# Free Flexural Vibration of Multiple Stepped Beams by Spectral Element Method

Jitendra Kumar Meher



Department of Civil Engineering National Institute of Technology Rourkela Rourkela – 769 008, India

# Free Flexural Vibration of Multiple Stepped Beams by Spectral Element Method

Dissertation submitted in

May 2014

to the Department of

#### Civil Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology in

Structural Engineering

by

Jitendra Kumar Meher

(Roll No. 212CE2044)

 $under \ the \ supervision \ of$ 

Prof. Manoranjan Barik



Department of Civil Engineering National Institute of Technology Rourkela Rourkela – 769 008, India Dedicated to My Family & Guide...



Rourkela-769 008 , Odisha , India. www.nitrkl.ac.in

Dr. Manoranjan Barik Associate Professor

May , 2014

#### Certificate

This is to certify that the work in the thesis entitled *Free Flexural Vibration of Multiple Stepped Beams by Spectral Element Method* by *Jitendra Kumar Meher*, bearing Roll Number 212CE2044, is a record of an original research work carried out by him under my supervision and guidance in partial fulfillment of the requirements for the award of the degree of *Master of Technology* in *Structural Engineering, Department of Civil Engineering*. Neither this thesis nor any part of it has been submitted for any degree or academic award elsewhere.

Manoranjan Barik

#### Acknowledgement

I thank God for the grace and privilege on me to pursue this program successfully in spite of all challenges faced. My heartily gratitude to my beloved guide, *Prof. Manoranjan Barik, (Dept. of Civil Engineering, NIT, Rourkela)*, for his spontaneous guidance, precious time, valuable suggestions and constructive criticisms that he involved throughout the work. The encouragement and suggestions by him was always there during my research as well as thesis writing. I stretched myself beyond my limits by stimulating through guidance of my guide . His support made me grab this improved final product.

My special thanks to Head of the Department, *Prof. N. Roy*, for the consistent support in our academic activities. I express my sincere thanks to all the faculty members and staffs of Civil Engineering Department, who supported throughout my research work. I am obliged to express my sincere thanks to *Prof. K. C. Biswal* and *Prof. M. Panda* for their continuous encouragement and invaluable advice.

My warmly thanks to all my friends for their positive criticism, loving cooperation, excellent advice and consistent support during the preparation of this thesis. My special thanks to Phd Scholar *Himansu Panda* and *Biraja Prasad Mishra*.

Most profound regards to my mother *Smt. Shreeya Meher* and my father *Shri Bhubaneswar Meher*, for their exceptional love and support. I feel short of words to express my gratitude towards my beloved parents for their sacrifice so many things for my betterment.

> Jitendra Kumar Meher Structural Engineering Roll No. 212CE2044

#### Abstract

The free vibration analyses of multiple-stepped Bernoulli-Euler beam with various boundary conditions have been studied by many researchers using different methods of analysis such as Differential Quadrature Element Method (DQEM), Composite Element Method (CEM), Admonian Decomposition Method (ADM), Differential Quadrature Method (DQM), Local adaptive Differential Quadrature Method (LaDQM), Discrete Singular Convolution (DSC) algorithm etc., besides the conventional analytical methods and finite element methods. In this work the Spectral Element Method (SEM) for analysis of stepped-beams has been used. The second part of the work is concerned with the free flexural vibration of multiple-stepped Timoshenko beam with various boundary conditions using the Spectral Element Method (SEM).

Accurate computation of even the higher modes of vibration frequencies with consideration of least number of degrees of freedom is possible using SEM thus promising very high computational efficiency. Validation of this method is performed with various numerical solutions. A comparison between application of both Euler-Bernoulli and Timoshenko beam theory to the same beam is carried out and various important physical parameters are also investigated.

**Keywords:** Multiple-stepped Beam , Bernoulli-Euler Beam, Timoshenko Beam, Spectral Element Method (SEM), Analytical Methods, Finite Element Methods .

# Contents

| C        | ertifi | cate                                           | iii          |
|----------|--------|------------------------------------------------|--------------|
| A        | ckno   | wledgment                                      | iv           |
| A        | bstra  | ıct                                            | v            |
| Li       | st of  | Figures                                        | 7 <b>iii</b> |
| Li       | st of  | Tables                                         | ix           |
| 1        | Inro   | oduction                                       | 1            |
|          | 1.1    | Finite Element Method                          | 1            |
|          | 1.2    | Dynamic Stiffness Method                       | 1            |
|          | 1.3    | Spectral Analysis Method                       | 2            |
|          | 1.4    | Spectral Element Method                        | 2            |
|          | 1.5    | Objectives                                     | 3            |
| <b>2</b> | Lite   | erature Review                                 | 4            |
|          | 2.1    | Euler-Bernoulli Stepped Beam                   | 4            |
|          | 2.2    | Timoshenko Stepped Beam                        | 7            |
| 3        | Ste    | pped Bernoulli- Euler Beam Theory              | 9            |
|          | 3.1    | Theoretical Formulation                        | 9            |
|          |        | 3.1.1 Spectral Element Matrix for Stepped Beam | 10           |

| 4                         | Ste                  | pped Timoshenko Beam Theory                                                | 14        |
|---------------------------|----------------------|----------------------------------------------------------------------------|-----------|
|                           | 4.1                  | Theoretical Formulation                                                    | 14        |
|                           |                      | 4.1.1 Spectral Element Matrix for Stepped Beam                             | 15        |
| <b>5</b>                  | G                    | lobalisation of Dynamic Stiffness Matrix and Solution                      |           |
|                           | Pro                  | cedure                                                                     | 20        |
|                           | 5.1                  | Globalisation of Dynamic Stiffness Matrix                                  | 20        |
|                           | 5.2                  | Solution Procedure                                                         | 21        |
| 6                         | $\operatorname{Res}$ | ults & Discussion for Stepped Euler-Bernoulli Beam                         | <b>22</b> |
|                           | 6.1                  | Free-Free Beam with single step change                                     | 22        |
|                           | 6.2                  | Single-stepped beam with a circular and a rectangular cross-section        |           |
|                           |                      | having sliding-pinned boundary condition                                   | 23        |
|                           | 6.3                  | Simply Supported Beam with three step changes                              | 24        |
|                           | 6.4                  | Circular stepped beam with change of diameter ratio $\ldots \ldots \ldots$ | 25        |
|                           | 6.5                  | Beams with three step changes in cross-section                             | 29        |
|                           | 6.6                  | Cantilever twelve-stepped beam                                             | 29        |
|                           | 6.7                  | Single-stepped beam with a circular and a rectangular cross-section        | 31        |
| 7                         | $\operatorname{Re}$  | sults & Discussion for Stepped Timoshenko Beam                             | 44        |
|                           | 7.1                  | Single stepped Timoshenko beam                                             | 44        |
|                           | 7.2                  | Percentage error in natural frequencies by Euler-Bernoulli beam            |           |
|                           |                      | theory when applied to a single stepped Timoshenko beam $\ . \ . \ .$      | 45        |
|                           | 7.3                  | Single stepped cantilevered beam                                           | 45        |
|                           | 7.4                  | Cantilever two-stepped beam                                                | 48        |
|                           | 7.5                  | Two stepped cantilever beam with change of circular cross-section          |           |
|                           |                      | location                                                                   | 49        |
| 8                         | Cor                  | aclusion                                                                   | 52        |
| $\mathbf{D}_{\mathbf{i}}$ | issen                | nination                                                                   | 57        |

# List of Figures

| 3.1 | Bernoulli-Euler spectral beam element with nodal forces and            |    |
|-----|------------------------------------------------------------------------|----|
|     | displacements                                                          | 12 |
| 4.1 | Timoshenko spectral beam element with nodal forces and                 |    |
|     | displacements                                                          | 18 |
| 6.1 | A typical stepped-beam with circular and rectangular cross sections    | 23 |
| 6.2 | Clamped stepped-beam with twelve stepped change in cross-section       | 31 |
| 7.1 | Single stepped Timoshenko Beam                                         | 45 |
| 7.2 | Clamped Timoshenko Stepped Beam                                        | 46 |
| 7.3 | Two-stepped Timoshenko Stepped Beam                                    | 47 |
| 7.4 | Non-dimensional natural frequencies for first mode (1) $\ldots$ .      | 49 |
| 7.5 | Non-dimensional natural frequencies for first mode (2) $\ldots \ldots$ | 50 |
| 7.6 | Non-dimensional natural frequencies for Cantilevered $\ . \ . \ . \ .$ | 50 |
| 7.7 | Non-dimensional natural frequencies for Pinned-Sliding                 | 51 |

# List of Tables

| 6.1  | Nondimensional natural frequencies of the single-stepped free-free                              |    |
|------|-------------------------------------------------------------------------------------------------|----|
|      | beam                                                                                            | 23 |
| 6.2  | Nondimensional natural frequencies of the single-stepped beam                                   | 24 |
| 6.3  | Natural Frequencies (Hz) of three-stepped SS-SS beam $\ . \ . \ . \ .$                          | 25 |
| 6.4  | Nondimensional frequencies for various diameter ratios $d_1/d_2$ (1)                            | 26 |
| 6.5  | Nondimensional frequencies for various diameter ratios $d_1/d_2$ (2)                            | 27 |
| 6.6  | Nondimensional frequencies for various diameter ratios $d_1/d_2$ (3)                            | 28 |
| 6.7  | The non- dimensional frequency parameters for Type-I rectangular                                |    |
|      | beam $(I_i = b_i h^3 / 12)$ with $\mu_i = \phi_i (1) \dots \dots \dots \dots \dots \dots \dots$ | 29 |
| 6.8  | The non- dimensional frequency parameters for Type-I rectangular                                |    |
|      | beam $(I_i = b_i h^3/12)$ with $\mu_i = \phi_i(2) \dots \dots \dots \dots \dots \dots$          | 30 |
| 6.9  | The non- dimensional frequency parameters for Type-I rectangular                                |    |
|      | beam $(I_i = b_i h^3/12)$ with $\mu_i = \phi_i$ (3)                                             | 30 |
| 6.10 | Natural frequencies of twelve-stepped clamped beam in Hz for                                    |    |
|      | Flap-wise Bending mode                                                                          | 32 |
| 6.11 | Natural frequencies of twelve-stepped clamped beam in Hz for                                    |    |
|      | Chord-wise Bending mode                                                                         | 33 |
| 6.12 | Natural frequency ( Hz) of 12 stepped beam with Flap wise (Type                                 |    |
|      | I) bending mode for different boundary conditions by SEM                                        | 34 |
| 6.13 | Natural frequency ( Hz) of 12 stepped beam with chord wise (Type                                |    |
|      | II) bending mode for different boundary conditions by SEM $\ . \ . \ .$                         | 35 |
| 6.14 | Nondimensional natural frequencies of the single-stepped beam $\left(1\right)$ .                | 36 |
| 6.15 | Nondimensional natural frequencies of the single-stepped beam $(2)$ .                           | 37 |

| 6.16 | Nondimensional natural frequencies of the single-stepped beam $(3)$ .                             | 38 |
|------|---------------------------------------------------------------------------------------------------|----|
| 6.17 | Nondimensional natural frequencies of the single-stepped beam $\left(4\right)$ .                  | 39 |
| 6.18 | Nondimensional natural frequencies of the single-stepped beam $(5)$ .                             | 40 |
| 6.19 | Nondimensional natural frequencies of the single-stepped beam $(6)$ .                             | 41 |
| 6.20 | Nondimensional natural frequencies of the single-stepped beam $(7)$ .                             | 42 |
| 6.21 | Nondimensional natural frequencies of the single-stepped beam $\left(8\right)$ .                  | 43 |
| 7.1  | Nondimensional natural frequencies of the single-stepped<br>Timoshenko beam                       | 44 |
| 7.2  | Comparison of Non-dimensional natural frequencies with                                            |    |
|      | Timoshenko & Euler-Bernoulli Beam theories for the same                                           |    |
|      | beam                                                                                              | 46 |
| 7.3  | Comparision of nondimensional natural frequencies by different                                    |    |
|      | methods $\ldots$ | 47 |
| 7.4  | Nondimensional natural frequencies for change in percentage of length                             | 48 |
|      |                                                                                                   |    |

## Chapter 1

## Inroduction

Prediction of dynamic characteristics of the structures in the field of engineering is of utmost importance. Now a days the aim of researchers are towards the achievement of more accurate results.

#### 1.1 Finite Element Method

Among the numerical tools finite element method (FEM) is a competent one for the dynamic analysis of structures. Frequency-independent polynomial shape functions are used in the formulation of conventional FEM models. These can work for dynamic problems with lower frequencies wave modes but solutions become increasingly inaccurate with higher modes, where FEM model needs very large number of elements for better accuracy.

#### 1.2 Dynamic Stiffness Method

It is an exact solution method. Here exact wave solutions to the governing differential equations is obtained to derive exact dynamic shape function leading to formulation of exact dynamic stiffness matrix in the frequency domain. In Dynamic Stiffness Method (DSM), governing differential equations adopted in the formulation of exact dynamic stiffness matrix decide the accuracy level. For example, the solution provided by DSM based Timoshenko-beam model is more accurate frequency-domain solutions than the Bernoulli-Euler beam based model. DSM still provides better results than conventional FEM as the severity in assumptions done for DSM will be less. The need to make multiple fine meshes to a regular part of structure is finished as only one single element suffices the work that significantly reduces the number of elements and degrees-of-freedom(DOFs) in total. So the computation time is significantly reduced. At the mean time this reduces computer round-off errors or numerical errors leading to improved accurate solution that are of extreme importance for most large size problems.

#### **1.3** Spectral Analysis Method

Among the frequency-domain methods the spectral analysis method (SAM) is one corresponding to the solutions by continuous Fourier transformation. Instead of continuous Fourier Transform, Discrete Fourier Transform (DFT) is widely practiced. This approach involves determining an infinite set of spectral components (or Fourier coefficients) in the frequency domain and performing the inverse Fourier transform to reconstruct the time histories of the solutions. transform.

#### **1.4** Spectral Element Method

Assembly and meshing of finite elements, exactness of the dynamic stiffness matrix with minimum number of DOFs from DSM and superposition of wave modes via DFT theory and FFT algorithm from SAM is found in Spectral element method (SEM).

#### 1.5 Objectives

The primary objectives of this research work are summarized as follows:

- 1. To study the free vibration of multiple-stepped Bernoulli-Euler beam and Timoshenko beam with combination of different classical boundary conditions using the Spectral Element Method (SEM).
- To compair the freuencies for stepped-beam obtained by application of both Bernoulli-Euler and Timoshenko beam theory.
- 3. To compare the natural frequencies found using SEM with those found by other methods.
- 4. To find higher mode of natural frequencies for stepped beams by SEM as these are rare in literature.

## Chapter 2

# Literature Review

#### 2.1 Euler-Bernoulli Stepped Beam

There is wide application of stepped beams in many engineering fields such as robot arm, aircraft wing, long span bridges etc. The high-frequency vibrations are of crucial importance to aerospace structures such as aircraft, rotorcraft, satellite and space shutter, jet fighter, rocket, and missile [1]. Hence, accurate estimation of both low and high order frequencies is of utmost importance and demands efficient methodology. Though the existing numerical methods have developed quite fast in the last decades, numerical evaluation of high frequencies is still a daunting task.

