163| -1.44
113 | 54 | 31 | 29.8 | 0.755| 0.149| -42.91 263 | 36 | 15| 18.5| 0.567| 0.106| -23.61
114 | 50 | 26 | 33.5 | 0.827| 0.296| 41.43 264 | 43 | 22| 46.6| 1.127| 0.269| -35.41
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115| 39 | 17| 36.2 | 0.881| 0.252| 11.78 265| 27 | 6 |37.1|0951| 0.25 | -3.11
116 | 49 | 24| 39.1 | 0.948| 0.32 | 29.78 266 | 26 | 8 | 28.9| 0.824| 0.199| -6.51
117 | 33 | 12| 36.5| 0.934| 0.213| -23.71 267 | 46 | 22| 28.6| 0.801| 0.153| -44.07
118 25| 9 21 | 0.643| 0.103| -36.30 268 | 42 | 24 | 24.3| 0.809| 0.199| -30.69
119| 33 | 12| 28 | 0.703| 0.103| -43.34 269 | 54 | 30| 31.2| 0.776| 0.183| -24.87
120 37 | 17| 26 | 0.723| 0.21 | 13.84 270 | 36 | 17 | 47.6| 1.237| 0.299| -28.66
121 | 34 | 13| 28.3 | 0.778| 0.133| -43.51 271 | 36 | 17 | 28.8| 0.759| 0.206| 3.82
122 36 | 15| 25 | 0.697| 0.183| 5.01 272 | 68 | 46 | 34.4| 0.909| 0.226| -30.52
123 | 36 | 15| 56.9 | 1.442| 0.405| 0.60 273 | 31 | 11 | 23.1| 0.635| 0.146| -3.05
124 | 30 | 10 | 31.1 | 0.856| 0.25 | 19.16 274 | 39 | 19| 29 | 0.77 | 0.279| 48.33
125| 42 | 22 | 21.7 | 0.658| 0.22 | 27.01 275 | 42 | 20 | 26.9| 0.716| 0.216| 20.09
126 | 30 | 10 | 22.6 | 0.602| 0.13 | -5.66 276 | 56 | 36 | 28.8| 0.793| 0.246| 9.14
127 | 37 | 16 | 31.2 | 0.87 | 0.209| -18.06 277 | 33 | 10 | 27.8| 0.707| 0.176| 7.75
128 | 31 | 14| 26.4 | 0.619| 0.14 | -6.20 278 | 35 | 15| 27.9| 0.745| 0.153| -25.24
129 | 48 | 25| 25.6 | 0.724| 0.163| -21.95 279 | 35 | 15| 27.7| 0.73 | 0.159| -17.50
130 | 48 | 25| 29.9 | 0.756| 0.163| -28.03 280 | 37 | 14| 27.1) 0.72 | 0.176| 0.18
131 33| 12| 259 | 0.8 | 0.266| 37.74 281 | 27 | 17 | 21.3| 0.547| 0.103| -32.63
132 | 58 | 35| 28.3 | 0.692| 0.159| -21.95 282 | 30 | 10| 29.7| 0.718| 0.11 | -40.93
133 | 37 | 16 | 31.8 | 0.776| 0.166| -21.09 283 | 51 | 27 | 34.8| 0.854| 0.249| 1.20
134 | 40 | 19| 29 0.8 | 0.279| 41.09 284 | 40 | 17 | 39.3| 0.931| 0.209| -27.23
135| 36 | 14 | 29.7 | 0.753| 0.2 8.96 285 | 55 | 30| 37.4| 0.921| 0.246| -25.45
136 | 30 | 8 | 23.9 | 0.605| 0.133| 0.40 286 | 39 | 21| 25.3| 0.647| 0.259| 58.58
137 | 48 | 25| 25.6 | 0.724| 0.163| -21.95 287 | 42 | 20 | 44.4| 1.148| 0.26 | -43.56
138 | 43 | 22| 29 | 0.798| 0.209| -8.58 288 | 41 | 22| 30.2| 0.777| 0.219| 3.02
139 | 58 | 32 | 22.4 | 0.685| 0.153| -16.20 289 | 40 | 20 | 28.7| 0.755| 0.249| 30.92
140 | 40 | 19| 37 | 0.923]| 0.309| 36.61 290 | 32 | 11| 31 | 0.786| 0.216| 13.68
141 | 32 | 11 | 20.5 | 0.557| 0.106| -14.31
142 | 34 | 14 | 31.2 | 0.871| 0.176| -38.41
143 | 33 | 13| 33.6 | 0.789| 0.279| 53.32
144 | 59 | 36 | 27.1 | 0.693| 0.259| 45.98
145| 24 | 4 | 26.3 | 0.695| 0.169| 6.97
146 | 29 | 8 | 26.5| 0.637| 0.166| 16.15
147 | 34 | 12| 25.8 | 0.692| 0.173| 4.96
148 | 27 | 7 | 26.6 | 0.766| 0.149| -24.68
149 | 40 | 18 | 28.2 | 0.757| 0.169| -18.80
150 | 47 | 27| 29.8 | 0.736| 0.25 | 29.72

