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ABSTRACT

Security is a crucial parameter to be recognizedhithe improvement of electronic communication.
Today most research in the field of electronic comanication includes look into on security concern
of communication. At present most by and large comged and recognized standard for encryption
of data is the Advanced Encryption Standard. AESsaeansformed to supplant the developing Data
Encryption Standard. The AES calculation is fit fdrandling cryptographic keys which are of 256,
128, & 192 bits to encode & unscramble data in sgegof 128 bits. The center of the calculation is
made up of four key parts, which manage 8 bit daiaces. The whole 128 bit data to the calculation
is dealt with into a 4 x 4 grid termed a state,dbtain the 8 bit square.

Considering the complex nature of advance encrgptstandard (AES) algorithm, it requires a
huge amount of hardware resources for its practicmhplementation. The extreme amount of
hardware requirement makes its hardware implemeidatvery burdensome. During this research,
a FPGA scheme is introduced which is highly efficiein terms of resource utilization. In this
scheme implementation of AES algorithm is done afirite state machine (FSM). VHDL is used
as a programming language for the purpose of desi@ata path and control unit are designed for
both cipher and decipher block, after that respeetidata path and control unit are integrated using
structural modeling style of VHDL. Xilinx_ISE_14.Zoftware is being used for the purpose of
simulating and optimizing the synthesizable VHDL d® The working of the implemented
algorithm is tested using VHDL test bench wave forof Xilinx ISE simulator and resource
utilization is also presented for a targeted Sparge XC3s500e FPGA.
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1. OVERVIEW

1.1. MOTIVATION
With overall communication of private and secréimation over the machine systems then again

the Internet, there is dependably a plausibilityigi to information privacy, information honestyca
likewise information accessibility. Information ewgption keeps up information secrecy,
trustworthiness and validation. Data has happemétetmost imperative stakes in developing interest
of need to store each and every significance chsioos in regular life. Messages need to be secure(
from unapproved gathering. Encipherment is one hef $ecurity systems to secure data from
community. Encryption shrouds the first substant@ onessage in order to make it mixed up to

anybody, with the exception of the individual whastthe extraordinary information to peruse it.

In the past cryptography implies just encryptiod decoding utilizing mystery keys, these days it
is characterized in diverse components like topsyytkey encipherment (public-key cryptography)
and symmetric-key encipherment (called as privet-&e/ptography). The general population key
calculation is intricate and has high reckoningetirRrivate Key calculations include stand out key,
both for encryption and unscrambling while, opery laalculations include two keys, one for
encryption and an alternate for decoding. Thereevmeimerous cryptographic algorithms proposed,
for example, Data Encryption Standard (DES), 2-D&BES, the Advanced Encryption Standard,
Elliptic Curve Cryptography, and different calcuteis. Numerous examiners and programmers are
continually attempting to break these calculatiotibzing beast constrain and side channel assaults

A few strike were effective as it was the situationthe Data Encryption Standard in 1993.

AES, is the well-accepted cryptographic algorithrhicka could be utilized to ensure security
towards electronic information. This thesis givasAES algorithm respect to FPGA and VHDL this
proposes a strategy to incorporate the AES codettenAES decoder. This strategy can be of a small-
intricacy structural planning, particularly in sppay the fittings asset in executing the AES (InupS
Bytes module and (Inv) Mix column module and soMost composed modules could be utilized for
both AES encryption and decoding. Additionally, temstruction modeling can at present convey a
bulk information rate in both encryption/decodirrggedures. The suggested building design is suited
for equipment-discriminating requisitions, for exal shrewd card, PDA, and cellular telephone, and

SO on.

Page 9 | 60




Design optimization is being done by using Finitat& Machine. Data path and control unit are
designed for both cipher and decipher block, atftett respective data path and control unit are
integrated using structural modeling style of VHD{ilinx_ISE_14.2 software is being used for the

purpose of simulating and optimizing the synthdsiz& HDL code.

1.2. RESEARCH OBJECTIVE
In the light of optimized FPGA implementation of viahce Encryption Standard (AES) algorithm,

the main objective of our research are:

1. Designing of Finite State Machine (FSM) using minmmnumber of state for the
purpose of FPGA implementation of AES algorithm.

Designing of Hardware efficient data path for Eqtign and decryption.
Designing of Hardware efficient control unit patn Encryption and decryption.
FPGA resource optimization.

VHDL Simulation of AES Algorithm.

o & 0D

1.3.LITERATURE SURVEY

* FPGA schemes for minimizing the power-throughpadé-off in executing the Advanced
Encryption Standard algorithm, Journal of Systemshecture 56 (2010) 116—-123.(Jason
Van Dyken, José G. Delgado-Frias)

« ADVANCED ENCRYPTION STANDARD, Federal Informatiorrécessing Standards
Publication 197, November 26, 2001.

1.4. DESIGN TOOLS

Several developmental tools were used for the imptgation of our project. This includes
generating Test-bench waveform, RTL simulations atd design summary.
We used Xilinx ISE (integrated software environmeit.2 software for designing out circuit using
VHDL code and Developing the Test-bench and schiemat the modules.
This software allows us to take our design fromgtesntry through Xilinx device programming. The

ISE project navigator processes our design thraagious steps in the ISE design flow.
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The following are the steps used

Design Entry

Synthesis

Implementation

Simulation and verification

Device Configuration
The Test-bench waveform containing the signals lmamised to simulate the modules used in our
project in the Xilinx ISE simulator.
This provides a powerful and highly advanced sefitained development platform for designs
targeting the Spartan 3e FPGA from Xilinx. Featuiks Xilinx Platform Flash, USB end, JTAG

parallel programming interfaces are also foundhis thoard.