Many researchers have worked on free vibration of stepped beams. Klein [2] developed a method combining the advantages of a finite element approach and a Rayleigh-Ritz analysis. Sato [3] combined transfer matrix method with partly used finite element method for the analysis of beams with abrupt changes in cross-section. Exact and numerical solutions to a single stepped beam were derived by Jang and Bert [4], [5]. An analytical method for the vibration analysis of stepped Euler-Bernoulli beam on classical and elastic end supports was proposed by Naguleswaran [6], [7]. It is preferred to have a numerical method for the solution as the analytical or exact methods becomes more difficult with increase in number of steps. Though the finite element method (FEM) is more versatile for the

numerical method, there are few alternative methods which are of better advantage over the FEM. Recently Differential Quadrature Element Method (DQEM) [8] has been used for the free vibration analysis of multiple-stepped beams and extensive reviews of literature pertaining to the advantages and disadvantages of various other methods employed for the stepped-beams vibration analysis have been reported. According to Duang and Wang [1] the rate of convergence of DQEM is very high and the DQEM can yield very accurate results with a small number of grid points and is a highly accurate method of analysis. Some other methods reported are the Composite Element Method (CEM) [9], Admonian Decomposition Method(ADM) [10], Differential Quadrature Method (DQM) [11], Local adaptive Differential Quadrature Method (LaDQM) [12] and Discrete Singular Convolution (DSC) algorithm [1], [13].

Levinson (1976) [14] observed that the frequency equation for a stepped beam consisting of only two distinct parts is quite complicated. He suggested using numerical methods for solution to vibration of continuous systems having discontinuous properties. Balasubramanian and Subramanian (1985) [15] compare the frequency values obtained by using 2DPN elements (deflection, slope) and 4DPN elements (deflection, slope, bending moment and shear force) in FEM for uniform, stepped and continuous beams for various boundary conditions to show the superior performance of the 4DPN element. Balasubramanian et al. (1990) [16] introduced complete polynomials up to 15th degree successively so that the end nodal degrees of freedom progressively involve up to and including the seventh derivative (8DPN). A way to employ very high order derivatives as degrees of freedom in beam vibration was demonstrated.

Jang and Bert (1989) [5] considered the higher mode frequencies of a stepped beam with two different cross-sections and investigated the effects of steps on frequency of a beam. They found that the stepping up the beam results in lowering the natural frequencies, thus weakening the structure. Also, stepping down the beam decreases the stiffness of the structure in most cases. Subramanian and Balasubramanian (1987) [17] used circular rod, rod of rectangular section of cross-sections to understand the effect of steps on frequencies of vibration. According to their findings stepping down at anti-nodal locations can dynamically stiffen the structure and stepping up can dynamically weakens the structure unless the ends are held down. The steps can be judiciously incorporated for dynamic tuning. Laura et al. (1991) [18] studied the fundamental frequency of transverse vibration, referring to through study of beneficial effects of beam by introducing step variations of the cross-sectional area and moment of inertia, predicting its use in lighter structures. The outcome was not satisfactory however it shows beneficial effects of cross-section discontinuities in a very eloquent fashion, when one considers the values of natural frequencies which correspond to the transversely vibrating beam of uniform cross-sectional area and moment of inertia.

Bert and Newberry (1986) [19] applied non-integer-polynomial concept to the finite element technique. They observe it as difficult to find closed form solutions for two-section stepped beams. Bapat and Bapat (1987) [20] used exact general solution for a uniform Euler beam, together with the continuity of displacement and slope and the relationship between the shear force and bending moment at a support. They found good agreement with previously found results. Rao and Mirza (1989) [21] derived exact frequency and normal mode expressions for generally restrained Bemoulli-Euler beams. According to them the translational and rotational spring constants have a significant effect on the first three frequencies and mode shapes of vibration and the higher mode frequencies, comparatively, do not show much variation with the range of spring constants considered by them. Jang and Bert (1989) [4] found the exact solutions and compared the results obtained by the use of the finite element method (FEM) with non-integer polynomial shape function and with a commercial code, MSC/pal. FEM showed quite good agreement with the exact solutions.

Reyes et al. (1987) [22] studied the numerical results using trial functions which contain an unknown parameter when implementing the methodology in a finite element formulation in case of vibrating beams and frames and compared it with the experimental results. No computational economy and/or advantage was acquired at least when using the classical Bernouilli theory of vibrating beams. Lee and Bergman (1994) [23] proposed a method for concise and efficient solution of the free and forced vibration of a class of complex like structures using Greens function. A dynamic flexibility method was used to formulate and solve the free and forced vibration of stepped beams. They found good agreement with others. Popplewell and Chang (1996) [24] proposed a unified treatment for finding the free vibration of a non-uniform beam having material or cross-sectional discontinuities, intermediate spring supports, or non-classical end supports. They mentioned that, this approach can vary accurately approximate the natural frequencies, bending moments and shear forces of these beams.

#### 2.2 Timoshenko Stepped Beam

Many researches are done on multi-stepped Timoshenko beam with different boundary and loading conditions.Bhashyam [25] used finite element modelling for analysis of Timoshenko beam. Akella [26] modified the Timoshenko beam-shaft element to include the effect of disks within its length with formulation of a stepped element which performs better than the linearly tapered element in representing shaft discontinuities. Wang [27] found the effect of elastic foundation on the vibration of stepped beams, noticeable for both frequencies and mode shapes, especially in the lowest mode. Farghaly [28] investigated a beneficial effect of the relative span and relative thickness parameters on the natural frequency of Timoshenko beam by making second span stepped.

Farghaly et al. [29] observed additional gain in natural frequencies for a one-span beam with a stepwise variable cross-section made of unidirectional fiber composite materials of different fiber volume fraction than those made of conventional materials. Popplewell [30] employ polynomial based generalized force mode functions with the method of Galerkin for stepped Timoshenko beam.Here polynomials are found on each side of a discontinuity that satisfy the conditions at the contiguous end which is chosen so that the transverse deflection and its slope or the slope due to bending for a Timoshenko beam are continuous at the location of a discontinuity. Wu [31] used modified CTMM (Combined transfer matrix method) for the analysis of multi-step Timoshenko beam. Dong [32] investigated on stepped laminated composite Timoshenko beam.

In the present study the Spectral Element Method (SEM) is used to study the free vibration of multiple-stepped Timoshenko beam with combination of different classical boundary conditions. The SEM is easy to implement as it is similar to the conventional Finite Element Method (FEM). Further the efficacy of this method can be realized as the number of elements needed is only one more than the number of steps used in the stepped beam. For a stepped beam of only one number of change of cross section, consideration of only two number of elements suffices the analysis, thus highly reducing the number of degrees of freedom in comparison to the other methods of analysis.

## Chapter 3

# Stepped Bernoulli- Euler Beam Theory

#### **3.1** Theoretical Formulation

The formulation of the spectral element model for a stepped beam is fairly similar to the formulation of the conventional finite element method. However the major difference is that in general the spectral element formulation begins with the transformation of the governing partial differential equations of motion from the time domain to the frequency domain by using the Discrete Fourier Transform (DFT). Here the time variable disappears and the frequency becomes a parameter to transform the original time-domain partial differential equations into the frequency-domain ordinary differential equations which are then solved exactly and the exact wave solutions are used to derive frequency-dependent dynamic shape functions. The exact dynamic stiffness matrix called the spectral element matrix is finally formulated by using the dynamic shape functions [33]. The spectral element matrices are then assembled to form the global dynamic stiffness matrix and the boundary conditions are applied similar to the conventional finite element method thus producing the reduced dynamic stiffness matrix. The determinant of the reduced dynamic stiffness matrix which is a function of the natural frequencies when equated to zero and solved gives rise to the required natural frequencies.

#### 3.1.1 Spectral Element Matrix for Stepped Beam

The spectral element matrix for a stepped beam can be derived by considering one Bernoulli-Euler beam element of the stepped beam which is of uniform cross section whose free flexural vibration is represented by

$$EIw^{''''} + \rho A\ddot{w} = 0 \tag{3.1}$$

where w(x,t)=transverse displacement, E=Young's Modulus, A=area of cross-section, I=moment of inertia,  $\rho$ =mass density.

$$M_t(x,t) = EIw''(x,t) \tag{3.2}$$

$$Q_t(x,t) = -EIw^{'''}(x,t)$$
(3.3)

where  $M_t(x,t)$ =bending moment,  $Q_t(x,t)$ =internal transverse shear force. Let the solution to Eq.(4.1) in spectral form be

$$w(x,t) = \frac{1}{N} \sum_{n=0}^{N-1} W_n(x;\omega_n) e^{i\omega_n t}$$
(3.4)

Substituting Eq.(4.4) into Eq.(4.1) gives an Eigenvalue problem for a specific discrete frequency such as  $\omega = \omega_n$ 

$$EIW^{''''} - \omega^2 \rho AW = 0 \tag{3.5}$$

Let the general solution to Eq.(4.5) be

$$W(x) = ae^{-ik(\omega)x} \tag{3.6}$$

Substituting Eq.(4.6) into Eq.(4.5) yields a dispersion relation

$$k^4 - k_F^4 = 0 (3.7)$$

where  $k_F$  = wave number for pure bending (flexural) wave-mode defined by

$$k_F = \sqrt{\omega} \left(\frac{\rho A}{EI}\right)^{\frac{1}{4}} \tag{3.8}$$

Eq.(4.7) gives two real roots and two imaginary roots as

$$k_1 = -k_2 = k_F , \quad k_3 = -k_4 = ik_F \tag{3.9}$$

For the finite Euler-Bernoulli beam element of length L, the general solution of Eq.(4.5) can be obtained in the form of

$$W(x;\omega) = a_1 e^{-ik_F x} + a_2 e^{-k_F x} + a_3 e^{ik_F x} + a_4 e^{k_F x} = \mathbf{e}(x;\omega)\mathbf{a}$$
(3.10)

where

$$\mathbf{e}(x;\omega) = \begin{bmatrix} e^{-ik_Fx} & e^{-k_Fx} & e^{ik_Fx} & e^{k_Fx} \end{bmatrix}$$
(3.11)

and

$$\mathbf{a} = \{ a_1 \ a_2 \ a_3 \ a_4 \} \tag{3.12}$$

The spectral nodal displacements and slopes of the beam element are related to displacement field by

$$\mathbf{d} = \begin{cases} W_1 \\ \Theta_1 \\ W_2 \\ \Theta_2 \end{cases} = \begin{cases} W(0) \\ W'(0) \\ W(L) \\ W'(L) \\ W'(L) \end{cases}$$
(3.13)

Substituting Eq.(4.10) in to right hand side of Eq.(4.13) gives

$$\mathbf{d} = \begin{bmatrix} e(0;\omega) \\ e'(0;\omega) \\ e(L;\omega) \\ e'(L;\omega) \end{bmatrix} \mathbf{a} = \mathbf{H}_B(\omega)\mathbf{a}$$
(3.14)

where

$$\mathbf{H}_{B}(\omega) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -ik_{F} & -k_{F} & ik_{F} & k_{F} \\ e^{-ik_{F}} & e^{-k_{F}} & e^{ik_{F}} & e^{k_{F}} \\ -ik_{F}e^{-ik_{F}} & -k_{F}e^{-k_{F}} & ik_{F}e^{ik_{F}} & k_{F}e^{k_{F}} \end{bmatrix}$$
(3.15)

From Eq.(3.14) we have

$$\mathbf{a} = \mathbf{H}_B(\omega)^{-1} \mathbf{d} \tag{3.16}$$

Substituting the value of **a** from Eq.(3.16) in to Eq.(4.10), the displacement field within the beam element is represented as

$$W(x) = \mathbf{e}(x;\omega)\mathbf{H}_B^{-1}\mathbf{d}$$
(3.17)

From the Eq.(4.2) and Eq.(4.3) the spectral components of the bending moment and transverse shear force can be related to W(x) as

$$M(x) = EIW''(x) \tag{3.18}$$

$$Q(x) = -EIW'''(x) (3.19)$$

The spectral nodal bending moments and transverse shear forces defined for the beam element correspond to the moments and the forces as given below (Fig. 1).



Figure 3.1: Bernoulli-Euler spectral beam element with nodal forces and displacements

$$\mathbf{f}_{c} = \begin{cases} Q_{1} \\ M_{1} \\ Q_{2} \\ M_{2} \end{cases} = \begin{cases} -Q(0) \\ -M(0) \\ +Q(L) \\ +M(L) \end{cases}$$
(3.20)

Substituting Eq.(4.17) into Eq.(4.18) and Eq.(4.19) and its results into right-hand side of Eq.(4.20) we have

$$\mathbf{f}_{c} = \begin{cases} EIW^{'''}(0) \\ -EIW^{'''}(0) \\ -EIW^{'''}(L) \\ EIW^{'''}(L) \end{cases} = EI \begin{cases} e^{'''}(0;\omega) \\ -e^{''}(0;\omega) \\ -e^{'''}(L;\omega) \\ e^{''}(L;\omega) \end{cases} \mathbf{H}_{B}^{-1}\mathbf{d} = \mathbf{S}_{B}(\omega)\mathbf{d}$$
(3.21)

where  $\mathbf{S}_B(\omega)$  is spectral element (dynamic stiffness) matrix for the beam element given by

$$\mathbf{S}_{B}(\omega) = EI \begin{cases} e^{\prime\prime\prime}(0;\omega) \\ -e^{\prime\prime}(0;\omega) \\ -e^{\prime\prime\prime}(L;\omega) \\ e^{\prime\prime}(L;\omega) \end{cases} \mathbf{H}_{B}^{-1}$$
(3.22)

## Chapter 4

# Stepped Timoshenko Beam Theory

#### 4.1 Theoretical Formulation

The formulation of the spectral element model for a stepped beam is fairly similar to the formulation of the conventional finite element method. However the major difference is that in general the spectral element formulation begins with the transformation of the governing partial differential equations of motion from the time domain to the frequency domain by using the Discrete Fourier Transform (DFT). Here the time variable disappears and the frequency becomes a parameter to transform the original time-domain partial differential equations into the frequency-domain ordinary differential equations which are then solved exactly and the exact wave solutions are used to derive frequency-dependent dynamic shape functions. The exact dynamic stiffness matrix called the spectral element matrix is finally formulated by using the dynamic shape functions [33]. The spectral element matrices are then assembled to form the global dynamic stiffness matrix and the boundary conditions are applied similar to the conventional finite element method thus producing the reduced dynamic stiffness matrix. The determinant of the reduced dynamic stiffness matrix which is a function of the natural frequencies when equated to zero and solved gives rise to the required natural frequencies.

