
Front End Development and

System Test Case Generation for

Collaborative Invention Mining

Jyoti Prakash Meher

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

Front End Development and

System Test Case Generation for

Collaborative Invention Mining
Dissertation submitted in

May 2014

to the department of

Computer Science and Engineering

of

National Institute of Technology Rourkela

in partial fulfillment of the requirements

for the degree of

Master of Technology

by

Jyoti Prakash Meher

(Roll 212CS3124)

under the supervision of

Dr. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology Rourkela

Rourkela – 769 008, India

dedicated to Lord Jagannath and Beloved friends...

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Rourkela-769 008, Odisha, India.

May 2014

Certificate

This is to certify that the work in the thesis entitled ”Front End Development

ans System Test Case Generation for Collaborative Invention

Mining” by Jyoti Prakash Meher, bearing roll number 212CS3124, is a

record of an original research work carried out by him under my supervision and

guidance in partial fulfilment of the requirements for the award of the degree of

Master of Technology in Computer Science and Engineering . Neither this thesis

nor any part of it has been submitted for any degree or academic award elsewhere.

Dr. Durga Prasad Mohapatra

Associate Professor

Dept. of CSE

NIT, Rourkela

Acknowledgement

This dissertation, though an individual work, has benefited in various ways from

several people. Whilst it would be simple to name them all, it would not be easy

to thank them enough.

The enthusiastic guidance and support of Prof. Durga Prasad Mohapatra

inspired me to stretch beyond my limits. His profound insight has guided my

thinking to improve the final product. My solemnest gratefulness to him.

I am also grateful to Prof. Santanu Kumar Rath Head, Department of

Computer Science and Engineering for his ceaseless support throughout my

research work. My sincere thanks to Prof. Bansidhar Majhi, Dr. Debi Prasad

Swain, and Dr. Suman Bhattacharya for their continuous encouragement and

invaluable advice.

It is indeed a privilege to be associated with people like Prof. S. K. Jena, Prof.

P. M. Khilar, Prof. A. K. Turuk, Prof. S.Chinara, Prof. B. D. Sahoo and Prof.

Pankaj Sa. They have made available their support in a number of ways.

Many thanks to my comrades and fellow research colleagues. It gives me a

sense of happiness to be with you all. Special thanks to my beloved friends whose

support gave a new breath to my research.

Finally, my heartfelt thanks for her unconditional love and support. Words

fail me to express my gratitude to my beloved parents who sacrificed their

comfort for my betterment.

Jyoti Prakash Meher

Abstract

System testing plays a vital role to ensure software quality assurance and software

quality control. It is possible to minimize the development time by parallely

executing the software development process as well as testing process. In a typical

Software development methodology, almost 60% of development effort is spent in

testing phase itself so as to increase the reliability of the product.

The UML is a design model which can describe the dynamic behavior of a

system. So, it can be considered as a tool for testing as it behaves as a simulation

model. The activity diagram represents the system as a whole. Hence, it has

become convenient to consider activity diagram for system testing.

We have designed the front end components of the application by using Adobe

Flex 3.0 technology. To design this, we have followed the business requirement

documents.

Here, we have considered the UML activity diagram of Collaborative Invention

Mining (CIM) to generate the system test cases from it. Initially we have taken the

activity diagram as input and applied an algorithm called Activity Path Traversal

(APT) to generate the test paths from it. The finally we take the generated test

paths as input and applied an algorithm called Test Path Traversal (TPT) to

generate the system test cases from it. We have also used an tool called GraViz

Editor to validate the intermediate paths generated from the first algorithm.

Finally, we have compared the generated system test cases with the system

test cases designed by the test team of the Industry leading to an optimized set

of system test cases.

Keywords: CIM, Activity diagram, system test cases, UML, etc.