1.5. ORGANISATION

This thesis is organized afollows:
Chapter 2 describe history and requirement gftography, concept of Galois field and about data

encryption standard (DES) algorithms, which wasiwesalier.

Chapte 3 describes the AES algaithm in detais. The four enayption stages ae
presented: ByteSubstitution, Shift Rows, Mix Column andlastly Add RoundKey and inverse
part of all four blockslt also describes the detas of Cipher and Decipher block

In Chapte 4, a poposed achitectue of AES algorithm g presented. In which, we have
described the detailed architecture of designed gath and control unit for both cipher and
decipher.

In Chapte 5, simulation and results are presented in thispmter, with the
test bench wave form and block architecture of ebdtdick used in the AES
along with complete AES block.

Finally, the conclsion andfuture work are presented in Chaptes.
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2. INTRODUCTION
2.1.WHY CRYPTOGRAHY?

Does expanded security give solace to distrustflividuals? Then again does security give
some extremely essential insurances that we atelegs to accept that we needn't bother with?
Throughout this period when the World Wide Web giwucial correspondence between
countless individuals and is constantly progresgiudilized as an apparatus for trade, security

turns into an enormously essential issue to manage.

There are numerous angles to security and num@roussions, extending from safe trade
and installments to private correspondences argriaggpasswords. One vital perspective for safe
interchanges is that of cryptography, which thedamental center of this subject is. At the same
time it is paramount to notice that when cryptogsas fundamental for safe interchanges, it is
not independent from anyone else sufficient. Thioaker is exhorted, then, that the themes
secured in this part just portray the first of nuous steps important for important security in any

count of situations.

2.2.WHAT IS CRYPTOGRAPHY?

Cryptography is an art of composing in mystery sgtaland is an antiquated craft; the initially
reported utilization of cryptography in composingeg once again to circa-1900 B.C. at the point
when an Egyptian copyist utilized non-standard sylimbrepresentations in an engraving. A few
masters contend that cryptography showed up speotsty at some point in the wake of
composing was imagined, with requisitions runningnf strategic messages to war-time fight
tactics. It is not at all astonishment, then, tiaw types of cryptography came not long after the
across the board improvement of machine interclmriganformation and telecommunications,
cryptography is fundamental when conveying over maoy-trusted medium, which incorporates
pretty much any system, especially the WWW.

Inside the connection of any provision-to-requisittommunication, there are some particular

security prerequisites, including:
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Authentication:The procedure of demonstrating one's charactbe €Esential types of
host-to-have validation on the WWW today are namsel or location-based, both of
which are famously feeble.)

Privacy/confidentiality:Guaranteeing that nobody can read the messageheith
exception of the proposed receiver.

Integrity: Guaranteeing the receiver that the received medsagnot been compromised
in any possible way from the initial.

Non-repudiation:A procedure to demonstrate that the messengédy seadt the

message. [3]

Cryptography, then ensures information from thefcbange, as well as be utilized for client
confirmation. There are, when all is said in ddhege sorts of cryptographic plans ordinarily used
to achieve these objectives: mystery key (or symuo)atryptography, open-key (or unbalanced)
cryptography, and hash works, each of which isatedibeneath. In all instances, the introductory
decoded information is alluded to as plain-texis liencoded into figure content, which will thus

(ordinarily) be decoded into utilizable plain-text.

2.3.TYPES OF CRYPTOGRAPHIC ALGORITHM

There are numerous ways of categorizing cryptodcaglgorithms. For commitments to this
thesis, they will be classified based on the nundféeeys that are engaged for encryption and
decryption, and further demarcated by their appboaand use. The three kinds of algorithms that
is conferred are given below in fig 2.3.

)*&Y%'+-8)  0)*&Y'+-&) #0"+/1
[,+$"&"™*&/% [,+$"&"™*&/%
Fig 2.3: Types of Cryptographic Algorithm basednumber of keys
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2.3.1. Symmetric-key Encipherment or Secret key Cryptograjy

Fig 2.3.1(a): Block Diagram of Symmetric key En@piment

In symmetric-key encipherment a substance say \Gan,make an impression on an
alternate element, say Ashu, over an unstable ehavith the presumption that a foe, say Eve,
can't comprehend the substance of the messagesimalbalistening stealthily over the channel.
Viku scrambles the message utilizing an encryptiiculation; Ashu unscrambles the message
utilizing an unscrambling calculation. Symmetrigtlencipherment utilizes a solitary mystery
key for both encryption and unscrambling. Encryplitecoding might be considered electronic
locking. In this, Viku puts the message in a ceatd locks the container utilizing the imparted

mystery key; Ashu opens the case with the samekdyakes out the message.

Plain-text input Cipher-text Plain-text output

“The quick “The quick

brown fox “AxCv;5bmEseTfid3) brown fox
jumps over fGsmWe#4" , sdgfliwi jumps over
the lazy r3:dkJeTsY8R\s@!qg3 the lazy
dog!!’ %H’ dog!!’

Encryption  Decryption

Same key ii
‘/(shared secret)\*

Fig 2.3.1(b): Example for Symmetric Key Encipherm@j
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2.3.2. Asymmetric-key Encipherment or Public key Cryptography

Fig 2.3.2(a): Block Diagram of Asymmetric key Erfogoment

In asymmetric-key encipherment, we have the samoeiroistance as the symmetric-key

encipherment, with a couple of exemptions. Iniiathere are two keys rather than one: one open

key and one private key. To send a secured mesea@ishu, Viku first encodes the message

utilizing Ashu's open key. To unscramble the mességhu utilizes his own particular private

key.