#### 4.1.1 Spectral Element Matrix for Stepped Beam

The spectral element matrix for a stepped beam can be derived by considering one Timoshenko beam element of the stepped beam which is of uniform cross section whose free vibration is represented by

$$\kappa GA(w^{''} - \theta') - \rho A \ddot{w} = 0 \tag{4.1}$$

$$EI(\theta'' + \kappa GA(w' - \theta) - \rho I\ddot{\theta} = 0$$
(4.2)

where w(x, t)=transverse displacement,  $\theta(x, t)$ = slope due to bending, E=Young's modulus, G=shear modulus,  $\kappa$ =shear correction factor, which depends upon shape of the cross-section, A=area of cross-section and I=moment of inertia about the neutral axis.

$$M_t(x,t) = EI\theta'(x,t) \tag{4.3}$$

$$Q_t(x,t) = \kappa GA[w'(x,t) - \theta(x,t)]$$
(4.4)

where  $M_t(x,t)$ =internal bending moment,  $Q_t(x,t)$ =transverse shear force. Let the solution to Eq.(4.1) & Eq.(4.2) in spectral form be

$$w(x,t) = \frac{1}{N} \sum_{n=0}^{N-1} W_n(x;\omega_n) e^{i\omega_n t}$$
(4.5)

$$\theta(x,t) = \frac{1}{N} \sum_{n=0}^{N-1} \theta_n(x;\omega_n) e^{i\omega_n t}$$
(4.6)

Substituting Eq.(4.5 & 4.6) into Eq.(4.1 & 4.2) gives an Eigenvalue problem

$$\kappa GA(W'' - \theta') + \rho A\omega^2 W = 0 \tag{4.7}$$

$$EI\theta'' - \kappa GA(W' - \theta') + \rho I\omega^2 \theta = 0$$
(4.8)

Let the general solution to Eq.(4.7 & 4.8) be

$$W(x) = ae^{-ik(\omega)x} \tag{4.9}$$

$$\theta(x) = \beta a e^{-ik(\omega)x} \tag{4.10}$$

Substituting Eq.(4.9 & 4.10) into Eq.(4.7 & 4.8) yields an eigenvalue problem

as

$$\begin{bmatrix} \kappa GAk'' - \rho A\omega^2 & -ik\kappa GA\\ ik\kappa GA & EIk^2 + \kappa GA - \rho A\omega^2 \end{bmatrix} \begin{cases} 1\\ \beta \end{cases} = \begin{cases} 0\\ 0 \end{cases}$$
(4.11)

Equation 4.11 gives a dispersion relation as

$$k^{4} - \eta k_{F}^{4} k^{2} - k_{F}^{4} (1 - \eta_{1} k_{G}^{4})$$
(4.12)

where

$$k_F = \sqrt{\omega} \left(\frac{\rho A}{EI}\right) , \quad k_G = \sqrt{\omega} \left(\frac{\rho A}{\kappa EI}\right)$$
 (4.13)

and

$$\eta = \eta_1 + \eta_2 , \quad \eta_1 = \frac{\rho I}{\rho A} , \quad \eta_2 = \frac{EI}{\kappa GA}$$

$$(4.14)$$

Solving Eq.4.12 gives four roots as

$$k_{1} = -k_{2} = \frac{1}{\sqrt{2}} k_{F} \sqrt{\eta k_{F}^{2} + \sqrt{\eta^{2} k_{F}^{4} + 4(1 - \eta_{1} k_{G}^{4})}} = k_{t}$$
  

$$k_{3} = -k_{4} = \frac{1}{\sqrt{2}} k_{F} \sqrt{\eta k_{F}^{2} - \sqrt{\eta^{2} k_{F}^{4} + 4(1 - \eta_{1} k_{G}^{4})}} = k_{e}$$
(4.15)

From the first line of Eq. 4.11 we can obtain the wavemode ratio as

$$\beta_p(\omega) = \frac{1}{ik_p}(k_p^2 - k_G^2) = -ir_p(\omega) \ (p = 1, 2, 3, 4)$$
(4.16)

where

$$r_p(\omega) = \frac{1}{k_p} (k_p^2 - k_G^4)$$
(4.17)

By using the four wavenumbers given by Eq. 3.15 the general solution of Eq.(4.7 & 4.8) can be obtained as

$$W(x) = a_1 e^{-ik_t x} + a_2 e^{k_t x} + a_3 e^{-ik_e x} + a_4 e^{ik_e x} = \mathbf{e}(x;\omega)\mathbf{a}$$
$$\theta(x) = a_1 e^{-ik_t x} + a_2 e^{k_t x} + a_3 e^{-ik_e x} + a_4 e^{ik_e x} = \mathbf{e}(x;\omega)\mathbf{a}$$
(4.18)

where

$$\mathbf{a} = \left\{ a_1 \quad a_2 \quad a_3 \quad a_4 \right\}^T \tag{4.19}$$

and

$$\mathbf{e}_{w}(x;\omega) = \begin{bmatrix} e^{-ik_{t}x} & e^{ik_{t}x} & e^{-ik_{e}x} & e^{ik_{e}x} \end{bmatrix}$$
$$\mathbf{e}_{\theta}(x;\omega) = \mathbf{e}_{w}(x;\omega)\mathbf{B}(\omega)$$
$$\mathbf{B}(\omega) = diag[\beta_{p}(\omega)]$$
(4.20)

The spectral nodal displacements and slopes of the beam element of length L are related to displacement field by

$$\mathbf{d} = \begin{cases} W_1 \\ \Theta_1 \\ W_2 \\ \Theta_2 \end{cases} = \begin{cases} W(0) \\ \theta(0) \\ W(L) \\ \theta(L) \\ \theta(L) \end{cases}$$
(4.21)

Substituting Eq.(4.18) in to right hand side of Eq.(4.21) gives

$$\mathbf{d} = \begin{bmatrix} e_{\omega}(0;\omega) \\ e_{\theta}(0;\omega) \\ e_{\omega}(L;\omega) \\ e_{\theta}(L;\omega) \end{bmatrix} \mathbf{a} = \mathbf{H}_{T}(\omega)\mathbf{a}$$
(4.22)

where

$$\mathbf{H}_{T}(\omega) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -ir_{t} & ir_{t} & -ir_{e} & ir_{e} \\ e_{t} & e_{t}^{-1} & e_{e} & e_{e}^{-1} \\ -ir_{t}e_{t} & ir_{t}e_{t}^{-1} & -ir_{e}e_{e} & ir_{e}e_{e}^{-1} \end{bmatrix}$$
(4.23)

with the use of following definations :

$$e_t = e^{-ik_t L} , \ e_e = e^{-ik_e L}$$
  
$$r_t = \frac{1}{k_t} (k_t^2 - k_G^4) , \ r_e = \frac{1}{k_e} (k_e^2 - k_G^4)$$
(4.24)

From Eq.4.22 we have

$$\mathbf{a} = \mathbf{H}_T^{-1}(\omega)\mathbf{d} \tag{4.25}$$

Substituting the value of **a** from Eq.(4.25) in to Eq.(4.18), the general solution can be expressed as

$$W(x) = \mathbf{e}_w(x;\omega)\mathbf{H}_T^{-1}\mathbf{d}$$
  

$$\theta(x) = \mathbf{e}_\theta(x;\omega)\mathbf{H}_T^{-1}\mathbf{d}$$
(4.26)

From the Eq.(4.3) and Eq.(4.4) the spectral components of the bending moment and transverse shear force can be related to W(x) and  $\theta(x)$  as

$$Q = \kappa G A(W' - \theta) \quad , \ M = E I \theta' \tag{4.27}$$

The spectral nodal bending moments and transverse shear forces defined for the beam element correspond to the moments and the forces as given below (Fig. 1).



Figure 4.1: Timoshenko spectral beam element with nodal forces and displacements

$$\mathbf{f}_{c}(\omega) = \begin{cases} Q_{1} \\ M_{1} \\ Q_{2} \\ M_{2} \end{cases} = \begin{cases} -Q(0) \\ -M(0) \\ +Q(L) \\ +M(L) \end{cases}$$
(4.28)

Substituting Eq.(4.26) into Eq.(4.27) and and its results into right-hand side of Eq.(4.28) we have

$$\mathbf{f}_{c} = \begin{cases} EIW^{'''}(0) \\ -EIW^{''}(0) \\ -EIW^{'''}(L) \\ EIW^{'''}(L) \end{cases} = \begin{cases} -\kappa GA \left\{ e_{\omega}^{'}(0;\omega) - e_{\theta}(0;\omega) \right\} \\ -EIe_{\theta}^{'}(0;\omega) \\ \kappa GA \left\{ e_{\omega}^{'}(L;\omega) - e_{\theta}(L;\omega) \right\} \end{cases} \mathbf{H}_{T}^{-1}\mathbf{d} = \mathbf{S}_{T}(\omega)\mathbf{d}$$

$$(4.29)$$

where  $\mathbf{S}_T(\omega)$  is spectral element (dynamic stiffness) matrix for the beam element given by

$$\mathbf{S}_{T}(\omega) = \begin{cases} -\kappa GA \left\{ e'_{\omega}(0;\omega) - e_{\theta}(0;\omega) \right\} \\ -EIe'_{\theta}(0;\omega) \\ \kappa GA \left\{ e'_{\omega}(L;\omega) - e_{\theta}(L;\omega) \right\} \\ EIe'_{\theta}(L;\omega) \end{cases} \mathbf{H}_{T}^{-1}$$
(4.30)

## Chapter 5

# Globalisation of Dynamic Stiffness Matrix and Solution Procedure

#### 5.1 Globalisation of Dynamic Stiffness Matrix

After spectral element matrix for each element is computed, they are assembled into the spectral global matrix following the similar convention of the classical finite element method where the inter-element continuity conditions are automatically maintained. The classical boundary conditions are applied by eliminating the corresponding rows and columns of those restrained degrees of freedom thus forming the reduced spectral global matrix  $\mathbf{S}_g(\omega)$  and the eigenvalue problem is formed as

$$\mathbf{S}_g(\omega)\mathbf{d}_g = \mathbf{0} \tag{5.1}$$

where  $\mathbf{d}_g$  is the global spectral nodal degrees of freedoms vector.

#### 5.2 Solution Procedure

The eigenfrequencies  $\omega_i (i = 1, 2, ..., \infty)$  are determined by equating the determinant of  $\mathbf{S}_g(\omega)$  to zero at  $\omega = \omega_i$ , i.e.,

$$\left|\mathbf{S}_g(\omega_i)\right| = 0\tag{5.2}$$

The value of  $\omega$  is found by following an iterative procedure with a very high degree of accuracy which makes the value of  $|\mathbf{S}_g(\omega_i)|$  close to zero. For practical purposes the tolerance value of  $10^{-6}$  is sufficient, however our solution procedure is able to sustain up to a tolerance limit of  $10^{-11}$  uninterruptedly. The solution procedure followed is detailed below.

In this method we begin with a starting value of frequency  $\omega_1$  and suitable values of an increment  $\delta$  and a tolerance  $\epsilon$  are considered so that no frequency may be skipped. The value ' $\omega_1 + \delta$ ' is assigned to  $\omega_2$  and the values of  $|\mathbf{S}_g(\omega_1)|$  and  $|\mathbf{S}_g(\omega_2)|$  are checked for whether they are of the opposite sign or not. When they are of the same sign each value is incremented by  $\delta$  otherwise  $|\mathbf{S}_g(\omega_0)|$  is determined where  $\omega_0 = (\omega_1 + \omega_2)/2$ . In the first case if  $|\mathbf{S}_g(\omega_1)| > 0 \& |\mathbf{S}_g(\omega_2)| < 0$ , then  $\omega_1 = \omega_0$  if  $|\mathbf{S}_g(\omega_0)| > 0$  or  $\omega_2 = \omega_0$  if  $|\mathbf{S}_g(\omega_0)| \leq 0$ . In the second case if  $|\mathbf{S}_g(\omega_1)| < 0 \& |\mathbf{S}_g(\omega_2)| > 0$ , then  $\omega_2 = \omega_0$  if  $|\mathbf{S}_g(\omega_0)| > 0$  or  $\omega_1 = \omega_0$  if  $|\mathbf{S}_g(\omega_0)| \leq 0$ . This iterative procedure is repeated as long as  $(\omega_2 - \omega_1) > \delta$  and the corresponding  $\omega_0$  value becomes the desired natural frequency. For next mode of natural frequency we begin with a new  $\omega_1$  value which is set at slightly greater value than that of previously found natural frequency (for example 1.0005 times of  $\omega_0$ ) and the process is repeated till the next mode of natural frequency is obtained as per requirement.

## Chapter 6

# Results & Discussion for Stepped Euler-Bernoulli Beam

#### 6.1 Free-Free Beam with single step change

A free-free (F-F) beam with single step change in cross-section schematically shown in Fig. 6.1 is considered. The geometrical dimensions and material properties are [34]  $L_1 = 254mm$ ,  $L_2 = 140mm$ , b = 25.4mm,  $h_1 = 19.05mm$ ,  $h_2 =$ 5.49mm, E = 71.7GPa and  $\rho = 2830Kg/m^3$ . The first three numbers of natural frequencies are computed by considering two numbers of spectral elements and the results are compared with those obtained by other methods in Table 6.1. There is an excellent agreement of the SEM results with those of DQEM and FEM methods.

| Mode | SEM        | DQEM    | FEM     | CEM    | Experimental |
|------|------------|---------|---------|--------|--------------|
| No.  | (2)        | [12]    | [12]    | [9]    | [34]         |
| 1    | 292.44379  | 292.44  | 292.44  | 291.9  | 291          |
| 2    | 1181.31992 | 1181.30 | 1181.30 | 1176.2 | 1165         |
| 3    | 1804       | 1804.10 | 1804.10 | 1795   | 1771         |

Table 6.1: Nondimensional natural frequencies of the single-stepped free-free beam

# 6.2 Single-stepped beam with a circular and a rectangular cross-section having sliding-pinned boundary condition

A single-stepped beam having a circular and a rectangular cross-section as shown in the Fig.6.1 with left support sliding and right support pinned is considered. The diameter of the circular section is taken as 0.125m. Keeping the area of both the section equal, the height to width ratio of the rectangular section is fixed at 0.7. The first 15 non-dimensional natural frequencies of the stepped-beam are computed. The material and geometric properties used are L1 = 1m, L2 = 1m, diameter of circular cross-section d = 0.125m,  $\rho A = 10Kg/m$ ,  $EI_1 = 10000Nm^2$ where  $\rho$  and A are the density and cross-sectional area respectively of both the beam section and  $EI_1$  is the flexural rigidity of the beam of circular cross-section. The stepped-beam was analyzed for free vibration and the non-dimensional natural frequencies  $\left(\frac{\omega L^2}{\sqrt{EI_1/\rho A}}\right)$  obtained were compared between the SEM (2 elements) and FEM (10, 50, 100 and 400 elements) results in Table 6.2. The numbers in parenthesis represent number of elements are increased.



Figure 6.1: A typical stepped-beam with circular and rectangular cross sections

| Mode | SEM        | FEM        | FEM        | FEM        | FEM        |
|------|------------|------------|------------|------------|------------|
| No.  | (2)        | (10)       | (50)       | (100)      | (400)      |
| 1    | 2.38943    | 2.38943    | 2.38943    | 2.38943    | 2.38932    |
| 2    | 20.19200   | 20.19270   | 20.19200   | 20.19200   | 20.19198   |
| 3    | 57.51455   | 57.52969   | 57.51457   | 57.51455   | 57.51454   |
| 4    | 111.01278  | 111.12345  | 111.01296  | 111.01279  | 111.01278  |
| 5    | 185.47285  | 185.96520  | 185.47368  | 185.47290  | 185.47285  |
| 6    | 274.92855  | 276.52207  | 274.93130  | 274.92872  | 274.92855  |
| 7    | 386.20370  | 390.37986  | 386.21126  | 386.20417  | 386.20370  |
| 8    | 511.99479  | 521.58200  | 512.01241  | 511.99590  | 511.99480  |
| 9    | 659.66144  | 677.80844  | 659.69911  | 659.66381  | 659.66145  |
| 10   | 822.24681  | 869.72192  | 822.31931  | 822.25137  | 822.24682  |
| 11   | 1005.82327 | 1065.99306 | 1005.95653 | 1005.83168 | 1005.82330 |
| 12   | 1205.69502 | 1325.71872 | 1205.92214 | 1205.70938 | 1205.69508 |
| 13   | 1424.69221 | 1611.40766 | 1425.06947 | 1424.71610 | 1424.69230 |
| 14   | 1662.32295 | 1941.64345 | 1662.91417 | 1662.36048 | 1662.32310 |
| 15   | 1916.29790 | 2332.20936 | 1917.21113 | 1916.35600 | 1916.29812 |

Table 6.2: Nondimensional natural frequencies of the single-stepped beam

# 6.3 Simply Supported Beam with three step changes

A simply supported (SS-SS) beam with three step changes in cross-section, schematically shown in Fig.4 is analysed. The geometrical dimensions and material properties are [10]  $L_1 = L_2 = L_3 = L_4 = 5m$ ,  $h_1 = h_3 = 0.1m$ ,  $h_2 = 0.2m$ , E = 34GPa,  $\rho = 2830kg/m^3$ . The first ten numbers of natural frequencies are computed by considering four numbers of spectral elements (one for each cross-section) and the results are compared with those obtained by other methods

| in Table 6.3. | There is an | ı excellent | agreement | of th | e present | SEM | results | with |
|---------------|-------------|-------------|-----------|-------|-----------|-----|---------|------|
| those of DQE  | M and FEM   | [.          |           |       |           |     |         |      |

| Mode | SEM      | DQEM     | CEM    | FEM      |
|------|----------|----------|--------|----------|
| No.  | (2)      | [8]      | [9]    | [8]      |
| 1    | 0.43369  | 0.43369  | 0.433  | 0.43369  |
| 2    | 1.80276  | 1.80276  | 1.799  | 1.80276  |
| 3    | 4.41470  | 4.41470  | 4.411  | 4.41470  |
| 4    | 9.54133  | 9.54133  | 9.522  | 9.54133  |
| 5    | 13.26609 | 13.26609 | 13.246 | 13.26609 |
| 6    | 19.35885 | 19.35885 | 19.301 | 19.35885 |
| 7    | 25.76032 | 25.76032 | 25.721 | 25.76032 |
| 8    | 35.00419 | 35.00420 | 34.959 | 35.00420 |
| 9    | 43.21882 | 43.21882 | 43.174 | 43.21882 |
| 10   | 55.66242 | 55.66242 | 55.473 | 55.66242 |