5.4 Different developed model equations
The different model equations developed from ANN, SVM and MARS are presented

in thefollowing sections
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5.4.1 ANN Model equation

In the neural network model, Levenbeviarquartd backpropagation has been used
for minimization of error. The logigmoid transfer function for inptidden layer and lire
transfer function for hiddeoutput layer has been used to construct the model equation. The
final ANN model equation can be given as follows:
A;=0.5543LL - 0.6398PI + 0.1297w,, + 2.0933ey i 21.9155
A>=0.3221L LT 0.4918PIT 0.3425w, T 7.4531ey + 13.146
A3=0.0012LL + 0.0021PI - 0.0156w, + 1.6466e; + 0.7929
A4 =-6.8441LL 1T 6.6654PI| + 6.0927W, + 3.026e; 1 5.6638

0.2037 0.0618+ 1.4749+ 0.0881
1+eh 1+ 1+eh 1+eh (5.1)
5.4.2 LSSVM Model equation

C.=- 0.9998+

For the LSSVM model, Radial basis kernel function has been used for transformation
of the inputs. The optimum values of bias, regularization parameter dtidafiradial basis
function is given below and the values for Lagrange multigliefor all the inputs have been
represented ifigure 5.1

b = 1.=5804%,0616.0637

100

h-values

Figure5. 1 cor r e syguesiirdthied$SVN model
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5.4.3 MARS model equation

For developing the MARS, 1Lbasis functions have been presentetbmvard phase
and in backward elimination phaseba&sis functions have been removed from Mh&RS
model. So, the concluding MARSodelcontainsd basis functions. Theest MARS model is
givenbelow

BF; = max(0,e -0.694)

BF; = max(0, 0.694ey)

BF; = BF, x max(0,PI -13)

BF; = max(0,e, -0.694)x max(0, 13- PI) x max(0,LL -27)

BFs = BF; x max(0, 43 LL)

BFs = BF; x max(0,PI -21)

BF; = max(0,e, -0.694)x max(0, 13 PI) x max(0,w, -22.4)

BFgs = BF; x max(0,PI -17)
C:=0.174 40.162x BF; - 0.263<BF, - 0.0644x BF; + 0.012x BF4; + 0.0178% BFs5 -
0.0211x BFg + 0.00141x BF7 + 0.0208x% BFg (5.2)

Table 5.4 Results of DifferentModels for Prediction of compression index of clay

Model Coefficient of
Model Inputs RMSE  MAPE determination (R?)
Training 0.042 15 0.71
ANN )
Testing 0.042 15 0.65
Training 0.044 18 0.68
Model | Wh, & SVM ]
Testing 0.043 18 0.68
Training 0.042 17 0.7
MARS .
Testing 0.042 18 0.72
Training 0.04 14 0.72
ANN i
Testing 0.041 15 0.73
Trainin 0.042 17 0.68
Modelll b Wo  sym "
Testing 0.042 18.8 0.76
Training 0.041 17 0.73
MARS .
Testing 0.04 16 0.68
Training 0.39 14 0.76
ANN .
LL. PI Testing 0.04 13 0.66
Model llI T —
Wh, & Training 0.04 17 0.72
SVM _
Testing 0.039 17 0.73
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Training 0.0396 16.8 0.73
Testing 0.043 17.9 0.7