ToT

Asymmetric Key / Public Key

Recipient's Recipient's
Public Key - Private Key
-
t P
1 /
{.{31 : /, ¢">
/ “s Private Key
———————— h Public Key
Sender Recipient

aBusinans Conter TOY Public Company Limited

Fig 2.3.2(b): Example for Asymmetric Key Enciphenh?]
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2.3.3.HASHING

Fig 2.3.3(a): Block Diagram of Hashing
In hashing, an altered-length message condengatioade out of a variable-length
message. The condensation is typically much momestdhan the message. To be valuable,
both the message and the review be sent to Asltshiitais utilized to give check values,

which were examined prior in connection to giveomfiation respectability.

|. "hello"

password
(cleartext)

hashed
passwor d \

hash function

\
“\
\,

[ $1$r6T8SUB9$Qie4 1FJyF /3gkPluvK0Q9O0 |

password
store

Fig 2.3.2(b): Example for Hashing [2]
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2.4. GALOIS FIELD

Galois Field, named after Evariste Galois, otheewgalled finite field, alludes to a field in
which there exists finitely numerous componentss Bspecially valuable in translating machine
information as they are represented in binary sires. That is, computer information comprise
of two numbers, 0 and 1, which are the segmen&aiois field whose number of element is two.
Representing to information as a vector in a Gdte#d permits scientific operations to scramble

information effectively and effectively.

There ae many cyptogaphic algeithms using GF among them, th&ES algaiithm uses the
GF (2°). The data byte can hehaacterized sing a polynomialrepresentation & GF (2°).

Arithmetic operation is completely not quite thengaas typical arithmetic algebra, an addition
can be discovered utilizing bit-wise XOR operationGalois field, the multiplication product of
polynomials will be modulo an irreducible polynoirsa final answer can be within the used finite
field. The polynomial which cannot be factorizedwb or more than two is called as irreducible
polynomial. In Galois field GF { addition/subtraction is same as XOR operation and
multiplication/division is same as the AND operatid’he binary representation of irreducible
polynomial used ifGF (2%) is p=100011011. [4]

2.5DATA ENCRYPTION STANDARD

Up to this point, the primary standard for encrgptof the information remained a symmetric
algorithm called as the DES (Data Encryption StashdadNotwithstanding, this must now been
supplanted by another standard called by way oAtE® (Advanced Encryption Standard) which
we shall take a gander in future. DES is a 64 lgite figure which implies that it encrypting
information 64 bits at once. This is differentiatedca stream cipher in which stand out bit at once
(or frequently little gatherings of bits, for exalapa byte) is scrambled.

DES was the fruit of a research project performgdhkernational Business Machines (IBM)
Corporation in the later parts of 1960’s which grn&e to a cipher called as LUCIFER. In the
earlier parts of 1970's it was decided to commdémzal UCIFER and a quantity of signi cant
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modifications were added. IBM wasn’t alone on 8tg of modifications as they asked technical
help from the National Security Agency (NSA) (othmutside experts were aboard but it is
probable that, from a technical point of view, M®A was the chief backer). The changed variety
of LUCIFER was presented as a suggestion for tlveln@ational encryption standard demanded
by the National Bureau of Standards (NBS). It veetly accepted in 1977 as the Data Encryption
Standard —(DES) (FIPS PUB 46). [1]

Page 19 | 60




Page 20 | 60




3. THE ADVANCED ENCRYPTION STANDARD

3.1.INTRODUCTION
The Advanced Encryption Standard is a determination for the purpose of encryptién o

automated information built by th¢ational Institute of Standards and Technologyof U.S. in
2001. AES is focused around tRgndael figure created byoan DaemenandVincent Rijmen

(two Belgian cryptographers), who proposed a suggesto NIST throughout the AES
determination process. Rijndael is a group of #guwith distinctive key and piece sizes. For AES,
NIST chose three parts of the Rijndael family, eagth a piece size of 128 bits, yet three
distinctive key lengths: 128, 192 and 256 bits. A&S been received by the U.S. government and
is currently utilized around the world. It succedusData Encryption Standard (DES), which
was distributed in 1977. The algorithm depicted AgS is a symmetric-key calculation,
importance the same key is utilized for the purpo$eencryption and decryption of the

information.

3.2. HISTORY
The prior ciphers might be broken without hardiyirig a finger on advanced processing

frameworks. The DES calculation was softened uB19dizing a framework that cost about
$250,000. It was additionally unreasonably moderafgogramming for it was made for middle-
1970's equipment and doesn’t process effectiverprogiing code. Then again, Triple DES has
three times the same number of iterations as DESsarelatively sluggish. And also, the 64 bit
square size of triple DES besides DES isn't extigraffective also is faulty concerning security.

What was obliged was a fresh out of the box newrygtion algorithm that might be
impervious to the majority of the identified attacNIST needed someone to assist the making of
another algorithm. Nonetheless, in view of the aésion that ran with the DES standard, and the
ages of a few limbs of the U.S. government havigg at all that they could to upset sending of
protected cryptography this was liable to incressied distrust. The issue remained was, NIST
would really have liked to help make another faitasncryption standard yet they couldn't get
included specifically.

Tragically they were truly the main ones with tipecalized notoriety and assets to the lead
the exertion. As opposed to outlining or servingtaline a figure, what they did rather was to
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announce a challenge in which anybody on the plemetd join in. The challenge was affirmed
on 2% January, 1997 and the thought existed to creatthanencryption algorithm which might
be utilized for securing delicate, non-charactetjaé.S. government data. The figures needed to
encounter a great deal of prerequisites and theeardnfiguration must be completely archived
(not at all like the DES figure). Once the hopedlgorithms had been deposited, a few years of
examination as cryptographic meetings occurredthin first adjust of the opposition fifteen
algorithms were acknowledged and this remainedraoted to five in the "8 adjust. The
algorithms remained tried for productivity and sgfeoth by a percentage of the world's finest

freely eminent cryptographers and NIST themselves.