Contents

Certificate iii

Acknowledgment iv

Abstract v

List of Figures viii

List of Tables x

1 Inroduction 1

1.1 Motivation of our Work . 2

1.2 Objectives of our Work . 3

1.3 Organization of Thesis . 3

2 Basic Concepts 5

2.1 Software Testing . 5

2.2 Testing Approaches . 6

2.2.1 Static Testing . 6

2.2.2 Dynamic Testing . 8

2.3 The Box Approach . 8

2.3.1 White-box testing . 8

2.3.2 Black-box testing . 9

2.4 Testing Levels . 9

2.4.1 Unit Testing . 10

vi

2.4.2 Integration Testing . 10

2.4.3 System Testing . 11

2.5 Software Quality Assurance and Quality Control (SQA/SQC) . . . 11

3 Literature Survey 12

3.1 Collaborative Invention Mining . 12

3.2 Test case generation from UML diagrams 13

4 Collaborative Invention Mining (CIM) 15

4.1 Introduction . 15

4.2 Background . 16

4.3 Objectives of Collaborative Invention Mining 17

4.4 System users and Stakeholders . 18

4.5 Application development methodology 18

4.5.1 Business Requirement Analysis and Design 18

4.5.2 Coding and Implementation Phase 24

4.5.3 Testing Phase . 33

5 Test Case Generation Using Activity Diagram 34

5.1 Basic Concepts . 34

5.1.1 Brief notes on Model Based Testing 35

5.1.2 Overview of UML Diagrams 35

5.2 Implementation and Result . 39

5.2.1 XMI Generation . 42

5.2.2 XMI to Test Case Generation 42

5.3 Comparison with the Industry Test Cases 46

6 Conclusions 48

6.1 Contribution to Front End Development of CIM 48

6.2 Contribution to Test Case Generation for CIM 49

6.3 Scope and Future work . 50

Bibliography 51

List of Figures

2.1 Testing Approaches . 7

4.1 Use Case Diagram . 19

4.2 Use Case Document . 20

4.3 Sequence Diagram for IST Review 21

4.4 Corresponding Collaboration Diagram 21

4.5 Activity Diagram . 22

4.6 State Chart Diagram . 22

4.7 Class Diagram . 23

4.8 CIM Landing Page . 24

4.9 My Ideas . 25

4.10 Advance Filter . 25

4.11 Idea Sharing Template . 26

4.12 Add Participants . 26

4.13 Idea Sharing Template Review . 27

4.14 Parking Lot . 27

4.15 Storm Phase . 28

4.16 Form Phase . 28

4.17 Norm Phase . 29

4.18 Matrix View . 29

4.19 Norm Pad Matrix View . 30

4.20 Cluster by Area . 30

4.21 Cluster By Category . 31

4.22 Compose Phase . 31

viii

4.23 Claim Bar Representation . 32

4.24 Claim Tree Representation . 32

5.1 Activity Components . 38

5.2 Trnasition Components . 38

5.3 Activity Diagram for CIM . 41

5.4 A Snap Shot of XMI Code . 42

5.5 A Snap Shot of Generated System Test Case 46

List of Tables

4.1 System users and Stakeholders for CIM 18

5.1 Result . 47

Chapter 1

Inroduction

Testing a software is an arrangement of an atomic unit of work with a purpose

of assessing the characteristics or functionalities of a system or framework and

guaranteeing that it reaches its envisaged results. As per ANSI/IEEE 1059

standard, Testing might be characterized as ”A procedure of breaking down a

system to locate the contrasts between existing and obliged conditions (that is a

deviation/gaps/bugs) and to assess the characteristics of the software component”.

Albeit essential for programming quality assurance, testing a software still remains

an art, because of restricted understanding of the business requirement of the

software. The trouble in testing a system stems from the entanglement of system:

we can’t totally test a system with moderate complicacy. The expectation of

testing could be quality certification, assurance and acceptance, or estimation of

reliability etc. System testing is a business among estimated budget, time and

quality. Testing can never distinguish all the imperfections inside application

totally. Rather, it outfits a feedback that looks at the state and conduct of the

item against a prophet, i.e., standards or approaches by which somebody may

comprehend the issue. These prophets may incorporate programming particulars,

business necessity, practical identical items, past forms of the same item (if

any), derivations about expected reason, customer or client desires, applicable

advancement norms, etc.

