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ABSTRACT 

The aim of the present work was to study the growth of boundary layer thickness and length of 

fully developed flow in an open channel flow which has a great applications in fields like,  

hydrodynamics (ships, torpedoes, submarines), wind engineering (buildings, water towers, 

bridges), aerodynamics (airplanes, rockets, projectiles), ocean engineering (buoys, breakwaters, 

cables) and transportation (trucks, automobiles, cycles). Boundary layer thickness and length of 

fully developed flow is crucial for solving many engineering problems such as management of 

rivers and floodplains, it is important to understand the behavior of flows within compound 

channels for designing of flood control, hydraulic structure, sedimentation, water management 

and excavation. In pipe flow, where boundary layer thickness is equal to radius of pipe which 

can be obtained easily whereas one finds difficulty in obtaining boundary layer thickness in open 

channels due to the presence of free surface. This challenge motivated us to study the growth of 

boundary layer thickness and length of fully developed flow in open channel flow. Experiments 

were performed to measure the characteristics of a boundary layer and fully developed flow by 

making use of velocity profiles developing on a rough concrete surface placed in an open 

channel flow from bottom to close proximity to the free surface. Section wise velocity 

measurements were made with a pitot tube-manometer combination and Acoustic Doppler 

velocimeter system along the flow depth ranging from 0, 0.2h, 0.4h, 0.6h, 0.8h. 

 

Keywords 

 Open channel flow 

 Boundary layer thickness 

 Developed flow 
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CHAPTER-1 

INTRODUCTION 

1.1 OPEN CHANNEL FLOW 

The flow of liquid with a free surface is known as open channel flow. Free surface experiences a 

constant pressure such as atmospheric pressure. In open channel flow, as the pressure is 

atmospheric, the flow happens under the force of gravity which means the flow is due to the 

slope of the bed of the channel only. 

1.2 CLASSIFICATION OF FLOWS IN CHANNEL 

1. Laminar flow and turbulent flow. 

2. Sub-critical, critical and super critical flow. 

3. Steady flow and unsteady flow. 

4. Uniform flow and non-uniform flow. 
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Laminar Flow and Turbulent Flow 

The flow in open channel is said to be laminar if Reynolds number (Re) is less than 500 or 600 

and if the Reynolds number is more than 2000, the flow is said to be turbulent in open channel 

flow. If Re lies between 500 and 2000, the flow is considered to be in transition state. 

Sub-critical, Critical and Super Critical Flow 

The flow in open channel is said to be sub-critical if the Froude number (Fe) is than 1.0. The 

flow is called critical if Fe = 1.0 and if Fe > 1.0, the flow is called sinusoidal. 

Pre-critical or shooting or rapid or torrential. 

Froude number is defined as: 

Fe = V/ (g*D)1/2 …(1.1) 

Where 

V = Mean velocity of flow 

D = Hydraulic depth of channel = A/T 

A=Wetted area 

T=Top width of channel. 

Steady Flow and Unsteady Flow 

If the flow parameters such as depth of flow, velocity of flow, rate of flow at any point in open 

channel flow do not change with respect to time, the flow is said to be steady flow. If at any 
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point in open channel flow, the velocity of flow, depth of flow or rate of flow changes with 

respect to time, is said to be unsteady flow. 

 

Uniform Flow and Non-uniform Flow 

If the velocity of flow, depth of flow, slope of the channel and cross-section remain constant for 

a given length of the channel the flow is said to be uniform. If the velocity of flow, depth of flow 

etc., for a given length of the channel does not remain constant, the flow is said to be non-

uniform flow. 

 

1.3 CONCEPT OF FULLY DEVELOPED FLOW AND BOUNDARY LAYER  

Due to the viscous shear that takes place between the layers of fluid immediately above it and the 

surface, Skin friction drag will be generated. This is predominantly seen on surface of objects 

that are very long in the direction of flow compared to their height. Such bodies/objects are 

called STREAMLINED BODIES. Over a solid surface when a fluid flow, layer next to the 

surface might become attached to it (it wets the surface). This is known as ‘no slip condition’. 

The layers of fluid above the surface are moving so between the layers of the fluid shearing takes 

place. The shear stress which acts between the wall and the first moving layer next to it is known 

as the wall shear stress and denoted by .  The result of this action is that the velocities of the 

fluid u increases with height y. The distance required for the velocity to reach 99% of u, free 

stream velocity is taken as the boundary layer thickness . This layer is known as BOUNDARY 

LAYER and   is the BOUNDARY LAYER THICKNESS. 

The boundary layer, which may be laminar at the upstream end, steadily thickens up to a certain 

point in the channel length Le in which the flow is called "developing flow" .Beyond this point 

the flow is called "FULLY DEVELOPED FLOW." 

 



9 
 

 

 

When a fluid starts to flow over a rough/smooth surface the boundary layer grows from zero. 

More fluid is slowed down by frictional force between the layers of fluid close to the boundary, 

as it passes over a greater length. Therefore the thickness of the slower layer increases 

significantly. 