Later this examination NIST at last picked an alyon introduced as Rijndael. Rijndael was
titled after the name of, who created and depositedDr. Joan Daemen from Proton World
International & Dr. Vincent Rijmen, a postdoctosalientist in the Electrical Engineering from
Department of Katholieke Universisteit Leuven (t&elgian cryptographers). On November the
26" of 2001, AES (that is an institutionalized rengfitiof Rijndael) turned into a FIPS standard
(FIPS 197). [1]

3.3. AES CIPHER AND DECIPHER
Similar to DES, AES is a symmetric block cryptodraghich implies it utilizes the identical

key for the purpose of encryption and decryptiootvithstanding, AES is truly not the same as
DES in various means. The algorithm Rijndael takssconsideration a mixture of block and key

sizes and not only the 56 and the 64 bits of th& DIbck and the key size. The block & the key
can indeed be picked freely from 160, 196, 128, 258 224 bits and doesn’t need to be identical.
Then again, the AES standard shapes that algogtnmust acknowledge the block size of 128
bits and the decision of 3 keys - 192, 128, & 2B8§.lContingent upon which form is utilized, the

designation of the standard is changed to AES-AgS-256 or AES- 128 separately. And these
contrasts AES varies from DES in which isn’t atieiistructure. Review that in a feistel structure,
a large portion of the information block is utilizéo change the other 50% of the information
block and afterward the parts are exchanged. Rsrsituation the whole information block is

prepared in parallel throughout each one roundzing replacements and stages.

Page 22 | 60




Various AES factors rely on upon the key lengthr iRstance, if the key size utilized is 128
then the amount of iterations is ten while it iarteen and twelve for 256 & 192 bits separately.
At current the utmost widely recognized key siable to be utilized is 128 bit key. This portrayal
of AES algorithm consequently depicts this spe@iecution.

Rijndael was planned to have the subsequent feature

* Battle in contradiction of every recognized attacks
 Rapidity and code firmness on a widespread rangdatfiorms.
* Blueprint Easiness.

The complete assembly of AES can be grasped thridgigB.3. The input is just a single
data 0f128 bit for the purpose of decryption & gption and is recognized as timedimension.
This data is imitated into statedimension which is adapted at every phase of therigthm and
later imitated to an output dimension (see figuB®th the plain text and key are portrayed as a
128 bit square dimension of bytes. This key isrlatg@anded into a dimension of key schedule
words (32 bits) (thev matrix). It need to be noted that the orderingyd€b within than matrix
is by column. The same is applicable towhdimension. [1]

—)

Fig 3.3: Conversion of 128 bits of data to Statérima

The above matrix in fig 3.3 is the state matrix \8h@ach element is of one byte data.
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A

Figure 3.3(a): Block Diagram of Encryption

Inverse Mix
Columns (for
9 rounds)

Figure 3.3(b) Block diagram of Decryption
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3.3.1. INNER WORKING OF ROUNDS

The algorithm initiates from Add round key procésiowed by total of 9 iterations of
four processes and the 10th iteration of 3 prosesHais is applicable for both encryption and
decryption including a special case that each moéan iteration the decryption algorithm is the

reverse of its corresponding process from encrgpéilgorithm. 4 processes used are as given
below in fig 3.3.1(a). [1]

340%+%3%& 4)%&0
"+5% '670
+8 693*/0
.. 63/:1&)

Fig 3.3.1(a): Four Stages of Encryption

The 10th iteration just doesn’t use & Columns transformation. The decryption algorithm
initiates from an Add round key process trailed®hterations of decryption process which

comprises of the subsequent processes shown 3n3idy(b).

[,&'0& "+5% '670
[,&'0& 340%+%3%& 4)%&0
;. 63/:1&)
[,&'0& +8 693*//

Fig 3.3.1(b): Four Stages of Decryption
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Yet again, the 10th iteration just ignores bineerse Mix Columns transformation process. For

each of these processes will now be well-thoughtiromore detail.

3.4. STAGES IN CIPHER AND DECIPHER

3.4.1. BYTE SUBSTITUTION
Byte Substitution is basically a lookup table utilizing a 16x16 dmubdimension of byte values
known ass-box This dimension comprises of every conceivable lmasrof 8 bit sequence (=
16 x 16 = 256). Nonetheless, the s-box isn’t omlyaebitrary stage of these qualities and there is
an overall-characterized technique for making tHmox matrix. The architects of Rijndael
demonstrated how this was carried out dissimilainéos-box DES for which not at all justification
was given. We won't be excessively interested hevethe s-boxes are created and can basically
take them as lookup tables. Again the dimensiohgbts worked upon all around the encryption

is called state-matrix.

We need to be interested with how this frameworkifisienced in every one iteration. For this
specific adjust every byte is linked into anothit8 in the accompanying way: the left-hand side
4 bits of the half word is utilized to determinsgecific row of the s-box and the right-hand side
4 bits tags a specific column. For instance, th&®8{95} (wavy sections speak to hex values in
FIPS PUB 197) chooses line nine segment five tatteially comes out to hold the quantity {2a},

which is utilized to modify thetate matrix.

| I |
— nvseox | <7
So,0 | So1 | Soz | So3 S'o,o 5'0,1 5'0,2 5'0,3
S10 | S11 | S12 | S13 5’1,0 5'1,1 5'1,2 5'1,3
S20 | S21 | S22 | S23 820|821 (S22 |5 23
S30 | S31 | S32 | S33 5'3,0 5'3,1 5'3,2 5'3,3
—> $-BOX —>

Figure 3.4.1: Byte Substitution
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The Inverse byte substitution change makes utidinadf an Inverse s-box. For this situation what
is wanted is to choose the quality {2a} and get Wwath {95}. The s-box is intended to be

impervious to called cryptanalytic ambushes. Paldity, the Rijndael engineers looked for a plan
that has a low connection between data bits arld iies, and the property that the yield can't be
depicted as a straightforward numerical capacithefinformation. Also, the s-box has no altered
focuses (s-box (a) = an) and no inverse settledsies (s-box (a) = a) where (an) is the bitwise
compliment of a. The s-box must be invertible i€gdgting is to be conceivable (Is-box[s-box (a)]
= a) be that as it may it ought not to be its ceunirectionally toward oneself i.e. s-box (a) 6 =

Is-box.