Table 6.3: Natural Frequencies (Hz) of three-stepped SS-SS beam

# 6.4 Circular stepped beam with change of diameter ratio

A circular stepped beam is considered for different diameter ratios  $(d_2/d_1)$  where  $d_1$  and  $d_2$  are the diameters of first and second part of the beam respectively. The geometrical dimensions and material properties are  $d_1 = 0.125m$ ,  $L_1 = L_2 = 1m$ ,  $EI_1 = 10000N - m2$  and  $\rho A_1 = 10kg/m$ . The non-dimensional fundamental mode frequencies  $\left(\frac{\omega L^2}{\sqrt{EI_1/\rho A}}\right)$  for various boundary conditions are computed by considering two numbers of spectral elements and the results are compared with those of exact solution obtained by Jang and Bert [5]. There is an excellent agreement of the results.

|           |          |         | BOUNDRY CONDITIONS |         |          |         |         |        |
|-----------|----------|---------|--------------------|---------|----------|---------|---------|--------|
|           | PI-      | CL-     | CL                 | CL-     | PI       | CL-     | FR      |        |
| $d_1/d_2$ | SEM      | [5]     | SEM                | [5]     | SEM      | [5]     | SEM     | [5]    |
| 0.1       | 0.23758  | 0.2376  | 8.91225            | 8.9213  | 6.15221  | 6.1522  | 1.40555 | 1.4056 |
| 0.2       | 0.92177  | 0.9218  | 13.27014           | 13.2701 | 11.33539 | 11.3354 | 2.78514 | 2.7851 |
| 0.3       | 1.97154  | 1.9715  | 13.28106           | 13.2811 | 12.10922 | 12.1092 | 4.01104 | 4.0110 |
| 0.4       | 3.26801  | 3.2680  | 13.66506           | 13.6651 | 11.93550 | 11.9355 | 4.82492 | 4.8249 |
| 0.5       | 4.67691  | 4.6769  | 14.66967           | 14.6697 | 11.99690 | 11.9969 | 5.06998 | 5.0700 |
| 0.6       | 6.07055  | 6.0706  | 16.17564           | 16.1756 | 12.41533 | 12.4153 | 4.90326 | 4.9033 |
| 0.7       | 7.34312  | 7.3431  | 17.90924           | 17.9092 | 13.10913 | 13.1091 | 4.56353 | 4.5635 |
| 0.8       | 8.42016  | 8.4202  | 19.61332           | 19.6133 | 13.92864 | 13.9286 | 4.18861 | 4.1886 |
| 0.9       | 9.26347  | 9.2635  | 21.12320           | 21.1232 | 14.73212 | 14.7321 | 3.83381 | 3.8338 |
| 1.0       | 9.86960  | 9.8696  | 22.37329           | 22.3733 | 15.41821 | 15.4182 | 3.51602 | 3.5160 |
| 1.5       | 10.40655 | 10.4066 | 25.98529           | 25.9853 | 16.27296 | 16.2730 | 2.43013 | 2.4301 |
| 2.0       | 9.35382  | 9.3538  | 29.33933           | 29.3393 | 14.69946 | 14.6995 | 1.83966 | 1.8397 |
| 2.5       | 8.17002  | 8.1700  | 34.16265           | 34.1626 | 12.80360 | 12.8036 | 1.47712 | 1.4771 |
| 3.0       | 7.14851  | 7.1485  | 40.03545           | 40.0354 | 11.15494 | 11.1549 | 1.23315 | 1.2332 |
| 3.5       | 6.31198  | 6.3120  | 46.44274           | 46.4427 | 9.81149  | 9.8115  | 1.05807 | 1.0581 |
| 4.0       | 5.63099  | 5.6310  | 53.07683           | 53.0768 | 8.72556  | 8.7256  | 0.92640 | 0.9264 |
| 4.5       | 5.07238  | 5.0724  | 59.75883           | 59.7588 | 7.84065  | 7.8406  | 0.82382 | 0.8238 |
| 5.0       | 4.60886  | 4.6089  | 66.35072           | 66.3507 | 7.11044  | 7.1104  | 0.74166 | 0.7417 |
| 5.5       | 4.21953  | 4.2195  | 72.67600           | 72.6760 | 6.49991  | 6.4999  | 0.67438 | 0.6744 |
| 6.0       | 3.88872  | 3.8887  | 78.40642           | 78.4064 | 5.98307  | 5.9831  | 0.61829 | 0.6183 |
| 6.5       | 3.60461  | 3.6046  | 82.95125           | 82.9512 | 5.54053  | 5.5405  | 0.57080 | 0.5708 |
| 7.0       | 3.35825  | 3.3582  | 85.82174           | 85.8217 | 5.15775  | 5.1577  | 0.53008 | 0.5301 |
| 7.5       | 3.14275  | 3.1428  | 87.33512           | 87.3351 | 4.82362  | 4.8236  | 0.49478 | 0.4948 |
| 8.0       | 2.95278  | 2.9529  | 88.12355           | 88.1235 | 4.52957  | 4.5296  | 0.46389 | 0.4639 |
| 8.5       | 2.78413  | 2.7841  | 88.56540           | 88.5654 | 4.26889  | 4.2689  | 0.43662 | 0.4366 |
| 9.0       | 2.63346  | 2.6335  | 88.83299           | 88.8330 | 4.03629  | 4.0363  | 0.41238 | 0.4124 |
| 9.5       | 2.49806  | 2.4981  | 89.00559           | 89.0056 | 3.82750  | 3.8275  | 0.39069 | 0.3907 |
| 10.0      | 2.37576  | 2.3758  | 89.12251           | 89.1225 | 3.63907  | 3.6391  | 0.37117 | 0.3718 |
|           |          |         |                    |         |          |         |         |        |

Table 6.4: Nondimensional frequencies for various diameter ratios  $d_1/d_2$  (1) ROUNDRY CONDITIONS

|                                 |          |         | BOUNDRY CONDITIONS |         |         |        |         |        |
|---------------------------------|----------|---------|--------------------|---------|---------|--------|---------|--------|
| $\mathrm{FR}	ext{-}\mathrm{FR}$ |          |         | SL-SL SL-PI        |         | PI      | CL-SL  |         |        |
| $d_1/d_2$                       | SEM      | [5]     | SEM                | [5]     | SEM     | [5]    | SEM     | [5]    |
| 0.1                             | 1.48439  | 1.4844  | 2.24354            | 2.2435  | 0.06910 | 0.0691 | 2.23499 | 2.2350 |
| 0.2                             | 3.35631  | 3.3563  | 4.48753            | 4.4875  | 0.27331 | 0.2733 | 4.39604 | 4.3960 |
| 0.3                             | 5.73282  | 5.7328  | 6.55550            | 6.5555  | 0.59780 | 0.5978 | 6.11348 | 6.1135 |
| 0.4                             | 8.49433  | 8.4943  | 8.05671            | 8.0567  | 1.00405 | 1.0040 | 6.84770 | 6.8477 |
| 0.5                             | 11.42574 | 11.4257 | 8.77935            | 8.7794  | 1.42795 | 1.4280 | 6.77284 | 6.7728 |
| 0.6                             | 14.30734 | 14.3073 | 8.99071            | 8.9907  | 1.80244 | 1.8024 | 6.42466 | 6.4247 |
| 0.7                             | 16.95171 | 16.9517 | 9.05716            | 9.0572  | 2.08839 | 2.0884 | 6.07856 | 6.0786 |
| 0.8                             | 19.21922 | 19.2192 | 9.18426            | 9.1843  | 2.28249 | 2.2825 | 5.82156 | 5.8216 |
| 0.9                             | 21.03073 | 21.0307 | 9.45005            | 9.4500  | 2.40184 | 2.4018 | 5.66522 | 5.6652 |
| 1.0                             | 22.37329 | 22.3733 | 9.86960            | 9.8696  | 2.46740 | 2.4674 | 5.59332 | 5.5933 |
| 1.5                             | 24.15954 | 24.1595 | 13.55254           | 13.5525 | 2.43567 | 2.4357 | 5.69168 | 5.6917 |
| 2.0                             | 22.85148 | 22.8515 | 17.55870           | 17.5587 | 2.23424 | 2.2342 | 5.46995 | 5.4699 |
| 2.5                             | 21.23582 | 21.2358 | 20.14177           | 20.1418 | 2.01838 | 2.0184 | 4.90946 | 4.9095 |
| 3.0                             | 19.86112 | 19.8611 | 21.41713           | 21.4171 | 1.81997 | 1.8200 | 4.31444 | 4.3144 |
| 3.5                             | 18.77867 | 18.7787 | 21.99647           | 21.9965 | 1.64596 | 1.6460 | 3.79695 | 3.7970 |
| 4.0                             | 17.94074 | 17.9407 | 22.26008           | 22.2601 | 1.49584 | 1.4958 | 3.37001 | 3.3700 |
| 4.5                             | 17.29062 | 17.2906 | 22.38182           | 22.3818 | 1.36686 | 1.3669 | 3.02052 | 3.0205 |
| 5.0                             | 16.78156 | 16.7816 | 22.43766           | 22.4377 | 1.25586 | 1.2559 | 2.73251 | 2.7325 |
| 5.5                             | 16.37827 | 16.3783 | 22.46177           | 22.4618 | 1.15990 | 1.1599 | 2.49250 | 2.4925 |
| 6.0                             | 16.05489 | 16.0549 | 22.47021           | 22.4702 | 1.07645 | 1.0765 | 2.29008 | 2.2901 |
| 6.5                             | 15.79249 | 15.7925 | 22.47082           | 22.4708 | 1.00345 | 1.0035 | 2.11740 | 2.1174 |
| 7.0                             | 15.57719 | 15.5772 | 22.46760           | 22.4676 | 0.93918 | 0.9392 | 1.96853 | 1.9685 |
| 7.5                             | 15.39869 | 15.3987 | 22.46261           | 22.4626 | 0.88227 | 0.8823 | 1.83897 | 1.8390 |
| 8.0                             | 15.24927 | 15.2493 | 22.45694           | 22.4569 | 0.83157 | 0.8316 | 1.72525 | 1.7252 |
| 8.5                             | 15.12308 | 15.1231 | 22.45116           | 22.4512 | 0.78617 | 0.7862 | 1.62466 | 1.6247 |
| 9.0                             | 15.01564 | 15.0156 | 22.44556           | 22.4456 | 0.74531 | 0.7453 | 1.53508 | 1.5351 |
| 9.5                             | 14.92348 | 14.9235 | 22.44029           | 22.4403 | 0.70836 | 0.7084 | 1.45481 | 1.4548 |
| 10.0                            | 14.84388 | 14.8439 | 22.43540           | 22.4354 | 0.67481 | 0.6748 | 1.38248 | 1.3825 |

Table 6.5: Nondimensional frequencies for various diameter ratios  $d_1/d_2$  (2) **POUNDRY CONDITIONS** 

|           |          |         | BO       | UNDRY ( | CONDITI                | ONS      |          |          |
|-----------|----------|---------|----------|---------|------------------------|----------|----------|----------|
| FR-SL     |          |         | FR-      | -PI     | $\operatorname{SL-FR}$ | SL-CL    | PI-FR    | PI-CL    |
| $d_1/d_2$ | SEM      | [5]     | SEM      | [5]     | SEM                    | SEM      | SEM      | SEM      |
| 0.1       | 0.13300  | 0.1330  | 0.36110  | 0.3611  | 1.41008                | 0.13825  | 1.44366  | 0.36391  |
| 0.2       | 0.47972  | 0.4797  | 1.38260  | 1.3826  | 2.82699                | 0.54650  | 3.08264  | 1.42209  |
| 0.3       | 0.94914  | 0.9491  | 2.90759  | 2.9076  | 4.18458                | 1.18773  | 4.99729  | 3.06833  |
| 0.4       | 1.48568  | 1.4857  | 4.74762  | 4.7476  | 5.30869                | 1.96378  | 7.12053  | 5.12144  |
| 0.5       | 2.06966  | 2.0697  | 6.73611  | 6.7361  | 6.00997                | 2.73497  | 9.27974  | 7.34973  |
| 0.6       | 2.69685  | 2.6968  | 8.74628  | 8.7463  | 6.26719                | 3.40623  | 11.26845 | 9.52212  |
| 0.7       | 3.36648  | 3.3665  | 10.68413 | 10.6841 | 6.22724                | 3.97590  | 12.91732 | 11.46199 |
| 0.8       | 4.07641  | 4.0764  | 12.47694 | 12.4769 | 6.04719                | 4.49689  | 14.14278 | 13.08090 |
| 0.9       | 4.82151  | 4.8215  | 14.06801 | 14.0680 | 5.82137                | 5.02411  | 14.95371 | 14.37940 |
| 1.0       | 5.59332  | 5.5933  | 15.41821 | 15.4182 | 5.59332                | 5.59332  | 15.41821 | 15.41821 |
| 1.5       | 9.39408  | 9.3941  | 18.61899 | 18.6190 | 4.70795                | 9.27908  | 15.07657 | 19.28423 |
| 2.0       | 12.01995 | 12.0199 | 18.55947 | 18.5595 | 4.13931                | 13.54569 | 13.47222 | 23.99381 |
| 2.5       | 13.27172 | 13.2717 | 17.80133 | 17.8013 | 3.71420                | 17.11924 | 11.86906 | 29.83874 |
| 3.0       | 13.78832 | 13.7883 | 17.06655 | 17.0666 | 3.36606                | 19.43707 | 10.48480 | 36.14780 |
| 3.5       | 13.99959 | 13.9996 | 16.47795 | 16.4779 | 3.07006                | 20.71897 | 9.33140  | 42.43105 |
| 4.0       | 14.08709 | 14.0871 | 16.02593 | 16.0259 | 2.81461                | 21.39864 | 8.37593  | 48.27994 |
| 4.5       | 14.12245 | 14.1225 | 15.68010 | 15.6801 | 2.59256                | 21.76872 | 7.58065  | 53.19277 |
| 5.0       | 14.13493 | 14.1349 | 15.41318 | 15.4132 | 2.39861                | 21.98018 | 6.91301  | 56.67694 |
| 5.5       | 14.13714 | 14.1371 | 15.20451 | 15.2045 | 2.22844                | 22.10713 | 6.34705  | 58.74088 |
| 6.0       | 14.13477 | 14.1348 | 15.03911 | 15.0391 | 2.07846                | 22.18681 | 5.86260  | 59.86985 |
| 6.5       | 14.13049 | 14.1305 | 14.90623 | 14.9062 | 1.94566                | 22.23879 | 5.44408  | 60.50007 |
| 7.0       | 14.12557 | 14.1256 | 14.79814 | 14.7981 | 1.82753                | 22.27385 | 5.07943  | 60.87186 |
| 7.5       | 14.12062 | 14.1206 | 14.70917 | 14.7092 | 1.72196                | 22.29818 | 4.75921  | 61.10376 |
| 8.0       | 14.11591 | 14.1159 | 14.63516 | 14.6352 | 1.62719                | 22.31550 | 4.47600  | 61.25545 |
| 8.5       | 14.11156 | 14.1116 | 14.57300 | 14.5730 | 1.54175                | 22.32810 | 4.22389  | 61.35863 |
| 9.0       | 14.10760 | 14.1076 | 14.52032 | 14.5203 | 1.46440                | 22.33744 | 3.99813  | 61.43113 |
| 9.5       | 14.10403 | 14.1040 | 14.47531 | 14.4753 | 1.39410                | 22.34448 | 3.79488  | 61.48347 |
| 10.0      | 14.10082 | 14.1008 | 14.43658 | 14.4366 | 1.32997                | 22.34987 | 3.61097  | 61.52213 |