OBJECTIVES 

Our interest in the boundary layer is that its presence greatly affects the flow through or round an 

object. Some of the phenomena associated with the boundary layer, length of fully developed 

flow and discuss the effect of it on open channel flow are examined. 

1. Conducting experiments in determining boundary layer thickness in open channel and 

pipe flow 

2. Variation of boundary layer thickness due to different flow and geometry conditions in 

open channel and pipe flow. 

 3. To study the variation of boundary layer thickness due to different laminar and turbulent 

flow conditions 

 

Figure-1 
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CHAPTER-2 

LITERATURE SURVEY 

 

Iehisa Nezu and Wolfgang Rodi (1986) had used two colors Laser Doppler Anemometer 

(LDA) system with direct digital signal processing to measure the longitudinal and vertical 

velocity components in fully developed flow over smooth beds. They had re-examined the law of 

the wall and the velocity defect law as the log law had often been applied to open channels 

without detailed verification and was found that log law strictly can be applied to the near wall 

region only. The friction velocity can be evaluated accurately from velocity measurements by 

applying the log-law with Von Karman constant K = 0.412 and A = 5.29 to the near-wall region. 
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M. Salih Kirkgoz (1989) had measured the velocity profiles using a laser-doppler anemometer 

in a fully developed, rectangular, subcritical open channel flow on smooth and rough beds. The 

"rough" surfaces, used in the experiments had average roughness heights of 1 mm, 4 mm, 8 mm, 

and 12 mm and the shear velocities are determined from velocity profiles measured close to the 

bed. This shows that as the wall roughness increases the calculated shear velocities determined 

from the velocity profiles are in increasing tendency. The overall data represented in terms of 

law-of-the-wall distribution was reasonable; however, the velocity-defect distribution was not 

satisfactory. From the study of mean velocity distributions the following conclusions are drawn. 

 As the average uniform roughness height increases from 1 mm to 12 mm the non-        

dimensional velocity distribution becomes increasingly non-uniform in the inner region 

of turbulent flow. 

 The thickness of the inner region of flow on a "smooth" bed is about 50-60% of the entire 

boundary-layer thickness. This value decreases with an increase in Reynolds number. 

 The corresponding boundary layer thickness and length of developed flow for different 

discharge were calculated and found that  

a. There is a linear relationship between the dimensionless length L/h of the 

turbulent flow developing zone of open channel flow and the ratio R/F. 

b. At the axis of a fully developed turbulent flow section the boundary layer extends 

to the water surface if the channel aspect ratio b/h =3. 

 

 

Vito Ferro and Giorgio Baiamonte(1994) had done the velocity measurement in a rectangular 

flume having gravel bed for four different bed shapes, characterized from different concentration 

of coarser elements and for two conditions of small and large scale roughness  to establish how 

the velocity profile varies with the concentration of coarse bed elements and the ratio between 

the depth h and a characteristic bed diameter. 

 

 

 

R.N.Parthasarathy and M.Muste(1994) confirmed the non-coincidence of the planes of 

maximum velocity and zero Reynolds stress. Significant diffusion of momentum and kinetic 
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energy took place from rough to the smooth surface. AS the roughness of the cover was 

increased; the vertical transfer of vertical velocity fluctuations of the cover was decreased, 

resulting in a decrease in the sediment-suspension mechanism. The proper length scale in the 

outer region was the height of the plane of zero total stress from the corresponding surface. 

When the distance from each surface was normalised with the log law, and the measured stream 

wise and vertical velocity fluctuations agreed with the exponential variations formulated in 1986 

by Nezu and Rodi. 

 

 

T. Song and W.H. Graf (1996) studied unsteady flow properties in an open channel with a 

rough bed. A recently developed acoustic Doppler velocity profiler (ADVP) is used to obtain 

instantaneously the flow profiles. From these measurements, using the Fourier components 

method, the mean velocities, the turbulence intensities and the Reynolds-stress profile, are 

obtained. 

 

 

Graeme M. Smart (1999) investigated vertical profiles of turbulent stream wise velocities in 

gravel bed rivers. Field measurements made at high and low flows with electronic pitot tubes 

show logarithmic velocity profiles to extend over much of the flow depth. For the gravel bed 

rivers studied the velocity at 0.6 of the total depth was generally a good indicator of depth-

averaged flow velocity. An unambiguous definition of flow depth is adopted to deal with 

situations where the bed is uneven or moving. When hydraulic roughness Z0 is defined as a fitted 

parameter of a logarithmic velocity profile, the river data indicate that the profile origin 

displacement below the tops of roughness elements scales with Z0. No direct relation between Z0 

and bed material size is evident under mobile bed conditions. For these conditions a relation 

between hydraulic roughness and U*
2
 is identified (with U* also derived as a log profile 

parameter). A flow resistance equation using this relation is verified by comparison with mobile 

bed laboratory measurements in which U* is not fitted from velocity profiles. 
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Ram Balachandar and V. C. Patel (2002) had performed experiments to measure the 

characteristics of a turbulent boundary layer developing on a rough surface for an open channel 

flow at close proximity to the free surface. Stream wise velocity measurements were made with a 

one component laser Doppler velocimeter system at the top of the spherical roughness elements. 