3.4.2. SHIFT ROW TRANSFORMATION
Shift Row Transformation is as displayed in fig@g.2. This is a humble permutation and
nothing more. It works as below:
The very initial row (i.e. row ) of thestate matrix isn’t modified.
The 29 row is left shifted by 1 byte in a round path.
The 3rd row is left shifted by 2 bytes in a rouradhp
The fourth row is left shifted by 3 bytes in a rdymath.

@<:| Inverse Row Shift <:| -

L]
So0 | S0 | Sez | Soz So,0 | So1 | Soz | Sos3
S10 | S11 | S12 | Si3 Siq | Siz | Sz | Sio
20|82 | Bzg (S s S22 | S23 | S20 | S21
Saio | S| a2 88 S33 | S30 | S31 | S32

@ :> Row Shift |:>ﬁ

Figure 3.4.2: Row Shift Transformation
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The Inverse Shift Rows conversion (called as InuftSRows) performs these round

movements in the inverse heading for each of teettaee columns (the first column was

unchanged in any situation). This process may eeinsto do abundant yet in the event that

you contemplate how the bytes are requested insigke then it could be seen to have

significantly a greater amount of an effect. Keepnind that state is dealt with as a cluster of

four byte sections, i.e. the main section reallgaks to bytes 1, 2, 3 and 4. A one byte

movement is in this way a direct separation of tebyThe conversion additionally guarantees

that the 4 bytes of 1 segment are extent out Epdrate segments.

3.4.3. MIX COLUMN TRANSFORMATION

MIX COLUMN TRANSFORMATION is essentially a substitan yet it makes utilization

of math of GF ( ). Every segment is worked on separately. Everg bbyta segment is charted

into another esteem that is a capacity of eache#tbytes in the section. The conversion might

be dictated by the accompanying grid increase ate skemonstrated in fig 3.4.3

Every component of the item framework is the ehtif results of components of one

line and one segment. For this situation the unaugmentations & multiplication are achieved

in GF ( ). The Mix Columns change of a solitary segmen®  (j _ 3) of state could be

communicated as: Where x means multiplication gwvetfinite field GF ( ).
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Figure 3.4.3: Mix column Transformation
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3.4.4.ADD ROUND KEY
In this process (called as Add Round Key) the 1iB8df state are bitwise Xored through

the 128 bits of the round key. The procedure is sea column wise process between the word
of a state column and one WORD of the round keys @bnversion is as basic as would be prudent

which benefits in effectiveness yet it additionafifluences all of state.

%ott%&
H%'+8

3%6$3% %#%&
H%'+8

/

3.4.5. KEY EXPANSION UNIT
The AES key extension calculation takes input dsweord key and crops a direct cluster of 44
words (32 bits). Every one round uses 4 of theselsvdcach one expression holds 32 bytes which

implies each one sub key is 128 bits in length.

The key is duplicated into the initial four expriess of the stretched key. The rest of the stretche
key is packed in 4 words at once. Each one includ@d w][i] hinge on the promptly going before
word, w[i 1], and the expression 4 places back w4]. In 3 out of 4 cases, upfront XOR is
utilized. For a statement whose location in thexhilat is a numerous of four, a more random

capacity is utilized.
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1. RotWord just rotates the word data by a one-byte roundneitement. This implies
that a data word [a0, al, a2, a3] is changed aitp42, a3, a0].
2. SubWord substitutes every bytes of the word using byte tdultisn method , utilizing
the S-box portrayed prior.
3. The consequence of above processes is bitwise X@Rledound constant, known as
Rcon[].
The round constant (RCON) is a word (32 bit) whiels the 3 right hand-side bytes are zero every
time. Therefore, the result of an XOR of the worthvRcon is just only to achieve an XOR on
the left hand-side byte of word. The round constardissimilar for each iteration and is well-
defined as , with , and the
multiplication is done over the GF ().
The key expansion remained intended to be impesviouecognized cryptanalytic assaults. The
consideration of a round-needy round steady digzemdth the symmetry, or comparability,

between the courses in which adjust keys are pestlircdiverse iterations [1].
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4. AES ARCHITECTURE

We have designed our AES architecture in VHDL Lagguusing Xilinx 14.2 for Spartan 3E
XC3s500e FPGA. Our architecture takes 128 bitsatd ds input along with the 128 bits of key
along with three control signal clk, go_i, and tesgnal each of single bit. The block diagram of
the AES block is provided below in fig 4.1(a).