Table 6.6: Nondimensional frequencies for various diameter ratios  $d_1/d_2$  (3)

# 6.5 Beams with three step changes in

#### cross-section

Beams with three step changes in cross-section and various boundary conditions for Type I beams with (i=i) considered by Wang and Wang [8] are analysed using the SEM. The geometrical dimensions and material properties are  $L_R = 1m$ ,  $\rho A_R = 1kg/m^3$ ,  $EI = 1N - m^2$ ,  $\mu_1 = 1.0$ ,  $\mu_2 = 0.8$ ,  $\mu_3 = 0.65$ ,  $\mu_4 = 0.25$ ,  $L_1 = 0.25L_R$ ,  $L_2 = 0.3L_R$ ,  $L_3 = 0.25L_R$ ,  $L_4 = 0.2L_R$ . The non- dimensional frequency parameters are  $\alpha_i = L_R$  Fig. 5

Table 6.7: The non- dimensional frequency parameters for Type-I rectangular beam  $(I_i = b_i h^3/12)$  with  $\mu_i = \phi_i$  (1)

| Mode |          | -        | BC       | OUNDRY C | NS       |          |          |          |
|------|----------|----------|----------|----------|----------|----------|----------|----------|
|      | SS-      | -SS      | SS-      | CL       | SS-      | FR       | SS-      | SL       |
| No.  | SEM      | [5]      | SEM      | [5]      | SEM      | [5]      | SEM      | [5]      |
| 1    | 3.09682  | 3.09682  | 3.63486  | 3.63486  | 4.31315  | 4.31315  | 1.48529  | 1.48529  |
| 2    | 6.18383  | 6.18383  | 6.83813  | 6.83813  | 7.33089  | 7.33089  | 4.77480  | 4.77480  |
| 3    | 9.34252  | 9.34252  | 10.01235 | 10.01235 | 10.24003 | 10.24003 | 7.96461  | 7.96461  |
| 4    | 12.60534 | 12.60534 | 13.24531 | 13.24531 | 13.29720 | 13.29720 | 11.04210 | 11.04210 |
| 5    | 15.76680 |          | 15.76680 |          | 15.76680 |          | 14.04575 |          |
| 6    | 15.81630 |          | 16.52995 |          | 16.52117 |          | 15.76680 |          |
| 7    | 18.87773 |          | 19.74543 |          | 19.72102 |          | 17.19378 |          |
| 8    | 21.90109 |          | 22.83102 |          | 22.80939 |          | 20.44233 |          |
| 9    | 23.65020 |          | 23.65020 |          | 23.65020 |          | 23.65020 |          |
| 10   | 25.04958 |          | 25.83140 |          | 25.82136 |          | 23.67958 |          |

#### 6.6 Cantilever twelve-stepped beam

A cantilever beam with twelve step changes in cross-section, schematically shown in Fig. 6.2, is considered. The material properties of the beam are  $E = 60.6 \ GPa$ ,  $\rho = 2664 Kg/m^3$ . The geometrical dimensions shown in the figure are all in mm. Rest of the dimensions are; b = 3.175mm,  $h_1 = 12.7mm$ ,  $h_2 = 25.4mm$ .

| beam $(I$ | beam $(I_i = b_i h^3/12)$ with $\mu_i = \phi_i$ (2) |          |          |          |          |          |          |          |  |  |
|-----------|-----------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|--|
| Mode      |                                                     |          | BC       | OUNDRY ( | CONDITIO | NS       |          |          |  |  |
|           | CL                                                  | -CL      | CL       | -SS      | CL-      | FR       | CL       | -SL      |  |  |
| No.       | SEM                                                 | [5]      | SEM      | [5]      | SEM      | [5]      | SEM      | [5]      |  |  |
| 1         | 4.54053                                             | 4.54053  | 3.97252  | 3.97252  | 2.28469  | 2.28469  | 2.57248  | 2.57248  |  |  |
| 2         | 7.66031                                             | 7.66031  | 6.99941  | 6.99941  | 5.13316  | 5.13316  | 5.63072  | 5.63072  |  |  |
| 3         | 10.80888                                            | 10.80888 | 10.15323 | 10.15323 | 8.08297  | 8.08297  | 8.76359  | 8.76359  |  |  |
| 4         | 14.06436                                            | 14.06436 | 13.41665 | 13.41665 | 10.97825 | 10.97825 | 11.78485 | 11.78485 |  |  |
| 5         | 15.76680                                            |          | 15.76680 |          | 14.09371 |          | 14.81653 |          |  |  |
| 6         | 17.34903                                            |          | 16.59827 |          | 15.76680 |          | 15.76680 |          |  |  |
| 7         | 20.53023                                            |          | 19.63297 |          | 17.33378 |          | 18.00677 |          |  |  |
| 8         | 23.57073                                            |          | 22.66272 |          | 20.50527 |          | 21.25416 |          |  |  |
| 9         | 23.65020                                            |          | 23.65020 |          | 23.55163 |          | 23.65020 |          |  |  |
| 10        | 26.17735                                            |          | 25.85839 |          | 23.65020 |          | 24.45693 |          |  |  |

Table 6.8: The non- dimensional frequency parameters for Type-I rectangular

Table 6.9: The non- dimensional frequency parameters for Type-I rectangular beam  $(I_i = b_i h^3/12)$  with  $\mu_i = \phi_i$  (3)

| Mode |          | BOUNDRY CONDITIONS |          |          |                     |          |          |          |  |  |
|------|----------|--------------------|----------|----------|---------------------|----------|----------|----------|--|--|
|      | FR-      | -FR                | FR-      | -CL      | $\operatorname{FR}$ | -SS      | FR       | -SL      |  |  |
| No.  | SEM      | [5]                | SEM      | [5]      | SEM                 | [5]      | SEM      | [5]      |  |  |
| 1    | 5.05064  | 5.05064            | 1.45296  | 1.45296  | 3.77438             | 3.77438  | 2.07263  | 2.07263  |  |  |
| 2    | 8.03610  | 8.03610            | 4.35361  | 4.35361  | 6.93279             | 6.93279  | 5.53861  | 5.53861  |  |  |
| 3    | 10.96791 | 10.96791           | 7.60522  | 7.60522  | 10.13313            | 10.13313 | 8.72535  | 8.72535  |  |  |
| 4    | 14.09853 | 14.09853           | 10.79606 | 10.79606 | 13.41982            | 13.41982 | 11.78046 | 11.78046 |  |  |
| 5    | 15.76680 |                    | 14.06924 |          | 15.76680            |          | 14.82220 |          |  |  |
| 6    | 17.33938 |                    | 15.76680 |          | 16.60412            |          | 15.76680 |          |  |  |
| 7    | 20.50769 |                    | 17.35466 |          | 19.63608            |          | 18.01179 |          |  |  |
| 8    | 23.55208 |                    | 20.53263 |          | 22.66359            |          | 21.25604 |          |  |  |
| 9    | 23.65020 |                    | 23.57117 |          | 23.65020            |          | 23.65020 |          |  |  |
| 10   | 26.17735 |                    | 23.65020 |          | 25.85826            |          | 24.45709 |          |  |  |

Both Type 1 (Flap-wise bending) beam  $(I_i = h_i b^3/12)$  and Type 2 (Chord-wise bending) beam  $(I_i = b h_i^3/12)$  are analyzed. A comparison of natural frequencies found by SEM and other methods are presented in Table 6.10 & 6.11. The numbers in parenthesis and bracket represent number of elements and the reference number respectively. The SEM results compare well with FEM (900 elements) and DSC results. Natural frequencies of various modes found by SEM are mentioned by several boundary conditions (FR-Free, CL-Clamped, PI-Pinned and SL-Sliding) are mentioned.



Figure 6.2: Clamped stepped-beam with twelve stepped change in cross-section

# 6.7 Single-stepped beam with a circular and a rectangular cross-section

The problem in Example 1 is considered for several boundary conditions (FR-Free, CL-Clamped, PI-Pinned and SL-Sliding) with different step ratios. The stepped-beam was analyzed for free vibration and the non-dimensional natural frequencies  $\left(\frac{\omega L^2}{\sqrt{EI_1/\rho A}}\right)$  obtained are presented in Table 6.14. It is observed that for a particular boundary condition, with increase in step ratio the natural frequencies also increases as the structure becomes more stiff. For a fixed step ratio the higher mode natural frequencies become nearly equal if the clamped support is replaced with the free one or vice versa.

|      | Table 6.10:   | Natural frequence | cies of twelve | e-stepped cla | amped be | eam in H | z for Flag | p-wise Bend | ing mod |
|------|---------------|-------------------|----------------|---------------|----------|----------|------------|-------------|---------|
| Mode | SEM           | FEM               | DSC            | DQEM          | CEM      | Ritz     | CMA        | FEM         | EXP     |
| No.  | (2)           | (900)             | [1]            | [1]           | [9]      | [35]     | [35]       | [1]         | [35]    |
|      |               |                   |                |               |          |          |            |             |         |
| 1    | 10.74507      | 10.78182          | 10.745         | 10.746        | 10.758   | 10.752   | 10.816     | 10.745      | 10.63   |
| 2    | 67.47321      | 67.47365          | 67.470         | 67.473        | 67.553   | 67.429   | 67.463     | 67.473      | 66.75   |
| 3    | 189.55922     | 189.55908         | 189.546        | 189.559       |          |          |            | 189.559     |         |
| 4    | 373.46128     | 373.46168         | 373.426        | 373.461       |          |          |            | 373.460     |         |
| 5    | 622.27380     | 622.27401         | 622.198        | 622.274       |          |          |            | 622.271     |         |
| 10   | 2867.62872    | 2867.62869        | 2867.061       | 2867.629      |          |          |            | 2867.583    |         |
| 80   | 207033.05279  | 201636.97395      | 2.018E + 5     | 2.193E + 5    |          |          |            | 2.016E + 5  |         |
| 120  | 472058.68468  | 456338.31916      | 3.009E + 5     | 8.966E + 5    |          |          |            | 4.562E + 5  |         |
| 140  | 648581.50503  | 622475.42444      | 5.531E + 5     | 2.450E + 6    |          |          |            | 6.222E + 5  |         |
| 200  | 1323716.20612 | 1271489.87715     |                |               |          |          |            |             |         |

| Table 6.10: 1 | Natural | frequencies | of | twelve-stepped | clamped | beam | in | Hz for | : Flap | o-wise | Bending | mode |
|---------------|---------|-------------|----|----------------|---------|------|----|--------|--------|--------|---------|------|
|               |         |             |    |                |         |      |    |        |        |        |         |      |

|      |               | 1             |            | 11           | 1      |        |        |            | 0     |
|------|---------------|---------------|------------|--------------|--------|--------|--------|------------|-------|
| Mode | SEM           | FEM           | DSC        | DQEM         | CEM    | Ritz   | CMA    | FEM        | EXP   |
| No.  | (2)           | (900)         | [1]        | [1]          | [9]    | [35]   | [35]   | [1]        | [35]  |
|      |               |               |            |              |        |        |        |            |       |
| 1    | 54.49652      | 53.30129      | 54.496     | 54.495       | 54.699 | 54.795 | 54.985 | 54.499     | 49.38 |
| 2    | 344.80793     | 344.78381     | 344.793    | 344.808      |        |        |        | 344.807    |       |
| 3    | 977.81252     | 977.82623     | 977.740    | 977.812      |        |        |        | 977.809    |       |
| 4    | 1951.40933    | 1951.41769    | 1951.199   | 1951.409     |        |        |        | 1951.398   |       |
| 5    | 3301.63914    | 3301.64345    | 3301.141   | 3301.639     |        |        |        | 3301.606   |       |
| 10   | 17464.10020   | 17464.09993   | 17460.834  | 17464.100    |        |        |        | 17463.810  |       |
| 120  | 2819538.69460 | 2819612.41278 | 2.538E + 6 | 4.569E + 6   |        |        |        | 2.819E + 6 |       |
| 140  | 3840285.33057 | 3840471.84604 | 3.852E + 6 | $1.300E{+}7$ |        |        |        | 3.838E + 6 |       |
| 200  | 8037765.48518 | 7885224.73548 |            |              |        |        |        |            |       |
|      |               |               |            |              |        |        |        |            |       |

| Table 6.11: | Natural | frequencies | of twel  | ve-stepped | clamped | beam | in  | Hz for  | Chord | -wise | Bending | mode |
|-------------|---------|-------------|----------|------------|---------|------|-----|---------|-------|-------|---------|------|
| 10010 0.11. | raturar | inequencies | 01 00001 | ve stepped | ciamped | ocam | 111 | 112 101 | onoru | W 100 | Dending | moue |

| <u></u> |          |           | Mode      | Number    |           |            |
|---------|----------|-----------|-----------|-----------|-----------|------------|
| BC      | 1        | 2         | 3         | 4         | 5         | 6          |
|         |          |           |           |           |           |            |
| SS-SS   | 30.33066 | 121.50868 | 274.14638 | 489.35463 | 768.38650 | 1096.85753 |
| SS-CL   | 47.88263 | 155.84275 | 326.91131 | 562.70885 | 865.77188 | 1215.20944 |
| SS-SL   | 7.58536  | 68.34593  | 190.29945 | 374.42017 | 622.34332 | 936.63296  |
| SS-FR   | 47.00734 | 152.33466 | 318.42167 | 546.82404 | 840.56000 | 1179.71556 |
| SL-SS   | 7.57989  | 68.28672  | 190.08724 | 373.84259 | 620.85088 | 931.37324  |
| SL-CL   | 17.33849 | 94.06037  | 233.39781 | 436.59905 | 705.55500 | 1048.26917 |
| SL-SL   | 30.35447 | 121.62721 | 274.50280 | 490.27771 | 770.94102 | 1136.356   |
| SL-FR   | 17.06272 | 92.13502  | 227.71211 | 424.68969 | 685.23496 | 1015.23593 |
| CL-SS   | 47.57420 | 154.91703 | 325.19860 | 560.21325 | 862.10536 | 1222.58119 |
| CL-CL   | 69.85864 | 194.08228 | 383.82375 | 640.84719 | 972.37651 | 1337.57776 |
| CL-SL   | 17.20854 | 93.56830  | 232.36983 | 435.24088 | 704.67591 | 1052.90263 |
| CL-FR   | 10.74507 | 67.47321  | 189.55922 | 373.46128 | 622.27380 | 942.35133  |
| FR-SS   | 47.23720 | 152.95705 | 319.34302 | 547.53062 | 839.81794 | 1184.49502 |
| FR-CL   | 10.87556 | 68.22281  | 191.38826 | 376.29277 | 625.41163 | 945.08048  |
| FR-SL   | 17.19180 | 92.63076  | 228.79062 | 426.31378 | 687.32392 | 1021.36866 |
| FR-FR   | 67.93730 | 186.85817 | 366.35623 | 607.67800 | 916.81307 | 1264.24096 |