Measurements at three stations downstream of the plate leading edge showed the growth of the 

boundary layer on the rough wall and its interaction with the exterior open-channel flow and the 

free surface. Resorting to the turbulence profile provides an alternative definition of the 

boundary layer thickness. 

 

 

Xingwei Chen and Yee-Meng Chiew (2004), they investigated theoretically and experimentally 

the velocity distributions of turbulent open channel flow with bed suction. A velocity profile with 

a slip velocity at the bed surface and an origin displacement under the bed surface is proposed 

and discussed. Based on this assumption, a modified logarithmic law is derived. The measured 

experimental velocity distribution verifies the accuracy of the theoretically derived profile. The 

data show a significant increase in the near bed velocity and a velocity reduction near the water 

surface, resulting in the formation of a more uniform velocity distribution. The values of the 

origin displacement slip velocity and shear velocity are found to increase with increasing relative 

suction. The measured data show the occurrence of two flow regions in the suction zone: a 

transitional region in which the velocity readjusts rapidly; and an ‘‘equilibrium’’ region. 
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CHAPTER-3 

 
3.1 Layout of experiment 
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3.2 EXPERIMENTAL SETUP: 

3.2.1 Straight Flume  

A Flume is an open artificial channel or chute carrying a stream of water. In a way a flume is a 

model of a river/canal/water body for conducting experiments and observing its behavior. 

Making use of flume real conditions of rivers/canal/water bodies can be generated virtually.  

Flume also helps in obtaining the parameters of river/canal/any water bodies experimentally in 

laboratory. 

One shouldn’t be confused with flumes and aqueducts, which are built with the goal of 

transporting the water, whereas a flume would use the flowing water to transport other materials. 

There are different types of flume basing on geometry or shape 

1. Straight flume 

2. Meandering flume 

But here we are concerned with the straight flume only. 

The experimental flume which is straight in shape and having a rigid bed made of cement mortar 

is shown in figure-3. 

 

Figure-3  
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Figure-4 Sectional view of flume 

 

Figure-5 Sectional view-In bank 

Construction of channel is done with the use of M15 concrete mix and finished smoothly. 

 

 

 

12.5 
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3.2.2 Volumetric Tank 

It is a tank where water is temporarily stored for discharge calculations. 

Area of Volumetric Tank, A=20.928784 m
2
  

Outlet of volumetric tank is closed and water is allowed to fill the tank. Around 20-30 minutes 

later, time taken for 1 cm rise of water in volumetric tank is measured. This procedure is 

repeated for 4-5 times and average time (T) is evaluated. 

Volume of water collected in T sec, V= A* H = A*(1cm). 

Discharge, Q=V/T 

= (A*1)/T m
3
/s 

 

      Figure-6 

 

3.2.3 Sump well and Overhead tank 

An underground tank where water from volumetric tank is collected and stored permanently and 

making use of motors pumped into overhead tank for experimental usage. Overhead is a 

rectangular tank placed over a certain height from ground level. Input water of overhead tanks 

comes from sump well and output from overhead tank flows to flume.  
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3.2.4 Motor System 

Laboratory is equipped with 2 types of motors having capacity 1HP 2HP 

 

1. Submergible motors 

2. Priming motors 

Care has to be taken such that water level in overhead tank during the experiments should be 

more-less constant.  

 

3.3 INSTRUMENTS USED: 

3.3.1 Pitot tube 

A Pitot-tube is a device used for measuring the velocity of flow at any point in a pipe or a 

channel. Its principle is based on the fact that if the velocity of flow at a point becomes zero, the 

pressure there is increased due to the conversion of kinetic energy into pressure energy. 

The Pitot-tube consists of a steel tube bent at right angle. The lower end, which is bent through 

90 º, is directed opposite to flow direction of the water. The kinetic energy is converted to 

pressure energy so the liquid rises up in the tube, with this velocity of water at a point can be 

evaluated. . Diameter of pitot tube is D=4.07 mm. 

 

The theoretical velocity is given by: 

Vth = (2gh)
 1/2 

Where, 

 

           h = difference of pressure head which is calculated from the manometer 

 

The actual velocity is given by: 

V = Cv(2gh)
1/2 
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Cv= coefficient of pitot-tube 

 

Figure-7 

Pressure difference at various locations in a straight channel for different depth was recorded. 

The data recorded was used for the further calculation of velocity distribution. 

 

3.3.2 ADV (acoustic Doppler velocimeter) 

16-MHz Micro ADV (Acoustic Doppler Velocimeter) from the original Son-Tek, San Diego, 

Canada, is the most significant and efficient breakthrough in 3-axis (3D) Velocity meter 

Technology. The higher acoustical frequency of 16 MHz enables the Micro-ADV the optimal 

instrument for laboratory-research orientated study. After setup of the Micro ADV with the 

software package it is used for taking high-quality 3-D Velocity data at various points. This data 

of flow area are received to the ADV-processor. Raw data after compilation by software package 

of the processor is shown by the computer. For a minute, at every point the instrument records a 

number of velocity data. The mean value of the point velocities (3-D) were recorded for each 

flow depths using the statistical analysis using the installed software. 