MARS

5.5 Results and discussion

The models Avebeen created and compared with the empirical correlations given by
various researchers shownTable5.5. The comparison is made in terms of coefficient of
efficiency (R) presented in Table 5.4 of the developed modBle performances of the
empiricalformulas are presented irable5.6. An error bar chart has been shownFigure
5.2 for the comparison between different developed moBedsn the compara it is found
that model f ANN and model 2f LS-SVM areshowing better performance than others.
But model 3 of ANNhaving lower value of MAPES the better model as compared to others.
The performance of mod@&lin training and testing is shown KFigure 5.3 and variation of
actual and predted values has ke shown in Fure 5.4

Table 5.5 some widely used empirical correlations

ﬁllé Author Equation
1 Azzouzetal. (1976) C.= 0.4 (e+0.001w-0.25)
2 Azzouz etal. (1976) C.= 0.01w-0.05
3 Koppula (1981) C.= 0.01w
4  Herrero (1980) Cc.= 0.01w-0.075
5 Park and Lee (2011) C.= 0.013w-0.115
6 Skempton (1944) C.= 0.009 (LL-10)
7 Nishida (1956) C.= 054¢-0.19
8 Cozzolino (1961) C.= 043¢-0.11
9 Sower (1970) C.= 0.75-0.38
10 Kalantary et al. (2012) Cc.= 0.0074 w - 0.007
11 Kalantary et al. (2012) C.= 0.3608 ¢-0.0713
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Figure 5.2 performance evaluations of different models in terms of (a) MAPE and (b)

Model Inputs

a)’ Wn
Whn

Table 5.6 results of different models for prediction of compression index of clay

Model




3 Wh 0.098 0.74 0.54
4 Wh 0.055 0.75 0.49
5 W 0.0846 0.75 0.52
6 LL 0.111 0.397 0.37
7 %) 0.057 0.82 0.67
8 € 0.048 0.82 0.62
9 € 0.082 0.82 0.615
10 W 0.051 0.75 0.56
11 %) 0.044 0.823 0.677
0.7 S
O Training dataset (R =0.87) //
0.6 -—ATesting dataset (R =0/83) S al
O ’l' o
K
0.5 z

©
N

o
w

o
(V)
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Predicted Compression Index from ANN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Observed Compression Index

Figure 5.3 Performance of modeB using ANNin training and testing.

—— Actual value of Compression Index
------- Pradicted value of Compression Index

0 50 100 150 200 250
No. of observations (training)

Figure 5.4 Variation of actual and predicted valuefrom ANN of compression index
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5.6 Sensitivity Analysis

Sensitivity analysis is performed for selection of important input variables. Different
approaches have been suggested to select the important input variables. Goh (1994) and
Shahin et al. (2002) have used Garushddeds al g
and hidden output weights of trainddNN model are partitioned and the absolute values of
the weights are taken to select the important input variables, and the details with example
have been presented in Goh (1994). It does not provide informati the effect of input
variables in terms of direct or inverse relation to the output. Olden et al. (2004) proposed a
connection weight approach based on the Neural Interpretation Diagram (NID), in which the
actual values of input hidden and hidden auitpeights are taken. It sums the products across
all the hidden neurons, which is defined as e relative inputs are corresponding to
absolute Svalues, where the most important input corresponds to highestl. The
details of connection weiglapproach are presented in Olden et al. (2004).

The relative i mportance of the four i npu
presented in Tabl&.7. The w, is found to be the most important input parameter with the
relative importance value being 95.85 % followed by 2.27 % for PI1, 1.09 % for LL and 0.781
% for . The relative importance of the present input variables, as calculated following the
connectionweight approach (Olden et al., 2004), is also presented in $able, is found to
be the most important input parameter (Si = 21.41) followedol(se= 0.188), LL ($=-

0.154) and PI (S= 0.128). The Svalues being negative imply that LL is indirgctelated
and w, e and PI are directly related tq €alue. In other words, increasing LL will lead to a
reduction in the €and increasing w & and PI will increase the CThe sensitivity of the

parameteraffectingthe models presented in Figurg.5.
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Table 5.7 relative importance of different inputs as per Garson's algorithm and

connection weight approach

Parameters Garson's algorithm Connection weight approach
Relative npUts s6per  conection - imputs a5 per
(1) importance (%) . . )
2) _relatlve weight _relatlve
importance (3) approach (4) importance (5)
LL 1.09 3 -0.154 3
Pl 2.27 2 0.128 4
€ 0.781 4 0.188 2
Whn 95.85 1 21.41 1

where ¢ = predicted value of compression index of clay frakiN.