1

Chapter 1 Inroduction

1.1 Motivation of our Work

So far as the era is recognized as the universe of rising pattern, the customer

or client needs to persuade products to be actualized and updated quicker than

others. As the following version of the product will be delivered in next few days,

and gets just several days of testing before it is delivered. So because of this brief

time period or consistent delivery, the more bugs get heaped up into the product

and which gets altered in the following release. A software released with a variety

of bugs into it might influence the users and the clients experience which makes

a terrible effect on quality impression of your organization’s brand. To guarantee

the product quality assurance and quality control, testing a system is recognized

as an essential period of the Software Development Life Cycle (SDLC).

In the Software Development Life Cycle (SDLC), the Testing process is

assumed to be a key part, which serves to enhance the quality, performance and

reliability of the system that fulfills the business and practical necessities of the

customers and/or clients. In this way, it is better to present testing in the early

phase of the SDLC stages so it serves to recognize the bugs in the early stage and

attempt to safeguard the bugs discovering and get it determined get it resolved as

early as possible so as to optimize the scheduled time and development cost. In

the testing methodology, it may not fix all defects reside in the application or we

can’t say that the application is 100% defect free, yet taking one stage ahead to

doing this and give ease of use.

Testing a software product is an investigative methodology led to give

information about the nature of the product or system under test to the system

stakeholders. System testing can additionally give environment, free perspective

of the requisition that permits the business to acknowledge and comprehend the

risks of the product development.

2

Chapter 1 Inroduction

1.2 Objectives of our Work

The main objective of our research work is to implement the front end of a focused

program coupled with management commitment to encourage Inventions (and

Innovations) from different geographical locations is essential for survival of any

business and to generate system test case automatically from the design document

i.e., Activity diagram so as to optimize the cost and time of the testing effort. To

address this objective, we identify the following goals:

• To construct the UML diagrams of the application.

• To develop the front end components of the software.

• To generate test scenarios from its design document, i.e., Activity Diagram

and generate test data for the path.

• To generate the basic test paths from Activity diagram.

• To validate the test paths by generating an intermediate representation

called Control Flow Graph (CFG) using GVEdit 2.26.

• To design the system test cases from the test paths generated automatically.

• And finally, to compare the generated system test cases with the existing

test case designed by the testing team of the Organization.

1.3 Organization of Thesis

Our thesis is divided into six chapters, including the current chapter and each

chapter is orchestrated as below:

Chapter 2 represents some basic concepts and ideas regarding the system

testing and related work. It contains testing types, testing approaches, testing

levels, etc.

Chapter 3 depicts a survey of the related work regarding the test case

generation from from the UML Activity diagram. Here we have accumulated

some basic notions on test case generation.

3

Chapter 1 Inroduction

Chapter 4 provides a brief idea regarding the development of Software system

termed as Collaborative Invention Mining that has been implemented by the

Company. Here we discuss the application development methodology of the

application to the test case designed for the same.

Chapter 5 describes the test case generation approach from the design

document, i.e., Activity diagram of the application. It includes generation of

test paths with intermediate graphical representation of the paths from which test

cases have been generated. We also introduced some basic concepts about the

UML diagrams giving more emphasis on activity diagrams.

Chapter 6 represents the result generated from the implemented methodology.

We compare the generated test cases with the test cases designed by the testing

team of the Industry. Finally, we conclude the research with a summary of our

contribution harbingering a possible future extension of our work in this direction.

4

Chapter 2

Basic Concepts

Here, we will discuss some basic concepts about software testing that we have

already studied in our previous course of study. Apart from that we will discuss

the motivations and objectives of the research work.

2.1 Software Testing

Testing a system is basically referred as manipulating it with an intend to find the

deviation from its expected result. Its main goal is to detect the defects present, if

any, in the system so as to increase its reliability by fixing it. But, testing cannot

assure tat an application or system is fully defect free, i.e., it will work properly

on every environment. It may provide a certain environment where we can detect

defects in the system. The scope of testing depends on its types where, In white

box testing, it investigates the code while in black box testing, it executes the

system. Nowadays, the testing team is bifurcated from the development team in

almost every software enterprise. The types of defects detected in a system not

only make the product reliable, but also makes the development team efficient and

more productive.

In the current software development trend, a testing team may be differentiated

from the development team. There are different parts for testing allies.

Information determined from system testing may be utilized to redress the system

5

Chapter 2 Basic Concepts

by which it is created.