Table 6.12: Natural frequency (Hz) of 12 stepped beam with Flap wise (Type I) bending mode for different boundary conditions by SEM

| II) bendir | ng mode for | different bour | ndary conditi | ons by SEM |            |            |
|------------|-------------|----------------|---------------|------------|------------|------------|
|            |             |                | Mode          | Number     |            |            |
| BC         | 1           | 2              | 3             | 4          | 5          | 6          |
|            |             |                |               |            |            |            |
| SS-SS      | 153.58118   | 616.69449      | 1396.17734    | 2496.33906 | 3859.09412 | 4930.95355 |
| SS-CL      | 247.36409   | 812.52175      | 1724.14679    | 3001.43775 | 4559.55400 | 6754.77451 |
| SS-SL      | 38.63037    | 348.88449      | 975.89760     | 1932.19548 | 3220.99213 | 4672.16686 |
| SS-FR      | 238.09269   | 773.98277      | 1626.70779    | 2811.96773 | 4307.14790 | 5361.80343 |
| SL-SS      | 38.35893    | 346.11003      | 966.35242     | 1906.72651 | 3156.57778 | 4516.71696 |
| SL-CL      | 89.23032    | 488.00942      | 1223.58728    | 2316.76980 | 3767.92032 | 6649.31887 |
| SL-SL      | 154.72654   | 622.12294      | 1412.01136    | 2536.80644 | 3962.27867 | 7905.37733 |
| SL-FR      | 86.35536    | 467.26006      | 1159.79141    | 2176.99142 | 3528.45047 | 5182.77175 |
| CL-SS      | 242.65662   | 796.87005      | 1689.37625    | 2931.11694 | 4397.17392 | 7280.80219 |
| CL-CL      | 364.69000   | 1030.21859     | 2078.06938    | 3541.19406 | 6476.86031 | 7571.29326 |
| CL-SL      | 87.88448    | 482.83080      | 1212.73063    | 2302.82271 | 3760.45543 | 7102.96592 |
| CL-FR      | 54.49652    | 344.80793      | 977.81252     | 1951.40933 | 3301.63914 | 5105.41746 |
| FR-SS      | 239.20688   | 776.54087      | 1628.04218    | 2801.91432 | 4240.59215 | 5685.56035 |
| FR-CL      | 55.84962    | 353.04653      | 999.81690     | 1991.85638 | 3367.48744 | 5474.28624 |
| FR-SL      | 87.70718    | 473.02081      | 1174.53901    | 2206.41607 | 3586.47993 | 5577.46452 |
| FR-FR      | 344.14366   | 950.04271      | 1875.87170    | 3147.51455 | 4900.07519 | 5814.99309 |

Table 6.13: Natural frequency (Hz) of 12 stepped beam with chord wise (Type II) bending mode for different boundary conditions by SEM

|       | Table 6.14: Nondimensional natural frequencies of the single-stepped beam $(1)$ |          |          |           |           |           |           |           |           |           |
|-------|---------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Step  |                                                                                 |          |          |           |           | Mode Numb | ber       |           |           |           |
| Ratio | BC                                                                              | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8         | 9         |
|       |                                                                                 |          |          |           |           |           |           |           |           |           |
| 0.5   | CL-CL                                                                           | 18.71086 | 52.89600 | 100.85228 | 170.77356 | 249.96147 | 355.11273 | 466.33404 | 605.29767 | 750.54925 |
|       | FR-FR                                                                           | 18.45438 | 52.88655 | 100.91530 | 170.77049 | 249.95467 | 355.11224 | 466.33458 | 605.29773 | 750.54921 |
|       | CL-PI                                                                           | 12.85196 | 43.18450 | 86.68466  | 152.29281 | 228.18389 | 327.34562 | 437.32505 | 568.06362 | 568.06362 |
|       | FR-PI                                                                           | 12.15812 | 43.20308 | 86.79010  | 152.29845 | 228.17470 | 327.34458 | 437.32568 | 568.06373 | 714.26269 |
|       | PI-PI                                                                           | 8.16312  | 33.89914 | 74.05050  | 135.04588 | 206.40595 | 302.83299 | 405.89646 | 536.60414 | 673.11882 |
|       | SL-SL                                                                           | 8.52123  | 32.83787 | 76.10028  | 131.87949 | 210.65254 | 297.71719 | 411.50584 | 531.01403 | 678.08271 |
|       | SL-PI                                                                           | 2.28479  | 18.22050 | 52.88034  | 101.42435 | 169.41213 | 252.27519 | 351.74903 | 470.70220 | 600.17097 |
|       | CL-FR                                                                           | 3.43674  | 18.64132 | 52.80926  | 100.84101 | 170.77752 | 249.96155 | 355.11238 | 466.33406 | 605.29769 |
|       | CL-SL                                                                           | 4.94866  | 25.81214 | 63.09798  | 116.76026 | 189.31900 | 273.95821 | 382.60586 | 497.74692 | 642.35580 |
|       | FR-SL                                                                           | 4.13706  | 25.53651 | 63.22930  | 116.80355 | 189.31013 | 273.95379 | 382.60623 | 497.74729 | 642.35580 |
|       | SL-FR                                                                           | 5.37201  | 24.83578 | 64.21666  | 115.77311 | 189.89515 | 274.10708 | 381.37018 | 500.21132 | 638.51147 |
|       | SL-CL                                                                           | 4.69036  | 24.79545 | 64.30214  | 115.77040 | 189.89026 | 274.10749 | 381.37040 | 500.21129 | 638.51146 |
|       | PI-FR                                                                           | 13.41706 | 42.11985 | 87.81082  | 151.46459 | 228.44393 | 328.02318 | 435.51502 | 571.22883 | 709.74425 |
|       | PI-CL                                                                           | 12.97465 | 42.22695 | 87.84165  | 151.45618 | 228.44277 | 328.02365 | 435.51504 | 571.22881 | 709.74425 |
|       | FR-CL                                                                           | 2.57534  | 17.91859 | 53.01229  | 100.92385 | 170.76666 | 249.95458 | 355.11258 | 466.33457 | 605.29772 |
|       | PI-SL                                                                           | 1.86777  | 19.32145 | 51.37876  | 102.92139 | 168.38765 | 252.34729 | 353.06385 | 467.66614 | 605.11424 |

|       | Table 6.15: Nondimensional natural frequencies of the single-stepped beam $(2)$ |          |          |           |           |           |           |           |           |           |
|-------|---------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Step  |                                                                                 |          |          |           |           | Mode Numb | ber       |           |           |           |
| Ratio | BC                                                                              | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8         | 9         |
|       |                                                                                 |          |          |           |           |           |           |           |           |           |
| 0.6   | CL-CL                                                                           | 19.74036 | 55.16444 | 106.49119 | 178.51589 | 263.31994 | 372.03657 | 490.19468 | 635.47030 | 787.40668 |
|       | FR-FR                                                                           | 19.60101 | 55.16173 | 106.52503 | 178.51679 | 263.31629 | 372.03642 | 490.19497 | 635.47032 | 787.40666 |
|       | CL-PI                                                                           | 13.55235 | 45.02499 | 91.42061  | 159.55253 | 239.75326 | 343.89316 | 458.44917 | 597.84708 | 747.73503 |
|       | FR-PI                                                                           | 13.05846 | 45.05717 | 91.49024  | 159.55303 | 239.74738 | 343.89285 | 458.44958 | 597.84712 | 747.73501 |
|       | PI-PI                                                                           | 8.65941  | 35.33036 | 78.22291  | 141.09204 | 217.55708 | 317.09137 | 426.89219 | 563.07226 | 706.49564 |
|       | SL-SL                                                                           | 8.85637  | 34.73279 | 79.41750  | 139.15562 | 220.32709 | 313.45813 | 431.35120 | 557.89356 | 712.22145 |
|       | SL-PI                                                                           | 2.34419  | 19.25855 | 55.41563  | 106.45341 | 178.20126 | 264.13489 | 370.56366 | 492.39604 | 632.47063 |
|       | CL-FR                                                                           | 3.46404  | 19.63080 | 55.10098  | 106.47795 | 178.52191 | 263.32033 | 372.03624 | 490.19467 | 635.47032 |
|       | CL-SL                                                                           | 5.10826  | 27.10099 | 66.02969  | 123.12267 | 197.89566 | 288.86088 | 400.17934 | 524.30588 | 672.76477 |
|       | FR-SL                                                                           | 4.50993  | 26.92199 | 66.12808  | 123.14790 | 197.88833 | 288.85850 | 400.17975 | 524.30607 | 672.76475 |
|       | SL-FR                                                                           | 5.44718  | 26.31911 | 67.07401  | 121.94140 | 199.10305 | 287.81603 | 400.86195 | 524.14825 | 672.19524 |
|       | SL-CL                                                                           | 4.91935  | 26.26868 | 67.14511  | 121.94186 | 199.09858 | 287.81619 | 400.86217 | 524.14823 | 672.19523 |
|       | PI-FR                                                                           | 14.03737 | 44.10827 | 92.56718  | 158.33056 | 240.89945 | 343.00839 | 458.89739 | 598.04129 | 746.77466 |
|       | PI-CL                                                                           | 13.67913 | 44.18755 | 92.59637  | 158.32396 | 240.89803 | 343.00879 | 458.89744 | 598.04127 | 746.77465 |
|       | FR-CL                                                                           | 2.81357  | 19.09166 | 55.26716  | 106.53552 | 178.51091 | 263.31589 | 372.03675 | 490.19498 | 635.47030 |
|       | PI-SL                                                                           | 2.02520  | 20.15617 | 54.05472  | 108.10470 | 176.47488 | 265.69024 | 369.44180 | 492.82124 | 632.98980 |

|       | Table 6.16: Nondimensional natural frequencies of the single-stepped beam $(3)$ |          |          |           |           |           |           |           |           |           |
|-------|---------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Step  |                                                                                 |          |          |           |           | Mode Numb | ber       |           |           |           |
| Ratio | BC                                                                              | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8         | 9         |
|       |                                                                                 |          |          |           |           |           |           |           |           |           |
| 0.7   | CL-CL                                                                           | 20.61727 | 57.19060 | 111.31539 | 185.24625 | 274.99671 | 386.38089 | 511.50790 | 660.53779 | 820.93280 |
|       | FR-FR                                                                           | 20.55233 | 57.19003 | 111.33105 | 185.24644 | 274.99503 | 386.38085 | 511.50804 | 660.53780 | 820.93279 |
|       | CL-PI                                                                           | 14.16276 | 46.60784 | 95.59813  | 165.64692 | 250.15397 | 357.60175 | 477.68789 | 622.41051 | 778.30527 |
|       | FR-PI                                                                           | 13.83574 | 46.63932 | 95.64106  | 165.64552 | 250.15051 | 357.60175 | 477.68812 | 622.41052 | 778.30526 |
|       | PI-PI                                                                           | 9.07245  | 36.61682 | 81.77803  | 146.38078 | 227.25148 | 329.24850 | 445.54748 | 585.15693 | 736.73656 |
|       | SL-SL                                                                           | 9.16488  | 36.33251 | 82.35767  | 145.41573 | 228.68019 | 327.29259 | 448.07721 | 582.02546 | 740.47759 |
|       | SL-PI                                                                           | 2.38943  | 20.19200 | 57.51455  | 111.01278 | 185.47285 | 274.92855 | 386.20370 | 511.99479 | 659.66144 |
|       | CL-FR                                                                           | 3.48383  | 20.45413 | 57.15200  | 111.30278 | 185.25083 | 274.99724 | 386.38062 | 511.50788 | 660.53781 |
|       | CL-SL                                                                           | 5.25598  | 28.16526 | 68.70001  | 128.43249 | 205.60283 | 301.49255 | 415.63970 | 547.27562 | 698.83424 |
|       | FR-SL                                                                           | 4.84776  | 28.05721 | 68.76680  | 128.44619 | 205.59770 | 301.49136 | 415.64002 | 547.27571 | 698.83422 |
|       | SL-FR                                                                           | 5.50235  | 27.60580 | 69.51114  | 127.41209 | 206.80256 | 300.18898 | 416.97691 | 545.98803 | 699.98713 |
|       | SL-CL                                                                           | 5.12694  | 27.55786 | 69.56455  | 127.41430 | 206.79896 | 300.18896 | 416.97710 | 545.98803 | 699.98712 |
|       | PI-FR                                                                           | 14.52960 | 45.92347 | 96.52722  | 164.52579 | 251.41159 | 356.27040 | 479.00992 | 621.17934 | 779.36072 |
|       | PI-CL                                                                           | 14.26550 | 45.97660 | 96.55136  | 164.52123 | 251.41023 | 356.27069 | 479.00998 | 621.17933 | 779.36072 |
|       | FR-CL                                                                           | 3.03087  | 20.08124 | 57.27305  | 111.34088 | 185.24201 | 274.99449 | 386.38112 | 511.50806 | 660.53778 |
|       | PI-SL                                                                           | 2.16560  | 20.84488 | 56.46941  | 112.39351 | 183.82993 | 276.74504 | 384.31511 | 513.84371 | 657.97131 |

|       | Table 6.17: Nondimensional natural frequencies of the single-stepped beam (4) |          |          |           |           |           |           |           |           |           |  |
|-------|-------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Step  |                                                                               |          |          |           |           | Mode Numb | ber       |           |           |           |  |
| Ratio | BC                                                                            | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8         | 9         |  |
|       |                                                                               |          |          |           |           |           |           |           |           |           |  |
| 0.8   | CL-CL                                                                         | 21.37596 | 59.04598 | 115.47823 | 191.32285 | 285.18883 | 399.15489 | 530.33741 | 682.54548 | 850.93612 |  |
|       | FR-FR                                                                         | 21.35409 | 59.04591 | 115.48348 | 191.32287 | 285.18827 | 399.15489 | 530.33746 | 682.54548 | 850.93612 |  |
|       | CL-PI                                                                         | 14.70035 | 48.01664 | 99.29898  | 170.97972 | 259.47923 | 369.45325 | 495.13345 | 643.43624 | 806.29105 |  |
|       | FR-PI                                                                         | 14.51570 | 48.03913 | 99.32164  | 170.97820 | 259.47750 | 369.45333 | 495.13356 | 643.43624 | 806.29105 |  |
|       | PI-PI                                                                         | 9.42210  | 37.79930 | 84.83976  | 151.17194 | 235.68922 | 340.11292 | 461.97720 | 604.61475 | 763.71244 |  |
|       | SL-SL                                                                         | 9.45334  | 37.70249 | 85.03922  | 150.83512 | 236.19679 | 339.40290 | 462.91929 | 603.41327 | 765.19797 |  |
|       | SL-PI                                                                         | 2.42505  | 21.03826 | 59.31059  | 115.16616 | 191.67450 | 284.82541 | 399.50351 | 530.02967 | 682.78446 |  |
|       | CL-FR                                                                         | 3.49882  | 21.14933 | 59.03257  | 115.46850 | 191.32573 | 285.18931 | 399.15472 | 530.33739 | 682.54549 |  |
|       | CL-SL                                                                         | 5.39426  | 29.06515 | 71.16252  | 132.94510 | 212.68755 | 312.29054 | 429.76457 | 567.05970 | 722.42061 |  |
|       | FR-SL                                                                         | 5.15758  | 29.00959 | 71.20063  | 132.95140 | 212.68462 | 312.29004 | 429.76475 | 567.05974 | 722.42060 |  |
|       | SL-FR                                                                         | 5.54454  | 28.73274 | 71.66809  | 132.27502 | 213.51896 | 311.31471 | 430.87063 | 565.84393 | 723.72839 |  |
|       | SL-CL                                                                         | 5.31890  | 28.69746 | 71.70157  | 132.27746 | 213.51659 | 311.31460 | 430.87077 | 565.84394 | 723.72838 |  |
|       | PI-FR                                                                         | 14.92926 | 47.59870 | 99.89059  | 170.22637 | 260.38384 | 368.40963 | 496.29617 | 642.17118 | 807.63483 |  |
|       | PI-CL                                                                         | 14.76573 | 47.62843 | 99.90694  | 170.22381 | 260.38282 | 368.40980 | 496.29622 | 642.17117 | 807.63482 |  |
|       | FR-CL                                                                         | 3.23149  | 20.93003 | 59.10574  | 115.49036 | 191.32014 | 285.18779 | 399.15506 | 530.33748 | 682.54547 |  |
|       | PI-SL                                                                         | 2.29239  | 21.43265 | 58.66162  | 116.05854 | 190.55349 | 286.15672 | 397.98360 | 531.71325 | 680.96512 |  |