AES

Data{127.0) e _ i cipher_td(127:0)
Key(127.0)
clk
go_|
ressl decipher_Ixt{(127.0)
h A

AES

Fig 4(a): AES Block Diagram

Inside of AES comprises of Cipher block and a Dieerpblock. Cipher block is connected to
decipher block as given below in fig 4(b). Ciph&ydk takes all the input provided to AES block
and give us a Cipher Text of 128 bits as outpyth@i block controls the processing of decipher
block, it keeps the decipher block in wait statéess it is ready with the cipher text, detail
explanation would be provided later. Decipher bltadkes the cipher text as input and provide us

the decipher text which would be exactly similathe input data.
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AES:1

and2 Final_cipher
= . r A

datalt Tl cigher WIAZTE cigher_e[137 0

gt | = ] | 3
. key{1070)
go_i go AND_777 o1 —
gal
i & el | go_d
A A
C
Cata{127:0)
Key(127.8 &
ik .
Final_decipher
F h |
tipher{127.0) dacioher 1271} | decipher el 127.0
clk
g
reget _2!3 (]

AES

Fig 4(b): Internal Schematic of AES block
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4.1.CIPHER

Cipher block is basically used for the encryptidémata, which takes in 128 bits of input

data and 128 bits of key. This block process tha daly at the appropriate signal given by

the three control signal namely clk (it is a cleignal), reset (used to reset various data), and

go_i (it controls the control unit). It provide wsth the cipher text of 128 bits and a control

signal go_d of one bit used to control the decifeck. We will discuss the complete

schematic, data path, control unit of the ciphecklbelow in fig 4.1.

Final_cipher
4 A
data(127:0) cipher_txt(127:0)
key(127:0)
clk
go_i
reset go_d
A 4
Final _cipher

Fig 4.1(a): block schematic of data path of cigbleck.

fsm
4 A
md_in(3:0) load_reg(3:0)
md_out(3:0)
clk sel(3:0)
count_en
go_i go
load_rgk
reset sline
A V'
fsm

Fig 4.1(b): Control Unit of Cipher block
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4.1.1. SCHEMATIC

Final_cipher:1
4
Cipher_mod
¥ i r 1 ohar EHIFT
[ ¥ |
c
fsm
r .
N p
f
A
Final_cipher

+1 < +/%&'#9 0,"&*#%+, 65 +$"&' 496,.

The above figure (Fig.4.1.1) shows the connectetwben the control unit and the datapath of the
cipher block. The control unit controls the datapé&tipher_mod) with various control signal

namely count_en (used to control the counter immkth), load reg (used to load data at the
rgisters), load_rgk (used to load key registerpbdem (used to control various transformation

blocks), sline (used as select signal to seleetdwt input data and last round result), rnd_in and

rnd_out are the round signal containing round count

Page 35 | 60




4.1.2. DATA PATH

v
TRméF%ORwTON BN s BN ADROUNDKEY BB ReGISTER MY OUTPUT REGISTER
SCI \CIPHER
—
CEY KEY EXPANSION
oy UNIT
ROUND

Fig.4.1.2: Datapath for AES CIPHER

The above figure (Fig .4.1.2) is the datapath efdipher block which shows the connection of the
various components of the datapath and the flodatd. It consist of 4 transformation processes
named as byte substitution, row shift transfornmtimix column transformation and add around
key which uses a key expansion unit which prodaagesw key each round. The above 4 processes
takes in a 128 bit data and transform it accordinglgorithm. The output signal Sa is feedback
to multiplexer which selects between it and inpatiaddepending upon the output of the control
unit. The registers above load on the appropriatedition provided by the control unit. Each
transformation block also execute there algoritiintise control unit allows them to. In short the
data path works under the guidance of the contridl u

Page 36 | 60




4.1.3. STATE DIAGRAM

S

Fig.4.1.3: State diagram of Cipher

The above figure (Fig — 4.1.3) is the state diagodipher which shows how the state
transformation takes place which is started froingtate. It proceeds to SO when it receives a
signal named as go_i. This state has four statisltov, it goes to state S1 when round is 0. It
goes to S2 when round is less than 10, to S3 torde 10 and to S4 for round > 10. Each state
from S1 — S4 returns back to SO. S4 sets the roandt back to 0.

4.1.4. Tabular Description of State
The table 4.1.4 provided below clearly shows whattml| unit asks the data path to

perform at various state which depends on rounatc@iate init is the initial state or a resetestat
which resets all data to 0 and maintain the roumehtto 0. State SO is the selection state where
we select the data which is needed to processefur between input data and the result of the
previous round, in round O it selects the inputdahereas for rest of the round it reselects the
output of the previous round. State S1 is useddogss only add round key. State S2 is used to
process all the four transformation processese &atis used to process all the processes except
mix column transformation and also to load the autpgister. State S4 is just like the init state
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used to reset round to 0. All the register are éolexcluding output register in state S1 and S2
and including output register in state S3. Couigt@nabled in state S1, S2 and S3.

Table 4.1.4 State description of control unit qfiar block
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4.2. DECIPHER

Decipher block is basically used for the decryptdrtipher text, which takes in 128 bits of
cipher text from cipher block and 128 bits of kdyis block process the data only at the
appropriate signal given by the three control digraanely clk (it is a clock signal), reset (used to
reset various data), and go_i (it controls the mdninit). It provide us with the decipher text of
128 bits. We will discuss the complete schematta gpath, control unit of the cipher block below
in fig 4.2.

Fig 4.2(a): block schematic of decipher.

Fig 4.2(b): Control Unit of Decipher block
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4.2.1. SCHEMATIC

+1

< +/%&'#9 0,"&*#%+, 65 :&,+$"&' 496,.