50 Sensitivity of parameters

40

30

20

10

L.L. P.l. wn e0

Figure 5.5 Sensitivity of different parameters

5.7 Discussions

From the present studyig observed that thdeveloggd ANN model can be used to
predict compression index of clay. The results obtained with these models are compared to
each other and with differemegression models. The result shows that the proposed model
equation gives better predictability in comparison with others. Sensitivity analysis is fulfilled
to recognize the most sensitive parameters. Natural water contging faund to be the most
effective parameters for prediction of compression index. From the above model equation,

the compression index of clay soil can be predicted quickly and satisfactorily.
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CHAPTER 6
PREDICTION OF SIDE RESISTANCE OF DRILLED SHAFT
6.1 Introduction

The two maincriteria that goverrthe design of pile foundatioresebeaing capacity
and settlemenso that safety and serviceabilitgquirements are attaineDrilled shafts are
castin-situ piles installed by excavating a cylindrical volume of soil from the grantt
filling the resulting voidwith concreteThey can range from 2 to 30 feet in diameter and can
be over 300feet in length. The installationof drilled shafts causes insignificatdteral
displacement of the soil adjacent thefhe calculation®f shat resistance of drilled shafts
are most often performed using empirical correlati@@ieempton1959; O Neill and Reese
1999) developed on the basis aflimited number ofload tests. They areparticularly
advantageous wherbuge lateral loads fronextreme event limit states govern bridge
foundation design Additional applications includgroviding foundations forhigh pole
lighting, communicatiortowers. In manynstancesa single drilled shaft can replace a cluster
of piles eliminating the neeahd cosfor a pile cap.

Static analysis methods are commonly used for determiningitleeresistance of
drilled shafts. The methodologies apply the paitameters resulting from laboratory tests to
calculate the side resistance of the shafts. fifwst common mébd to evalua the
undrained side resistancekbiased on the total stress or algamethod(Tomlinson 1957),
in which the side resistance adhesion is related to the undrained shear stréagtly an
empirical coefficient denoteby U, the adhesiofiactor. This coefficientvas derived mostly
from field load test data on driven piles. Tin@in criticism of the alpha method is tt&tis
not a unique soparameter and depends significantly on the type of test usestrairerate,
and the orientationof the failure plane.

The geotechnical literature has included numerous investigaimhsnany methods,
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both theoretical and experimental, to predsdttlement and bearing capacity of pile
foundations. However, thenechanisms of pile foundations andepdoil interaction are
ambiguous, complex, and not yet entirely understood (Reese et al.Nk§J@é; et al. 2009;
Shahin 2010Alkroosh and Nikraz 2012). Becausé the uncertainties associated witte
factors that affect the behaviof pile foundationsmost available methods, by necessity,
have beemainly based on simplifications and assumptions. This has liehited success
in terms of providing consistent and accurate predictions-{fibta 1998; Nejad et al. 2009;
Pal and Deswal 201@&lkroosh aml Nikraz 2012).

In recent yearsi\ls havebeen used with varying degrees of success for prediction of
axial and lateral bearing capacities of pile foundations in compressionificl including
driven piles (Chan et al. 199%0h 1996;Lee andee 1996;Teh et al. 1997; Abiefa
1998; Goh et al. 2005; Dasd Basudhar 2006;Pal 2006;Shahin and Jaksa 2006;Ahmad et al.
2007;Ardalan et al. 2009;Shahin 2010;Alkroosh and Nikraz 28ad)drilled shafts (Goh et
al. 2005; Shahin 2010; Alkroosh aNikraz 2011)

In the present study the side resistance of drilled shaft has been modeled using
artificial intelligence. An error comparison has been made between different models in terms
of coefficient of correlation and other statistical errors. Finally sensitiviyyars has been
carried out to know the importance of parameters that influences the output in the model.
6.2 Database used in present study

Using the database of Goh et 2005 this problem has been reanalyzed uskif}
SVM and MARS. The databaseas conpiled from 127 field load tests on drilled shafts in a
varietyof cohesive soil profiles.
6.3 Database preprocessing

The database has been normalized between 0 to 1 f&VIMs model by using the

formula;
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