Results & Discussion for Stepped Euler-Bernoulli Beam

39

|       | Table 6.18: Nondimensional natural frequencies of the single-stepped beam (5) |          |          |           |           |           |           |           |           |           |
|-------|-------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Step  |                                                                               |          |          |           |           | Mode Numb | ber       |           |           |           |
| Ratio | BC                                                                            | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8         | 9         |
|       |                                                                               |          |          |           |           |           |           |           |           |           |
| 0.9   | CL-CL                                                                         | 22.04103 | 60.77116 | 119.10367 | 196.93499 | 294.11433 | 410.88708 | 546.90875 | 702.63920 | 877.48675 |
|       | FR-FR                                                                         | 22.03851 | 60.77115 | 119.10427 | 196.93499 | 294.11426 | 410.88708 | 546.90875 | 702.63920 | 877.48675 |
|       | CL-PI                                                                         | 15.17786 | 49.30082 | 102.59153 | 175.79213 | 267.82546 | 380.07501 | 510.84238 | 662.15454 | 831.64712 |
|       | FR-PI                                                                         | 15.11666 | 49.30958 | 102.59858 | 175.79145 | 267.82495 | 380.07505 | 510.84241 | 662.15453 | 831.64712 |
|       | PI-PI                                                                         | 9.72217  | 38.90150 | 87.50413  | 155.60330 | 243.06934 | 350.10530 | 476.41793 | 622.40742 | 787.55004 |
|       | SL-SL                                                                         | 9.72578  | 38.89027 | 87.52737  | 155.56382 | 243.12928 | 350.02071 | 476.53136 | 622.26104 | 787.73348 |
|       | SL-PI                                                                         | 2.45383  | 21.81033 | 60.88918  | 118.95901 | 197.11531 | 293.90064 | 411.13176 | 483.61357 | 546.63581 |
|       | CL-FR                                                                         | 3.51058  | 21.74357 | 60.78243  | 119.09879 | 196.93606 | 294.11454 | 410.88702 | 546.90874 | 702.63921 |
|       | CL-SL                                                                         | 5.52465  | 29.84140 | 73.44935  | 136.85107 | 219.26410 | 321.65565 | 442.87030 | 584.24383 | 744.27618 |
|       | FR-SL                                                                         | 5.44431  | 29.82465 | 73.46202  | 136.85276 | 219.26314 | 321.65553 | 442.87036 | 584.24384 | 744.27618 |
|       | SL-FR                                                                         | 5.57785  | 29.72762 | 73.62742  | 136.60947 | 219.56962 | 321.28699 | 443.30150 | 583.75097 | 744.83002 |
|       | SL-CL                                                                         | 5.49878  | 29.71322 | 73.63954  | 136.61071 | 219.56873 | 321.28691 | 443.30155 | 583.75098 | 744.83002 |
|       | PI-FR                                                                         | 15.25988 | 49.15503 | 102.80173 | 175.51842 | 268.16257 | 379.67497 | 511.30448 | 661.63103 | 832.23097 |
|       | PI-CL                                                                         | 15.20111 | 49.16462 | 102.80805 | 175.51761 | 268.16214 | 379.67502 | 511.30450 | 661.63103 | 832.23097 |
|       | FR-CL                                                                         | 3.41838  | 21.66806 | 60.80792  | 119.10624 | 196.93408 | 294.11404 | 410.88714 | 546.90877 | 702.63920 |
|       | PI-SL                                                                         | 2.40800  | 21.94769 | 60.66058  | 119.27842 | 196.70567 | 294.39978 | 410.54400 | 547.31116 | 702.17615 |

|       | Table 6.19: Nondimensional natural frequencies of the single-stepped beam (6) |          |          |           |           |           |           |           |           |           |  |
|-------|-------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Step  |                                                                               |          |          |           |           | Mode Numb | ber       |           |           |           |  |
| Ratio | BC                                                                            | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8         | 9         |  |
|       |                                                                               |          |          |           |           |           |           |           |           |           |  |
| 1.0   | CL-CL                                                                         | 22.63066 | 62.39111 | 122.29155 | 202.18564 | 301.98526 | 421.84294 | 561.54400 | 721.37519 | 900.96735 |  |
|       | FR-FR                                                                         | 22.62908 | 62.39111 | 122.29193 | 202.18564 | 301.98522 | 421.84294 | 561.54401 | 721.37519 | 900.96735 |  |
|       | CL-PI                                                                         | 15.60503 | 50.49129 | 105.53370 | 180.23072 | 275.29694 | 389.84864 | 524.92857 | 679.34034 | 854.42533 |  |
|       | FR-PI                                                                         | 15.65221 | 50.48369 | 105.52859 | 180.23136 | 275.29728 | 389.84859 | 524.92855 | 679.34034 | 854.42533 |  |
|       | PI-PI                                                                         | 9.98260  | 39.93838 | 159.75184 | 249.57438 | 359.44034 | 489.16701 | 639.00385 | 808.62421 | 998.44232 |  |
|       | SL-SL                                                                         | 9.98485  | 39.93139 | 159.72726 | 249.61171 | 359.38763 | 489.23772 | 638.91253 | 808.73872 | 998.30203 |  |
|       | SL-PI                                                                         | 2.47756  | 22.51834 | 62.30684  | 122.42850 | 202.00623 | 302.20789 | 421.57611 | 561.85620 | 721.01675 |  |
|       | CL-FR                                                                         | 3.52004  | 22.25688 | 62.42597  | 122.29322 | 202.18493 | 301.98503 | 421.84299 | 561.54402 | 721.37519 |  |
|       | CL-SL                                                                         | 5.64824  | 30.52251 | 75.58228  | 140.29207 | 225.39185 | 329.92163 | 455.08001 | 599.41846 | 764.64050 |  |
|       | FR-SL                                                                         | 5.71154  | 30.53422 | 75.57254  | 140.29104 | 225.39257 | 329.92169 | 455.07996 | 599.41846 | 764.64050 |  |
|       | SL-FR                                                                         | 5.60481  | 30.61183 | 75.44018  | 140.48589 | 225.14686 | 330.21755 | 454.73336 | 599.81539 | 764.19362 |  |
|       | SL-CL                                                                         | 5.66891  | 30.62501 | 75.43011  | 140.48458 | 225.14762 | 330.21764 | 454.73332 | 599.81539 | 764.19363 |  |
|       | PI-FR                                                                         | 15.53772 | 50.60732 | 105.36595 | 180.45012 | 275.02644 | 390.16998 | 524.55676 | 679.76231 | 853.95372 |  |
|       | PI-CL                                                                         | 15.58642 | 50.60024 | 105.36038 | 180.45069 | 275.02684 | 390.16995 | 524.55673 | 679.76232 | 853.95372 |  |
|       | FR-CL                                                                         | 3.59373  | 22.31724 | 62.40559  | 122.28727 | 202.18652 | 301.98543 | 421.84289 | 561.54399 | 721.37520 |  |
|       | PI-SL                                                                         | 2.51420  | 22.40850 | 62.48974  | 122.17275 | 202.33456 | 301.80734 | 422.04844 | 561.31256 | 721.63111 |  |

|       | Table 6.20: Nondimensional natural frequencies of the single-stepped beam (7) |          |          |           |           |           |           |           |           |            |  |
|-------|-------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|--|
| Step  |                                                                               |          |          |           |           | Mode Num  | ber       |           |           |            |  |
| Ratio | BC                                                                            | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8         | 9          |  |
|       |                                                                               |          |          |           |           |           |           |           |           |            |  |
| 2.0   | CL-CL                                                                         | 26.33438 | 74.94788 | 141.91599 | 241.49850 | 352.39796 | 501.32691 | 658.50441 | 853.33035 | 1061.08569 |  |
|       | FR-FR                                                                         | 25.86262 | 74.92556 | 142.03271 | 241.50566 | 352.38541 | 501.32577 | 658.50539 | 853.33048 | 1061.08563 |  |
|       | CL-PI                                                                         | 18.25610 | 59.76135 | 123.62687 | 214.37287 | 321.61133 | 463.91635 | 613.79441 | 806.82376 | 1001.65612 |  |
|       | FR-PI                                                                         | 18.94347 | 59.58855 | 123.58308 | 214.38596 | 321.61271 | 463.91565 | 613.79439 | 806.82380 | 1001.65612 |  |
|       | PI-PI                                                                         | 11.44855 | 48.05417 | 104.16441 | 191.06531 | 290.86433 | 427.69737 | 572.94652 | 756.71758 | 951.39395  |  |
|       | SL-SL                                                                         | 12.10204 | 46.14643 | 107.76730 | 185.67781 | 297.76708 | 419.90297 | 580.71194 | 750.09829 | 955.68593  |  |
|       | SL-PI                                                                         | 2.59303  | 27.33682 | 72.50954  | 145.08782 | 238.12501 | 355.34492 | 499.52934 | 658.55827 | 855.74201  |  |
|       | CL-FR                                                                         | 3.56329  | 25.07734 | 75.11886  | 142.04256 | 241.49530 | 352.38553 | 501.32626 | 658.50535 | 853.33046  |  |
|       | CL-SL                                                                         | 6.62862  | 34.84322 | 90.96589  | 163.24876 | 267.94888 | 387.27807 | 537.37751 | 707.45685 | 899.20207  |  |
|       | FR-SL                                                                         | 7.71288  | 34.88823 | 90.83509  | 163.25525 | 267.95594 | 387.27731 | 537.37722 | 707.45690 | 899.20208  |  |
|       | SL-FR                                                                         | 5.72964  | 35.92200 | 164.39305 | 267.91808 | 385.76602 | 540.95022 | 701.73479 | 906.96907 | 1113.71776 |  |
|       | SL-CL                                                                         | 7.05307  | 36.39833 | 164.31436 | 267.93105 | 385.77435 | 540.94985 | 701.73408 | 906.96904 | 1113.71781 |  |
|       | PI-FR                                                                         | 16.95132 | 61.16215 | 122.31888 | 215.01466 | 322.25192 | 461.37669 | 618.41021 | 800.04220 | 1010.38578 |  |
|       | PI-CL                                                                         | 18.10301 | 61.15412 | 122.13795 | 215.00085 | 322.26774 | 461.37899 | 618.40917 | 800.04195 | 1010.38584 |  |
|       | FR-CL                                                                         | 4.95106  | 26.25117 | 74.80893  | 141.90223 | 241.50904 | 352.39782 | 501.32642 | 658.50445 | 853.33037  |  |
|       | PI-SL                                                                         | 3.25952  | 25.65023 | 74.63713  | 143.32215 | 238.64863 | 495.26599 | 665.87906 | 845.41217 | 1068.89870 |  |

|       | Table 6.21: Nondimensional natural frequencies of the single-stepped beam $(8)$ |          |          |           |           |           |           |           |           |            |  |
|-------|---------------------------------------------------------------------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|--|
| Step  |                                                                                 |          |          |           |           | Mode Num  | ber       |           |           |            |  |
| Ratio | BC                                                                              | 1        | 2        | 3         | 4         | 5         | 6         | 7         | 8         | 9          |  |
|       |                                                                                 |          |          |           |           |           |           |           |           |            |  |
| 3.0   | CL-CL                                                                           | 28.41655 | 83.42371 | 153.62161 | 264.59411 | 386.90395 | 543.62553 | 728.37203 | 922.29456 | 1172.88103 |  |
|       | FR-FR                                                                           | 27.18683 | 83.29788 | 153.93444 | 264.63192 | 386.87308 | 543.61938 | 728.37380 | 922.29533 | 1172.88099 |  |
|       | CL-PI                                                                           | 19.54049 | 66.60476 | 132.97496 | 237.46650 | 348.93087 | 508.34568 | 673.29950 | 875.89370 | 1106.68954 |  |
|       | FR-PI                                                                           | 20.52034 | 66.32609 | 132.93829 | 237.48401 | 348.93064 | 508.34496 | 673.29957 | 875.89372 | 1106.68953 |  |
|       | PI-PI                                                                           | 12.07935 | 53.69189 | 112.39021 | 210.07469 | 318.39108 | 464.70622 | 633.03301 | 817.95975 | 1052.55745 |  |
|       | SL-SL                                                                           | 13.69846 | 49.38667 | 119.39299 | 201.86560 | 325.23210 | 462.19853 | 628.74024 | 830.16643 | 1033.28806 |  |
|       | SL-PI                                                                           | 2.63502  | 29.97477 | 79.95502  | 156.62907 | 264.23515 | 383.60995 | 551.54949 | 716.39854 | 935.96469  |  |
|       | CL-FR                                                                           | 3.57794  | 26.23957 | 83.56572  | 153.92854 | 264.61990 | 386.87434 | 543.61979 | 728.37373 | 922.29532  |  |
|       | CL-SL                                                                           | 7.32114  | 37.51619 | 99.83308  | 179.30768 | 290.21931 | 428.89751 | 580.31702 | 782.22654 | 975.79123  |  |
|       | FR-SL                                                                           | 9.04394  | 37.46597 | 99.66134  | 179.32751 | 290.22610 | 428.89618 | 580.31688 | 782.22660 | 975.79123  |  |
|       | SL-FR                                                                           | 5.77254  | 38.33957 | 99.68296  | 177.17080 | 296.04173 | 419.69581 | 591.16288 | 771.57890 | 983.10249  |  |
|       | SL-CL                                                                           | 8.11877  | 39.39251 | 99.37880  | 176.95714 | 296.04430 | 419.72046 | 591.16536 | 771.57703 | 983.10207  |  |
|       | PI-FR                                                                           | 17.48748 | 67.38550 | 133.93679 | 233.42865 | 356.50201 | 498.19286 | 684.56842 | 866.64634 | 1111.04561 |  |
|       | PI-CL                                                                           | 19.69857 | 67.56013 | 133.55465 | 233.36097 | 356.53099 | 498.20352 | 684.56743 | 866.64515 | 1111.04556 |  |
|       | FR-CL                                                                           | 5.91181  | 28.32273 | 83.21237  | 153.62299 | 264.60633 | 386.90268 | 543.62513 | 728.37210 | 922.29457  |  |
|       | PI-SL                                                                           | 3.70492  | 27.95964 | 80.95526  | 257.30450 | 395.42729 | 536.37237 | 731.85870 | 924.20496 | 1163.94268 |  |

## Chapter 7

# Results & Discussion for Stepped Timoshenko Beam

#### 7.1 Single stepped Timoshenko beam

A single stepped beam as shown in Fig. 7.1, is considered for the analysis. The material and geometrical properties consider from [36] are  $\eta = 0.0036$ ,  $\gamma_L = 0.25$ ,  $\gamma_b = 0.8$  and  $\gamma_h = 0.6$ . Natural frequencies coefficient  $\left(\frac{\omega L^2}{\sqrt{EI_1/\rho A}}\right)$  obtained by SEM (2 elements) shows excellent agreement with those found by [36].

Table 7.1: Nondimensional natural frequencies of the single-stepped Timoshenko beam

| bCam           |            |            |            |            |            |
|----------------|------------|------------|------------|------------|------------|
| Mode No.       | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$ | $\Omega_5$ |
|                |            |            |            |            |            |
| Present SEM    | 4.9435     | 23.2090    | 49.8055    | 89.1255    | 143.8718   |
| Gutierrez [36] | 4.943      | 23.209     | 49.805     | 89.126     | 143.872    |



Figure 7.1: Single stepped Timoshenko Beam

# 7.2 Percentage error in natural frequencies by Euler-Bernoulli beam theory when applied to a single stepped Timoshenko beam

A single stepped cantilevered beam clamped at left end and free at other end, on Fig. 7.1 is considered. The material and geometrical properties in Example 1 are used for analysis using both Euler-Bernoulli beam theory and Timoshenko beam theory. The difference in natural frequencies coefficient along with percentage error in Euler-Bernoulli beam theory application are mentioned in the following table.