The above figure (Fig.4.2.1) shows the connectietwben the control unit and the
datapath of the decipher block. The control unittcals the datapath (decipher_mod) with various
control signal namely count_en (used to controldbenter in datapath), load_reg (used to load
data at the rgisters), load_rgk (used to load keyister), enable (used to control various

transformation blocks), sline (used as select sigmaelect between input data and last round

result), rnd_in and rnd_out are the round signataioing round count.
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4.2.2. DATA PATH

Fig.4.2.2: Datapath for AES DECIPHER

The above figure (Fig — 3.2) is the datapath of dieeipher block which shows the
connection of the various components of the datapaid the flow of data. It consist of 4
transformation processes named as inverse bytditsitibg, inverse row shift transformation,
inverse mix column transformation and add aroungwbich uses a key expansion unit which
produces a new key each round. The above 4 pracésises in a 128 bit data and transform it
according an algorithm. The output signal Sa islibaek to multiplexer which selects between it
and input data depending upon the output of thérgbaonit. The registers above load on the
appropriate condition provided by the control ukiach transformation block also execute there
algorithms if the control unit allows them to. Ihost the data path works under the guidance of

the control unit.
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4.2.3. STATE DIAGRAM

. |
~@

Fig.4.2.3: State diagram of Cipher

The above figure (Fig — 4.2.3) is the state diagofatecipher which shows how the state
transformation takes place which is started frornstate. It proceeds to SO when it receives a
signal named as go_i. This state has four statisltov, it goes to state S1 when round is 10. It
goes to S2 when round is greater than 0, to S®ford = 00 and to S4 for round > 10. Each
state from S1 — S4 returns back to SO. S4 set®threl count back to 10.

4.2.4. TABULAR DESCRIPTION OF STATE

The table provided below clearly shows what contirat asks the data path to perform at
various state which depends on round count. Staitesi the initial state or a reset state which
resets all data to 0 and maintain the round cowidi0t State SO is the selection state where we
select the data which is needed to process furtbebetween input data and the result of the
previous round, in round O it selects the inputdahereas for rest of the round it reselects the
output of the previous round. State S1 is useddogss only add round key. State S2 is used to
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process all the four transformation processese 83tis used to process all the processes except
inverse mix column transformation and also to ltheoutput register. State S4 is just like the init
state used to reset round to 10. All the registet@aded excluding output register in state S1 and
S2 and including output register in state S3. Cewistenabled in state S1, S2 and S3.

Table 4.2.4: State description of control unit e€ghher block
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4.3. TRANSFORMATION BLOCKS

Transformation blocks takes the data and transfoatcording to an algorithm to another
data. Each block transforms when the enable sigrragh else it return the input as output when
the signal is low. In this architecture we haveigiesd two types of block depending upon the bit
size, one for 128 bits of input and output othéitdf input and output.
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4.3.1. Byte Substitution
We have already explained the main procedure obte substitution in section 3.4.1,

here we are introducing the schematic of the pwedsch is shown below in the fig 4.3.1. Its
internal schematic uses a function called as STAUWB, this function is defined along with other
function stated in later stage is defined in paekagated by us as AES_package. All the block

process with a high enable, else returns the iapautput.

Fig 4.3.1: Block Schematic of Byte Substitution gess

4.3.2. Row Shift Transformation
We have already explained the main procedure ofdweshift transformation in section

3.4.2, here we are introducing the schematic optbeess which is shown below in the fig

4.3.2. Its internal schematic uses a function dadlgow_shift.

Fig 4.3.2: Block Schematic of Row Shift Transforroat
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4.3.3. Mix Column Transformation

We have already explained the main procedure ofmiltecolumn transformation in
section 3.4.3, here we are introducing the schenoétihe process which is shown below in the
fig 4.3.3. Its internal schematic uses a functiathed agnix_column.

Fig 4.3.3: Block Schematic of Mix Column Transfotioa

4.3.4. Add Round Key

We have already explained the main procedure ofawlad key in section 3.4.4, here we
are introducing the schematic of the process wisicdhown below in the fig 4.3.4. Its internal
schematic uses a function callecadd_round_key.

Fig 4.3.4: Block Schematic of Add Round Key
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4.3.5. Inverse Byte Substitution
We have already explained the main procedure ofntrerse byte substitution in section

3.4.1, here we are introducing the schematic optbeess which is shown below in the fig

4.3.5. Its internal schematic uses a function dadle STATE_INV_SUB.

Fig 4.3.5: Block Schematic of Inverse Byte Subsibiuprocess

4.3.6. Inverse Row Shift Transformation
We have already explained the main procedure oftrexrse row shift transformation in

section 3.4.2, here we are introducing the schenoétihe process which is shown below in the

fig 4.3.6. Its internal schematic uses a functialhecd asnv_row_shift.

Fig 4.3.6: Block Schematic of Inverse Row Shift Asrmation
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4.3.7. Inverse Mix Column Transformation

We have already explained the main procedure ointrerse mix column transformation
in section 3.4.3, here we are introducing the sa@ienof the process which is shown below in
the fig 4.3.7. Its internal schematic uses a fumctialled asv_mix_column.

Fig 4.3.7: Block Schematic of Inverse Mix Columramsformation

4.3.8. Key Expansion unit
We have already explained the main procedure ofkelgeexpansion unit in section 3.4.5,
here we are introducing the schematic of the psoedsch is shown below in the fig 4.3.8. Its

internal schematic uses a function calleéteys exp_unit.

Fig 4.3.8: Block Schematic of Key Expansion Unit
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4.3.9. Up Counter
This block is used to increase the round numbeipher block when we need to move to the next

round. The schematic of the block is shown belothenfig 4.3.9.

Fig 4.3.9: Block Schematic of the Up Counter, Fig.40: Block Schematic of the Down Counter

4.3.10.Down Counter
This block is used to decrease the round numbdedipher block when we need to move to the

next round. The schematic of the block is showrnvaho the fig 4.3.10.

4.3.11.Regqister

Fig 4.3.11: Block Schematic of a register

This block is used to load the 128 bits of data senk it for future processing, the block

schematic of the register is shown above in figid3
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5. RESULTS
5.1. MATLAB GUI IMPLEMENTATION

Fig 5.1 Gui Result

A Graphical User Interface was designed as showmefor the purpose of encryption and
decryption using Advanced Encryption Standard atligor. Here we have provided a 16 bytes

(128 bits) key word and plain text of unknown ldngtVe can clearly see the cipher text and the
decipher text as generated.
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5.2.VHDL SIMULATION RESULTS

5.2.1. Byte Substitution

Fig. 5.2.1: Byte Substitution waveform.