The Doppler shift principle is used by the Micro ADV to measure the velocity of small particles, 

assumed to move at velocities similar to the fluid. Velocity is resolved into 3orthogonal 

components like vertical, Tangential and radial and measured in a volume five centimeters below 
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the probe head, minimizing interference of the flow field, and allowing 

measurements/observations to be made close to the bed. 

The Micro ADV has the Features like 

 Three-axis velocity measurement 

 Small sampling volume -- less than 0.1 cm3 

 High sampling rates -- up to 50 Hz 

 Small optimal scattered -- excellent for low flows 

 Comprehensive software 

 Large velocity range: 1 mm/s to 2.5 m/s 

 High accuracy: 1% of measured range 

 No recalibration needed 

 Excellent low-flow performance 

ADV (down probe) is unable to read the velocity of upper layer up to 5 cm below the free 

surface so Preston tube technique in which the standard pitot tube in conjunction with a inclined 

manometer is used for the measurement of point velocity readings at some specified positions for 

the upper 5cm region from free surface across the channel. 

                                     

              

Down probe                                              Up probe                                 

Figure-8 
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3.3.3 Derivation for velocity of flow 

Velocity of flow can be calculated from Bernoulli’s equation 

h
g

v

g

p
z 

2

2


 

Z= Datum height 


g

p

  


g

V

2

2

 

h= Total head 

g

v

g

p
z

g

v

g

p
z
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2
2

2
2

2

11
1 


 

Here point 1 is located just outside of opening of pitot tube 

Point 2 is located just before the 90
0
 bent.

 

As, 021  zz  

And 02 V  (velocity of water inside the pitot tube is zero) 

Difference in pressure heads, 


sin*12 h
g

P

g

P
  

h Height difference in manometer tubes. 

 = angle of inclination of manometer 

 

Pressure head 

Kinetic head 
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Therefore, sin*
2

2

1 h
g

V
  

sin2 hgV                 Eq. (1) 

3.4 EXPERIMENTAL PROCEDURE 

 Evaluation of slope of flume 

A long transparent thin pipe is taken and is filled with water. Desired length of channel is 

selected where slope has to be evaluated with thin pipe, placed along the lengths with two ends 

fixed at two points so as to make no vertical deflection of water in the thin pipe. Vertical height 

difference of water in the thin pipe is measured making use of scale/tape, say A and the length 

between the desired points is also measured, say B. 

Slope of flume, 







 

B

A1tan                     Eq. (2) 

 

3.4.1 Method adopted 

3.4.1.1 Longitudinal Boundary Layer 

 Water from overhead tank with a controlled discharge is allowed to flow over the surface 

of channel for about 30-45 minutes for obtaining a steady flow in the channel. 

 Within this interval, one should make sure Pitot tube is free from bubbles. If present they 

should be carefully bubbled out. Otherwise, presences of bubbles lead to erroneous 

reading in manometer. 

 The choice of discharge should be such that overflow from main channel does not take 

place. 

 Water level is checked with the help of needle so as to ensure constant discharge. Any 

small fluctuations in the flow should be avoided for practical purposes. This may be due 

to undulations in the channel bed preparations. 

 Channel is divided for ease in experimental approach. The division can be of 0.5m or 1m.  
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 Now the setup of experiment is brought to the position where velocity profile has to be 

found, say x=0 m. 

 Depth of flow is found by placing needle at various points (say, 5 points) in a particular 

cross-section; average depth of flow in a particular cross-section is evaluated. 

 For obtaining rough picture of velocity profile at a section, depth of flow is divided into 

five equal divisions such as 0, 0.2h, 0.4h, 0.6h, 0.8h. Reading at height H can’t be taken 

as bubbles may enter into manometer. 

 Pitot tube is placed along the center line of section and varied from various position 0, 

0.2h, 0.4h, 0.6h, 0.8h. 

 Readings of manometer are taken at individual depths for velocity after 3 minutes 

interval of change in position of pitot tube for different depths.  

 From these data, h  is calculated which in term gives the value of velocity at that 

particular depth from eq. (1). 

 Above procedure is followed for next sections to find the desired boundary layer 

thickness and length of fully developed flow. 

3.4.1.2 TRANSVERSE BOUNDARY LAYER 

 Once the length of fully developed flow is known, velocity profiles of complete 

transverse section are to be measured. 

 As Boundary layer thickness is symmetric about center line of transverse section only 

half of the sections velocity profiles are measured. 

 Now half the length of transverse section is divided equally and named, say 321 ,, YYY  etc. 

 The velocities at 0, 0.2h, 0.4h, 0.6h, 0.8h are measured by making use of pitot tube-

manometer combination at specified position of transverse section. 