#### 7.3 Single stepped cantilevered beam

A single stepped cantilevered beam Fig. 7.2 with parameters [37] & [38]  $h_1/h_o = 0.8$ ,  $L_1/L = 2/3$ ,  $\kappa = 5/6$  and  $\nu = 0.3$ . The non dimensional natural frequencies  $\Omega_i = \left(\frac{\omega_i L^2}{\sqrt{EI_1/\rho A}}\right)$  obtained compared between the SEM (2 elements) and previously found results show excellent agreement.

| & Euler-Bernoulli Beam theories for the same beam |            |                 |            |  |  |  |  |  |  |  |
|---------------------------------------------------|------------|-----------------|------------|--|--|--|--|--|--|--|
| Mode No.                                          | Timoshenko | Euler-Bernoulli | Error $\%$ |  |  |  |  |  |  |  |
| $\Omega_1$                                        | 3.2107     | 3.2148          | 0.1289     |  |  |  |  |  |  |  |
| $\Omega_2$                                        | 17.5554    | 17.7031         | 0.8412     |  |  |  |  |  |  |  |
| $\Omega_3$                                        | 42.3157    | 43.0725         | 1.7884     |  |  |  |  |  |  |  |
| $\Omega_4$                                        | 77.7554    | 80.0712         | 2.9784     |  |  |  |  |  |  |  |
| $\Omega_5$                                        | 128.9967   | 135.13752       | 4.7604     |  |  |  |  |  |  |  |
| $\Omega_6$                                        | 191.5018   | 205.5301        | 7.3254     |  |  |  |  |  |  |  |
| $\Omega_7$                                        | 257.0197   | 283.60479       | 10.3436    |  |  |  |  |  |  |  |
| $\Omega_8$                                        | 328.0458   | 368.7040        | 12.3941    |  |  |  |  |  |  |  |
| $\Omega_9$                                        | 414.2966   | 474.20011       | 14.4591    |  |  |  |  |  |  |  |
| $\Omega_{10}$                                     | 511.1571   | 601.72708       | 17.7186    |  |  |  |  |  |  |  |
| $\Omega_{11}$                                     | 607.6292   | 742.29711       | 22.1628    |  |  |  |  |  |  |  |

 Table 7.2: Comparison of Non-dimensional natural frequencies with Timoshenko



Figure 7.2: Clamped Timoshenko Stepped Beam

| $r_0$  | Method              | $\overline{\Omega_1}$ | $\Omega_2$ | $\Omega_3$ | $\overline{\Omega}_4$ | $\overline{\Omega}_5$ |
|--------|---------------------|-----------------------|------------|------------|-----------------------|-----------------------|
|        |                     |                       |            |            |                       |                       |
| 0.0133 | Present SEM         | 3.8243                | 21.3559    | 55.0510    | 107.5298              | 173.6753              |
|        | Tong $(1995)$ [38]  | 3.8219                | 21.3540    | 55.0408    | 107.4993              | 173.6322              |
|        | Rossi $(1990)$ [37] | 3.82                  | 21.35      | 55.04      | 107.50                | 173.62                |
| 0.0267 | Present SEM         | 3.8047                | 20.7275    | 51.6754    | 96.3656               | 148.9066              |
|        | Tong $(1995)$ [38]  | 3.8034                | 20.7283    | 51.6851    | 96.3918               | 148.9651              |
|        | Rossi (1990) [37]   | 3.80                  | 20.72      | 51.68      | 96.39                 | 148.97                |
| 0.0400 | Present SEM         | 3.7730                | 19.8047    | 47.3531    | 84.1407               | 125.0650              |
|        | Tong $(1995)$ [38]  | 3.7716                | 19.8036    | 47.3540    | 84.1399               | 125.0681              |
|        | Rossi (1990) [37]   | 3.77                  | 19.80      | 47.35      | 84.14                 | 125.06                |

 Table 7.3: Comparision of nondimensional natural frequencies by different

 methods



Figure 7.3: Two-stepped Timoshenko Stepped Beam

#### 7.4 Cantilever two-stepped beam

A cantilever beam with two stepped changes in cross-section, schematically shown in Fig. 7.3, is considered. The parameters are total length L = 1.8,  $\kappa = 5/6$  and  $\nu = 0.3$ . The cross-sectional areas of both rectangular and circular cross-section are same. The non dimensional natural frequencies  $\Omega_i = \left(\frac{\omega_i L^2}{\sqrt{EI_1/\rho A}}\right)$  obtained with various percentage of length of intermediate circular beam  $\left(P = \frac{L_2}{L} * 100\right)$ . The increase in the value of P form 0 to 90 decreases the non-dimensional natural frequencies. For the lower mode the decrease is less and for higher modes its increases.

|    |            |            |            | 1          |            | 0 1        |
|----|------------|------------|------------|------------|------------|------------|
| P  | $\Omega_1$ | $\Omega_2$ | $\Omega_3$ | $\Omega_4$ | $\Omega_5$ | $\Omega_6$ |
|    |            |            |            |            |            |            |
| 0  | 3.4633     | 20.0066    | 50.5242    | 88.1030    | 129.8129   | 173.7170   |
| 10 | 3.3800     | 18.3705    | 50.3999    | 83.8436    | 129.0917   | 168.9506   |
| 20 | 3.2962     | 17.3046    | 49.2591    | 82.8543    | 124.3630   | 169.1636   |
| 30 | 3.2079     | 16.6559    | 46.8685    | 82.9772    | 119.9583   | 166.1849   |
| 40 | 3.1127     | 16.2945    | 44.1042    | 81.8293    | 119.1907   | 160.2150   |
| 50 | 3.0097     | 16.1055    | 41.9238    | 78.4673    | 118.8456   | 158.4439   |
| 60 | 2.8991     | 15.9795    | 40.6661    | 74.5483    | 115.4143   | 157.9293   |
| 70 | 2.7821     | 15.8155    | 40.1572    | 71.9811    | 110.4238   | 153.3781   |
| 80 | 2.6605     | 15.5343    | 39.9178    | 71.1479    | 107.5236   | 147.9956   |
| 90 | 2.5365     | 15.0958    | 39.4041    | 70.9209    | 107.2518   | 146.7321   |

Table 7.4: Nondimensional natural frequencies for change in percentage of length

# 7.5 Two stepped cantilever beam with change of circular cross-section location

The same beam in Example 4 is analysed for different boundary conditions considering the length percentage 20% with changing the location of circular cross-section.Plots of non-dimensional natural frequencies with change in location of circular cross-section i.e. the distance of first change in cross-section from left end are shown.



Figure 7.4: Non-dimensional natural frequencies for first mode (1)



Figure 7.5: Non-dimensional natural frequencies for first mode (2)



Figure 7.6: Non-dimensional natural frequencies for Cantilevered



Figure 7.7: Non-dimensional natural frequencies for Pinned-Sliding

## Chapter 8

# Conclusion

In the whole work the total number of element used in the analysis using SEM is always two. For the same result using other methods the elements number are considerably large. Minimum number of elements and least degree-of-freedom is used in SEM. Thus SEM improves the solution accuracy and efficiency to a considerable extent.

The final conclusion from this research work are summarized as follows:

- There is excellent agreement between SEM and many other methods along with the experimental results as well. Therefore SEM is a valid method for free vibration analysis of stepped beams.
- 2. Convergence of FEM is studied comparing with that found using two elements of SEM. For the first few fundamental frequencies the FEM with lesser number of elements shows closer results to SEM. But for higher frequencies FEM needs very high number of elements for good agreement with SEM.
- 3. The natural frequencies found by DQEM is vary close to SEM.
- 4. Circular single stepped beam considered using SEM is compared with those found by Jang and Bert [5] which exhibit exact match. The results for the same along with some other boundary conditions are presented in Table

6.4-6.6. With increasing diameter ratio the natural frequencies for FR-FR, SL-SL ,FR-SL , FR-PI , SL-CL and PI-CL boundary conditions increases. In the other hand for PI-FR, SL-FR, CL-SL, SL-PI ,CL-FR and CL-PI it increases for first few step ratio and then decreases.

- 5. Type I beam with three step changes in cross-section used in example 6.5 by Wang and Wang [8] shows exact match with SEM. Higher mode natural frequencies obtained are presented.
- 6. Cantilever twelve-stepped beam analysed for both Flap-wise and Chord-wise bending for higher modes up to 200 shows good agreement with those of FEM using 900 elements. First six natural frequencies for different boundary conditions are mentioned.
- 7. In case of single-stepped beam with a circular and a rectangular cross-section (example 6.7), the nondimensional natural frequencies increases with increase in step ratio.
- 8. Table 7.2 of (example 7.2) shows the percentage error in natural frequencies by Euler-Bernoulli beam theory when applied to a single stepped Timoshenko beam. The percentage of error increases with increase in mode number.
- 9. In (example 7.4) the increase in the percentage of length of intermediate circular beam from 0 to 90 decreases the non-dimensional natural frequencies. For the lower mode the decrease is less and for higher modes it increases.
- 10. With the change of location of circular cross-section in example 7.5 no advantage is obtained. There is vary minimal change in the natural frequencies.

# Bibliography

- [1] G. Duan and X. Wang. Free vibration analysis of multiple-stepped beams by the discrete singular convolution. Applied Mathematics and Computation, 219:11096–11109, 2013.
- [2] L. Klein. Transverse vibration of non-uniform beams. Journal of Sound and Vibration, 37(4):491–505, 1947.
- [3] H. Sato. Free vibration of beams with abrupt changes of cross-section. Journal of Sound and Vibration, 89(1):59-64, 1983.
- [4] S. K. Jang and C. W. Bert. Free vibration of stepped beams: exact and numerical solutions. Journal of Sound and Vibration, 130(2):342–346, 1989.
- [5] S. K. Jang and C. W. Bert. Free vibration of stepped beams: higher mode frequencies and effects of steps on frequency. Journal of Sound and Vibration, 132(1):164–168, 1989.
- [6] S. Naguleswaran. Natural frequencies, sensitivity and mode shape details of an euler-bernoulli beam with one step change in cross-section and with ends on classical supports. Journal of Sound and Vibration, 252(4):751–767, 2002.
- [7] S. Naguleswaran. Vibration of an euler-bernoulli beam on elastic end supports and with up to three step changes in cross-section. International Journal of Mechanical Sciences, 44:2541–2555, 2002.
- [8] X. Wang and Y. Wang. Free vibration analysis of multiple-stepped beams by the differential quadrature element method. Applied Mathematics and Computation, 219:68–73, 2013.
- [9] Z. R. Lu, M. Huang, and J. K. Liu et al. Vibration analysis of multiple-stepped beams with the composite element model. Journal of Sound and Vibration, 322:1070–1080, 2009.
- [10] Q. Mao. Free vibration analysis of multiple-stepped beams by using admonian decomposition method. Mathematical and Computer Modeling, 54:756–764, 2011.
- [11] C. W. Bert and M. Malik. Differential quadrature method in computational mechanics: a review. Applied Mechanics Reviews, 49:1–28, 1996.

- [12] Y. Wang, Y. B. Zhao, and G. W. Wei. Differential quadrature method in computational mechanics: a review. International Journal for Numerical Methods in Engineering, 40:759–772, 2003.
- [13] G. W. Wei. Free vibration of stepped beams: higher mode frequencies and effects of steps on frequency. Computer Method in Applied Mechanics and Engineering, 190:2017–2030, 2001.
- [14] M. Levinson. Vibrations of stepped strings and beams. Journal of Sound and Vibration, 49(1):287–291, 1976.
- [15] T. S. Balasubramanian and G. Subramanian. On the performance of a four degree of freedom per node element for stepped beam analysis and higher frequency estimation. Journal of Sound and Vibration, 99(4):563–567, 1985.
- [16] T. S. Balasubramanian, G. Subramanian, and T. S. Ramani. Significance and use of very high order derivatives as nodal degrees of freedom in stepped beam vibration analysis. Journal of Sound and Vibration, 137(2):353–356, 1990.
- [17] G. Subramanian and T. S. Balasubramanian. Benificial effects of steps on free vibration characteristics of beams. Journal of Sound and Vibration, 118(3):555–560, 1987.
- [18] P. A. A. Laura, R. E. Rossi, J. L. Pombo, and D. Pasqua. Dynamic stiffening of stepped beams of rectangular cross-section: A comparision of finite element prediction and experimental results. Journal of Sound and Vibration, 150(1):174–178, 1991.
- [19] C. W. Bert and A. L. Newberry. Improved finite element analysis of beam vibration. Journal of Sound and Vibration, 150(1):179–183, 1986.
- [20] C. N. Bapat and C. Bapat. Natural frequencies of a beam with non-classical boundary conditions and concentrated masses. Journal of Sound and Vibration, 112(1):177–182, 1987.
- [21] C. K. Rao and S. Mirza. A note on vibration of generally restrained beams. Journal of Sound and Vibration, 130(3):453–465, 1989.
- [22] J. A. Reyes, R. E. Rossi, and P. A. A. Laura. A note on vibration of generally restrained beams. Journal of Sound and Vibration, 117(3):583–587, 1987.
- [23] J. Lee and L. A. Bergman. The vibration of stepped beams and rectangular plates by an elemental dynamic flexibility method. Journal of Sound and Vibration, 171(5):617–640, 1994.
- [24] N. Popplewell and D. Chang. Free vibration of a complex euler bernoulli beam. Journal of Sound and Vibration, 190(5):852–856, 1996.

- [25] G. R. Bhashyam and G. Prathap. The second frequency spectrum of timoshenko beams. Journal of Sound and Vibration, 76(3):407–420, 1981.
- [26] S. Akella and A. Craggs. Modifications to a timoshenko beam-shaft finite element to include internal disks and changes in cross-section. Journal of Sound and Vibration, 106(2):227–239, 1986.
- [27] J. Wang. Vibration of stepped beams on elastic foundatin. Journal of Sound and Vibration, 149(2):315–322, 1991.
- [28] S. H. Farghaly. Vibration and stability analysis of timoshenko beams with discontinuties in cross-section. Journal of Sound and Vibration, 174(5):591–605, 1994.
- [29] S. H. Farghaly and R. M. Gadelrab. Free vibration of a stepped composite timoshenko cantilever beam. Journal of Sound and Vibration, 187(5):886–896, 1995.
- [30] N. Popplewell and D. Chang. Free vibrations of a stepped, spinning timoshenko beam. Journal of Sound and Vibration, 203(4):717–722, 1997.
- [31] J. Wu and B. Chang. Free vibration of axil-loaded multi-step timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method. Journal of Sound and Vibration, 38:20–37, 2013.
- [32] X. Dong, G. Meng, H. Li, and L. Ye. Vibration analysis of a stepped laminated composite timoshenko beam. Mechanics Research Communications, 32:572–581, 2005.
- [33] U. Lee. Spectral Element Method in Structural Dynamics. John Wiley & Sons (Asia) Pte Ltd, 2009.
- [34] M. A. Koplow, A. Bhattacharyya, and B. P. Mann. Closed form solutions for the dynamic response of euler-bernoulli beams with step changes in cross section. Journal of Sound and Vibration, 295:214–225, 2006.
- [35] J. W. Jaworski and E. H. Dowell. Free vibration of a cantilevered beam with multiple steps: comparison of several theoretica methods with experiment. Journal of Sound and Vibration, 312:713–725, 2008.
- [36] R. H. Gutierrez, P. A. Laura, and R. E. Rossi. Natural frequencies of a timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the other. Journal of Sound and Vibration, 141(1):174–179, 1990.
- [37] R. E. Rossi, P. A. A. Laura, and R. H. Gutierrez. Natural frequencies of a timoshenko beam of non-uniform cross-section elastically restrained at one end and guided at the other. Journal of Sound and Vibration, 143(3):491–502, 1990.
- [38] X. Tong and B. Tabarrok. Vibration analysis of timoshenko beams with non-homogeneity and varying cross-section. Journal of Sound and Vibration, 186(5):821–835, 1995.

# **Dissemination of Work**

#### Communicated

#### Conference

 Jitendra Kumar Meher, Manoranjan Barik. Free Vibration of Multiple-stepped Bernoulli-Euler Beam by the Spectral Element Method. Manuscript submitted to International Confrence on Structural Engineering & Mechanics, NIT Rourkela, India, Dec 2013.