The above figure 5.2.1 signifies the waveforms poadl by the substitution byte transformation.
The input clock is of 10ns time period, Reset ghhand 128 bits state as a std_logic_vector. The

output obtained is exactly as described in the segid.4.1.

5.2.2. Row Shift Transformation

Fig.5.2.2: row shift transformation waveform.

The above figure 12 signifies the waveforms produmgthe row shift transformation. The input
clock is of 10ns time perioReset is high, and 128 bits state as a std_logotormeThe output
obtained is exactly as described in the segmeri2.3.4
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5.2.3. Mix Column Transformation

Fig.5.2.3: mix column transformation waveform.

The above Fig: 5.2.3 signifies the waveforms predusy the Mix Columns transformation and
its block architecture. The input clock is of 1Qimse period, Reset is high, and 128 bits state as

a std_logic_vector. The output obtained is exaaslglescribed in the segment 3.4.3.

5.2.4. Add Round Key

Fig.5.2.4: add round key transformation waveform

The above figure 14 signifies the waveforms produlog add round key transformation. The
input clock is of 10ns time period, Reset is highd 128 bits state as a std_logic_vector. The
output obtained is exactly as described in the sagi3.4.4.
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5.2.5. Inverse Byte Substitution

Fig.5.2.5: inv. byte substitution waveform.

The above figure 5.2.5 signifies the waveforms posdl by the Inverse byte substitution
transformation. The input clock is of 10ns timeipe, Reset is high, and 128 bits state as a
std_logic_vector. The output obtained is exactlgescribed in the segment 3.4.1. It is to be noted

that this block reversed the effect of the bytessitittion transformation.

5.2.6. Inverse Row Shift Transformation

Fig.5.2.6: inv. row shift transformation waveform
The following figure 5.2.6 signifies the wavefornmoduced by the Inverse row shift
transformation. The input clock is of 10ns timeip&, Reset is high, and 128 bits state as a
std_logic_vector. The output obtained is exactlgescribed in the segment 3.4.2. It is to be noted

that this block reversed the effect of the rowtdh&nsformation.
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5.2.7. Inverse Mix Column Transformation

Fig.5.2.7: inv. row shift transformation waveform

The following figure 5.2.7 signifies the wavefornpsoduced by the Inverse mix column
transformation. The input clock is of 10ns timeipe, Reset is high, and 128 bits state as a
std_logic_vector. The output obtained is exactlgescribed in the segment 3.4.3. It is to be noted

that this block reversed the effect of the mix cofutransformation.

5.2.8. Key Expansion unit

Fig.5.2.8: key expansion waveform

The above figure 15 signifies the waveforms produmgthe key expansion unit and its and its
block architecture. The input clock is of 10nsdiperiod, Reset is high, and 128 bits state as a
std_logic_vector. The output obtained is exactlgescribed in the segment 3.4.5.
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5.2.9. CIPHER

+1 < %&0% 4&/," 7#;&56™ 65 ,+$"&' 496,.
The above figure 5.2.9 signifies the waveforms poadl by the cipher. The input clock is of 10ns
time period, Reset is high, go_i, 4 bit rend_imeslload_rgk, 4 bit select line, 4 bit load regist
and 128-bit state as a std_logic_vector whose outde encrypted as described in AES algorithm.
Cipher block is designed using six sate FSM.

5.2.10. DECIPHER

Fig.2.4: test bench waveform of Decipher block.

The above figure 2.4 signifies the waveforms preduby the 128-bit Decipher and its block
architecture. The input clock is of 10ns time pdyiReset is high, go_i, 4 bit rnd_in, sline,
load_rgk, 4 bit select line, 4 bit load registed 4128-bit state as a std_logic_vector whose outcome
is encrypted as described in AES algorithm. Dedaifheck is designed using six sate FSM.
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5.2.11.AES

+1 > ?< %&0% 4&/," 7#;&56™* 65 &,+$"&' 49@%$ %6 /0

+1 > ?< %&0% 4&/," 7#;&56™ 65 &,+$"&' 496'6* /0 %6 /0 $&'+6:

Above waveform shows the complete result of AESneldata is the input data, key is 128 bit
input key, cipher is the ciphered text and decipti¢ine deciphered text.
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5.2.12.DESIGN SUMMARY

Fig 5.2.12: Design Summary

The Final design summary of the project is as shiomthe above figure 5.2.12. This design
summary is done keeping in the view that we areguSipartan 3E XC3s500e FPGA. Though
IOBs count is quite high it can be managed by desing the input and output parameters like
taking data and key as an input one at a time &uhhzing the cipher text and decipher text one
at a time, this can decrease the IOBs to quite Rest of the logic blocks utilization’s are quite

low, thus we can implement our project in the absteated FPGA board.
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6. CONCLUSION

We have developed an optimized and process ablelMtt¢ide for the implementation of
both encryption and decryption process.

The FPGA resource used was drastically decreasedfgast result which can be seen in
the fig 5.2.12.

Hence, Advanced Encryption Standard architectusggded by us can be executed with
rational efficiency on a Spartan 3E XC3s500e FPGA.

/. REFERENCE

1. ADVANCED ENCRYPTION STANDARD, Federal Informatiorrétessing Standards
Publication 197, November 26, 2001.

2. Google Imagesvww.images.google.co.in

3. Wikipedia:www.wikipedia.org

4. B.A. Forouzan andD. Mukhopadhyay, €/ptogaphy andNetwork Secuity,
2nd Ed.,TataMcGraw Hill, New Delhi, 2012.
5. VHDL Primer (3rd edit ion) by J. Bhasker

Page 60 | 60