 From the above data velocity profiles of transverse section to be drawn and Growth of 

boundary layer thickness along the transverse can also be found out. 
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3.5 EXPERIMENTAL DATA: 

FOR LONGITUDINAL DIRECTION (ALONG THE FLOW) 

TABLE-1 

For depth of flow=7.1cm, 07.28  

X(in m) Y(in cm) H1(cm) H2(cm) H (cm) sin2 hgV   

       (in m/s) 

2 0 56.9 56.9 0 0 

0.2h 56.9 59.4 2.5 0.485 

0.4h 56.5 59.5 3 0.532 

0.6h 56.5 59.5 3 0.532 

0.8h 56.5 59.5 3 0.532 

2.5 0 55.7 55.7 0 0 

0.2h 55.7 58.3 2.6 0.495 

0.4h 55.5 58.5 3 0.532 

0.6h 55.5 58.8 3.3 0.540 

0.8h 55.5 58.5 3.3 0.540 

3 0 56.5 56.5 0 0 

0.2h 56.4 58.9 2.5 0.485 

0.4h 56.5 59.5 3 0.532 

0.6h 56.5 59.5 3 0.532 

0.8h 56.5 59.5 3 0.532 

3.1 0 56.3 56.3 0 0 

0.2h 56.4 59.4 3 0.53 

0.4h 56.5 59.6 3.1 0.54 

0.6h 56.5 59.8 3.3 0.56 

0.8h 56.7 60.0 3.3 0.56 

3.2 0 56.2 56.2 0 0 

0.2h 56.4 59.3 2.9 0.52 

0.4h 56.4 59.6 3.2 0.56 

0.6h 56.3 59.7 3.4 0.57 

0.8h 56.3 59.7 3.4 0.57 

3.5 0 58.9 56.5 2.4 0 

0.2h 59.6 56.5 3.1 0.54 

0.4h 59.7 56.4 3.3 0.56 

06h 59.6 56.2 3.4 0.57 

0.8h 59.8 56.3 3.5 0.57 

4 0 56.0 56.0 0 0 

0.2h 56.0 59.1 3.1 0.54 

0.4h 56.3 59.7 3.4 0.57 

0.6h 56.2 59.8 3.6 0.58 

0.8h 55.9 59.5 3.6 0.58 
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TABLE-2 

For flow depth=5.3cm, 06.28  

 

X Y H1 H2 H (cm) sin2 hgV   

(in m/s) 

2 0 52.1 52.1 0 0 

0.2h 52.0 53.3 1.3 0.35 

0.4h 52.5 54.3 1.8 0.41 

0.6h 52.9 54.9 2 0.43 

0.8h 52.9 54.9 2 0.43 

2.5 0 51.8 51.8 0 0 

0.2h 51.5 52.9 1.4 0.36 

0.4h 51.9 53.3 1.4 0.36 

0.6h 51.9 53.8 1.9 0.41 

0.8h 52.4 54.2 2 0.42 

3 0 52.0 52.0 0 0 

0.2h 52.1 53.5 1.4 0.360 

0.4h 52.1 53.8 1.7 0.399 

0.6h 52.0 53.8 1.8 0.41 

0.8h 52.0 53.8 1.8 0.41 

3.3 0 51.6 51.6 0 0 

0.2h 51.7 52.7 1 0.31 

0.4h 51.7 52.8 1.1 0.32 

0.6h 51.7 52.8 1.1 0.32 

0.8h 51.6 52.8 1.2 0.335 

3.4 0 51.4 51.4 0 0 

0.2h 51.3 52.4 1.1 0.32 

0.4h 51.3 52.5 1.2 0.335 

0.6h 51.3 52.6 1.3 0.35 

0.8h 51.5 52.8 1.3 0.35 

3.5 0 51.1 51.1 0 0 

0.2h 51.2 52.6 1.4 0.360 

0.4h 51.1 52.8 1.7 0.399 

0.6h 51.1 52.8 1.7 0.399 

0.8h 51.0 52.8 1.8 0.399 

4 0 51.2 51.2 0 0 

0.2h 51.2 52.7 1.5 0.375 

0.4h 51.2 52.8 1.6 0.387 

0.6h 51.1 52.8 1.7 0.399 

0.8h 50.9 52.7 1.8 0.41 
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TABLE-3 

Flow depth= 8.8cm,  30.5 

X(in m) Y(in cm) H1(cm) H2(cm) H (cm) sin2 hgV   

       (in m/s) 

2.5 0            62 62 0 0 

0.2h 62 60.6 1.4 0.373 

0.4h 62.1 60.5 1.6 0.399 

0.6h 62.2 60.5 1.7 0.411 

0.8h 62.2 60.5 1.7 0.411 

3 0 62 62 0 0 

0.2h 62 60.4 1.6 0.399 

0.4h 62.4 60.5 1.7 0.411 

0.6h 62.4 60.5 1.7 0.411 

0.8h 62.5 60.6 1.7 0.411 

3.3 0 62.1 62.1 0 0 

0.2h 62.1 60.6 1.5 0.386 

0.4h 62.3 60.6 1.7 0.411 

0.6h 62.4 60.6 1.7 0.411 

0.8h 62.4 60.6 1.7 0.411 

3.4 0 61.9 61.9 0 0 

0.2h 61.9 60.4 1.5 0.385 

0.4h 62.1 60.4 1.7 0.411 

0.6h 62.1 60.4 1.7 0.411 

0.8h 62.2 60.5 1.7 0.411 

3.5 0 62.1 62.1 0 0 

0.2h 62.1           60.4 1.7 0.411 

0.4h 62.2 60.3 1.9 0.435 

0.6h 62.3 60.4 1.9 0.435 

0.8h 62.5 60.6 1.9 0.435 

4 0 62.2 62.2 0 0 

0.2h 62.2 60.5 1.7 0.411 

0.4h 62.1 60.1 2 0.446 

06h 62.1 60.1 2 0.446 

0.8h 62 60 2 0.446 
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TABLE-4 

Flow depth= 7.7 cm,  30.5 

X(in m) Y(in cm) H1(cm) H2(cm) H (cm) sin2 hgV   

       (in m/s) 

2 0 61.5 61.5 0 0 

0.2h 61.5 59.3 2.2 0.468 

0.4h 61.7 59.3 2.4 0.489 

0.6h 61.9 59.3 2.6 0.509 

0.8h 62 59.3 2.7 0.519 

2.5 0 59 59 0 0 

0.2h 61.5 59 2.5 0.499 

0.4h 61.6 58.9 2.7 0.519 

0.6h 61.8 58.9 2.9 0.537 

0.8h 61.9 59 2.9 0.537 

3 0 61.3 61.3 0 0 

0.2h 61.3 59.1 2.2 0.468 

0.4h 61.6 59.1 2.5 0.499 

0.6h 61.7 59.1 2.6 0.509 

0.8h 61.8 59.2 2.6 0.509 

3.3 0 61.2 61.2 0 0 

0.2h 61.2 58.9 2.3 0.479 

0.4h 61.6 58.9 2.7 0.519 

0.6h 61.7 58.9 2.8 0.528 

0.8h 61.7 58.9 2.8 0.528 

3.5 0 61.5 61.5 0 0 

0.2h 61.6 59.1 2.4 0.489 

0.4h 61.7 58.9 2.7 0.519 

0.6h 61.7 59.1 2.8 0.528 

0.8h 61.8 59.2 2.8 0.528 

4 0 61.3 61.3 0 0 

0.2h 61.3 58.9 2.4 0.489 

0.4h 61.5 58.8 2.7 0.519 

06h 61.7 58.9 2.8 0.528 

0.8h 61.7 58.9 2.8 0.528 
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TABLE-5 

Using Acoustic Doppler Velocimeter 

X (m) Depth of Flow Velocity (m/s) 

3 0 0 

0.2h 0.25 

0.4h 0.38 

0.6h 0.38 

0.8h 0.38 

3.3 0 0 

0.2h 0.37 

0.4h 0.39 

0.6h 0.39 

0.8h 0.39 

3.5 0 0 

0.2h 0.37 

0.4h 0.39 

0.6h 0.39 

0.8h 0.39 

4 0 0 

0.2h 0.37 

0.4h 0.39 

0.6h 0.39 

0.8h 0.39 

4.5 0 0 

0.2h 0.38 

0.4h 0.40 

0.6h 0.40 

0.8h 0.40 
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FOR TRANSVERSE DIRECTION AT THE POINT WHERE THE FLOW IS FULLY 

DEVELOPED 

TABLE-6 

For depth of flow=7.1cm, 07.28  

 

TABLE-7 

For flow depth=5.3cm, 06.28  

Y Depth of 

flow(cm) 

H2(cm) H2(cm) H (cm) sin2 hgV   

(in m/s) 

35 0.2h 56.3 59 2.7 0.504 

0.4h 56.3 59.4 3.1 0.540 

0.6h 56.3 59.6 3.3 0.557 

0.8h 56.3 59.6 3.3 0.567 

25 0.2h 56.4 59.1 2.7 0.504 

0.4h 56.4 59.4 3 0.532 

0.6h 56.4 59.5 3.1 0.54 

0.8h 56.4 59.5 3.1 0.54 

15 0.2h 56.4 58.9 2.5 0.485 

0.4h 56.5 59.2 2.7 0.504 

0.6h 56.4 59.2 2.8 0.512 

0.8h 56.4 59.2 2.8 0.512 

Y Depth of 

flow(cm) 

H2(cm) H2(cm) H (cm) sin2 hgV   

(in m/s) 

35 0.2h 51.9 52.8 0.9 0.291 

0.4h 51.9 53 1.1 0.321 

0.6h 51.8 53 1.2 0.336 

0.8h 51.8 53 1.2 0.336 

25 0.2h 51.7 52.6 0.9 0.291 

0.4h 51.7 52.7 1 0.306 

0.6h 51.7 52.7 1 0.306 

0.8h 51.7 52.7 1 0.306 

15 0.2h 51.5 52.5 1 0.306 

0.4h 51.5 52.5 1 0.306 

0.6h 51.5 52.5 1 0.306 

0.8h 51.6 52.6 1 0.306 
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TABLE-8 

Flow depth= 8.8cm,  30.5
0 

 

 

TABLE-9  

Depth of flow =7.7 cm,  30.5
0 

 

 

 

Y Depth of 

flow(cm) 

H2(cm) H2(cm) H (cm) sin2 hgV   

       (in m/s) 

35 0.2h 61.9 60.3 1.6 0.399 

0.4h 62.3 60.5 1.8 0.423 

0.6h 62.5 60.7 1.8 0.423 

0.8h 62.5 60.7 1.8 0.423 

25 0.2h 62.1 60.6 1.5 0.386 

0.4h 62.2 60.6 1.6 0.399 

0.6h 62.2 60.6 1.6 0.399 

0.8h 62.3 60.6 1.7 0.411 

15 0.2h 61.9 60.4 1.5 0.386 

0.4h 62.1 60.4 1.7 0.411 

0.6h 62.4 60.7 1.7 0.411 

0.8h 62.4 60.7 1.7 0.411 

Y Depth of 

flow(cm) 

H2(cm) H2(cm) H (cm) sin2 hgV   

(in m/s) 

35 0.2h 61.3 58.9 2.4 0.489 

0.4h 61.6 58.9 2.7 0.519 

0.6h 61.8 59 2.8 0.528 

0.8h 61.8 59 2.8 0.528 

25 0.2h 61.1 58.8 2.3 0.479 

0.4h 61.5 58.9 2.6 0.509 

0.6h 61.6 58.9 2.7 0.519 

0.8h 61.6 58.9 2.7 0.519 

15 0.2h 61.3 58.9 2.4 0.489 

0.4h 61.6 58.9 2.7 0.519 

0.6h 61.6 58.9 2.7 0.519 

0.8h 61.6 58.9 2.7 0.519 



31 
 

CHAPTER-4 

 

 

 

Results and discussion 

As soon as observations (velocities using either pitot tube-manometer combination or ADV) are 

taken, one have to tentatively find the thickness of Boundary layer at each section of 

consideration. 

Then by applying the definition of Boundary layer thickness i.e.., depth from bottom (rough 

surface) to the point where velocity is 99% of free stream velocity. 

Velocity at 99% of free stream velocity can be found out by using method of Interpolation 

between two known points. 

Example:  Depth of flow, h=7.7 

Depth Velocity 

0 0 

0.2h 0.489 

0.4h 0.519 

0.6h 0.519 

0.8h 0.519 

 

Here Free Stream velocity, V= 0.519 m/s 

99% of free stream velocity, 1V  = 0.99* V 

           1V   =0.51381 m/s 

So, Depth at 1V  can be found by using method of Interpolation 

At 0.2h depth, velocity is 0.489 

At 0.4h depth, velocity is 0.519 

Let Y be the depth, velocity is 0.51381 

 

Y=   hhh 2.02.04.0
489.0519.0

489.051381.0





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  = hh 2.0)2.0(
03.0

02481.0
  

 = 0.1654h+0.2h =0.3654h =2.81358 cm. 

For rest of Observation tables above method of interpolation is being followed. 

Analysis of Results 

In the graph of Boundary layer thickness in longitudinal direction, increasing trends is seen from 

starting point (leaving the disturbances caused by various agents near the entrance) to length of 

fully developed flow 

The graph of transverse boundary layer which is being shown is only half the transverse length 

of section. As the growth of Boundary layer thickness along transverse direction is symmetric 

about the center-line so other half can be evaluated by taking mirror image across the center-line 

of transverse section. 

For rest of graphs the Growth of Boundary Layer thickness along the Transverse section is 

shown from center-line to periphery i.e.., half of Transverse section. 

 

 

Growth of Boundary Layer in Longitudinal direction 

From the Table-1 data it is observed that the flow is fully developed after 3.1m from the entrance 

of the channel. So the experimental data for the length of fully developed flow is found to be 

3.1m from where the boundary layer thickness remains almost same along the direction of flow. 

The thickness of the boundary layer is found to be 0.4h=2.8cm from the bottom of the channel. 

Initially it is being affected by various agents but finally following the trend of increasing in the 

direction of flow. 
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Figure-9 

 

Growth of Boundary Layer in Transverse direction 

At x=3.1m the velocity of flow is measured along the transverse section and the velocity profile 

is given below. 

 

 

          

 

Figure-10 
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Growth of Boundary Layer in Longitudinal direction 

 

Boundary Layer thickness is 2.12cm for depth of flow 5.3 cm. 

 

       

Figure-11 

Growth of Boundary Layer in Transverse direction 

Length of fully developed flow is 3.5 m for depth of flow 5.3 cm 

 

       

Figure-12 

Velocity (m/s) in X-direction 

D
ep

th
 o

f 
fl

o
w

 

(c
m

) 

Velocity (m/s) in X-direction 

D
ep

th
 o

f 
fl

o
w

 

(c
m

) 



35 
 

Growth of Boundary Layer in Longitudinal direction 

Boundary layer thickness is 3.2 cm for depth of flow 8.8 cm. 

 

 

      Figure-13 

 

Growth of Boundary Layer in Transverse direction 

Length of fully developed flow is 3.4 m for depth of flow 8.8 cm 

 

           

Figure-14 
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Growth of Boundary Layer in Longitudinal direction 

Boundary layer thickness 3.7 cm for depth of flow 7.7 cm 

 

                

Figure-15 

 

Growth of Boundary Layer in Transverse direction 

Length of fully developed flow is 3.3m for depth of flow =7.7 cm 

 

      

Figure-16 
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Using Acoustic Doppler Veloci meter (ADV) 

Growth of Boundary Layer in Longitudinal direction 

 

Boundary layer thickness is 4.2cm and length of fully developed flow is 3.3m. 

 

       

Figure-17 
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COMPARISON WITH THEORITICAL VALUE 

According to Bauer’s investigations (1951), 

                                          
13.0

024.0











k

xx


                 Eq. (3) 

 

Where  =Boundary layer thickness at x  

x = distance from inlet in the direction of flow where boundary layer thickness is       

required. 

             k =roughness height (for cement surface 0.004 ft.) 

 

Putting the respective values for x (i.e. the length of developed flow) and k  the theoretical 

values obtained are shown in the table. 

     

Table-10 

Discharge Length of 

developed 

flow( x ) 

Experimental value 

(Boundary Layer thickness) 

Theoretical value 

(Boundary Layer thickness) 

1 3.1m 2.8 cm 2.7 cm 

2 3.5m 2.1 cm 3.0 cm 

3 3.4m 3.2 cm 2.9 cm 

4 3.3m 3.7 cm 2.8 cm 

 

Here expiremental obtained are compared with theorticial values from Bauer’s equation.  
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Figure-18 

From the above graph, it is observed that experimental data of boundary layer thickness obtained 

increases to a maximum value and then decreases with length of fully developed flow for various 

discharges (flow depths). Whereas according to Bauer’s equation there is a slight increase in 

boundary layer thickness with length of fully developed flow for various discharges (flow 

depths). 

 

Similarly, from US Army Corps of engineers by Campbell et al. (1965) 
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       Eq. (4) 

 

Where, parameters hold the same definitions as Bauer’s equation 
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Table-11 

Discharge Length of 

developed flow( x ) 

Experimental value 

(Boundary Layer 

thickness) 

Theoretical value 

(Boundary Layer 

thickness) 

1 3.1 m 2.8 cm 3.9 

2 3.5 m 2.1 cm 4.3 

3 3.4 m 3.2 cm 4.2 

4 3.3 m 3.7 cm 4.1 

 

 

 

  
Figure-19 

From the above graph, as stated above experimental data od boundary layer thickness increases to 

a maximum value then decreases with length of fully developed flow for various discharges 

(flow depths). But according to US Army Corps theoretical equation there is a linear increase in 

boundary layer thickness with length of fully developed flow for various discharges (flow 

depths). 
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Relation between boundary layer thickness and length of fully developed flow 

with discharge   

      

(I)                                                    (II) 

Figure-20 

From the above figure-20 (I) boundary layer thickness increases initially and reaches a maximum 

value at a depth of 8cm,then decreases gradually and remain constant with depth of flow 

increases. 

Also from the figure-20 (II) length of fully developed flow decreases initially reaches a 

minimum value and then increases with depth of flow (discharge). 
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CHAPTER-5 

 

CONCLUSION 

 

A completely new method, dividing the length of flume into various sections and 

evaluating velocities at each section is adopted. Here finding velocities at each section 

include observations at 0, 0.2h, 0.4h, 0.6h,0.8h depths where h is the depth of flow. 

 From the various experimental data, the boundary layer thickness and length of fully 

developed flow are calculated.  

 Near the inlet section, due to the presence of turbulence and eddies, proper correlation 

with theoretical study is not observed. One can find the momentum transfer among the 

layers which leads to haphazard values in the growth of boundary layer thickness. So it is 

suggested not to consider these velocity profiles in evaluating boundary layer thickness 

and length of fully developed flow. 

 Experimentally, for various depths of flow 5.3 cm, 7.1 cm, 7.7 cm and 8.8 cm respective 

boundary layer thickness are 2.1 cm, 2.8cm, 3.7 cm and 3.2 cm. 

 Also for various depths of flow 5.3 cm, 7.1 cm, 7.7 cm and 8.8 cm respective length of 

fully developed flow are 3.5 m, 3.1 m, 3.3 m and 3.4 m. 

 Theoretically, boundary layer thickness increases from inlet section to section where flow 

is fully developed and remains constant afterwards.  
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 Also from the above experimental data it is validated that, boundary layer thickness 

increasing from inlet section to section where flow is fully developed. From the section 

where flow is fully developed to outlet section thickness of boundary layer remains 

constant. But if adjustment of Tail gate of flume is not done properly, one can find 

erroneous data which will not correlate with theoretical value of boundary layer 

thickness. 

 

 Theoretically, Boundary layer thickness along the transverse section is maximum at 

center line of section with decreasing near the wall side of channels. From the series of 

experiments above statement is validated from above figures.  

 

 Discharge of flow (flow depth) is having greater impact on boundary layer thickness and 

length of fully developed flow which is discussed in comparison part.  

 

 Section parameters like length, breadth, aspect ratio, friction coefficient, roughness of 

section, type of surface (smooth/rough), and type of material used in section preparation 

will affect boundary layer thickness and length of fully developed flow in various ways. 
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