Software testing can be stated as the process of validating and verifying that

a software program/application/product:

• meets the requirements based on which the design and development is being

carried out,

• results as expected,

• and satisfies the needs of the stakeholders of the application.

In this way, testing a system might be developed at whenever in the

development process of software relying upon the testing process being utilized

in it. Customarily, a large portion of the test exertion happens after the business

requirement have been solidified and the coding process has been finished, yet in

the Agile methodology, the greater part of the test exertion is on-going parallel.

2.2 Testing Approaches

2.2.1 Static Testing

In Static testing the code is manually verified by the experts instead of executing

the code where the documents may be Software requirement specification, and

design documents to find errors in itself.

The prime target of static testing is to enhance the nature of software quality

by discovering lapses in right on time phases of the development life cycle. This

testing is likewise called as Non-execution strategy or verification. Static testing

includes manual or mechanized survey of the records in regards to the development

of applications. It checks reports and gives review comments on it.

There are many approaches to testing among which review, walk-through or

inspection are considered as static testing which are illustrated as below.

• Informal Reviews: This is a process of evaluating the document which does

not follow any process to find out any error. Here the documents are only

reviewed and some informal review comments are given on it.

6

Chapter 2 Basic Concepts

Figure 2.1: Testing Approaches

• Technical Reviews: Here the technical specification of the application

software is reviewed by a peer team to ensure that whether the it is suitable

for the project or not.They try to find any deviance in the specifications

and standards followed. This review concentrates mainly on the technical

documents related to the software such as Test Strategy, Test Plan and

requirement specification documents.

• Walk-through: Here the product is explained by the product manager of the

product for his team. A questioned based discussion is being carried out

where different questioned are being collected from different team members.

Scribe makes the review comments.

• Inspection: The main objective of the inspection is to find defects, if any,

in the documents which is led by a trained moderator. It is a formal review

where the document is strictly reviewed by following a strict process so as

to maximize the number of defects. The review process is carried out by the

help of a review check list which records the defects found and informs the

7

Chapter 2 Basic Concepts

participants to verify and fix the errors.

• Static code Review: This is a process of systematic review of the source

code of the software without executing the codes. It includes the coding

standards, the syntax of the code written, code optimization et al.

Sometimes it also considered as white box testing.

In this way the static testing can be done at any stage of the software development.

2.2.2 Dynamic Testing

Dynamic testing is known as the process of executing the code of an application

with a given set of test cases that has been designed. Dynamic testing occured at

the time of program in execution. Basically, unit testing and integration testing

are done in this category. It may begin with an incomplete block of code. This

can be applied to the simultaneous discrete module. In integration testing, it uses

stubs and drivers to make the block of code to complete it.

2.3 The Box Approach

Testing a software can be achieved in many ways, one of which is the box approach

in which, it is divided into two parts called as the white box and the black box

approach. This categorization is basically done on the basis of the anatomy of the

application, i.e., it may be with complete internal structure or may be only the

external structure.

2.3.1 White-box testing

The process of testing the anatomy of the application or working of the application

with its internal details. To achieve this process, the tester should have prime

knowledge about the internal structure of the application. In other words, we

may say that the tester should be a developer first. This covers the unit and

8

Chapter 2 Basic Concepts

integration testing process..

Techniques used in white-box testing include:

• Code coverage code coverage is satisfied by creating some code criteria,

which includes statement coverage, branch coverage, path coverage et al.

• Mutation testing methods, etc.

Hence, all the paths or branches are executed at least once and this can be achieved

by 100% statement coverage only which is helpful in fixing the functionality errors

in the application. But, its not a sufficient condition as the input environment is

not fixed.

2.3.2 Black-box testing

Evaluating the functionalities without any knowledge of the internal

implementation of the application is termed as black-box testing. It treats the

software as a black-box. The tests focus on what the software is supposed to

do rather how it does. This method includes equivalent partitioning, boundary

value analysis, state transition tables, decision tables, model-based testing, ad-hoc

testing et al.One advantage of the black box technique is that programming

knowledge is not required.

Black box testing applies to all levels of software testing such as unit testing,

integration testing, system testing and acceptance testing.

Exploratory testing and Ad hoc testing are important testing methodologies

to check software integrity, because a less time for preparation is required to

implement this, where the important bugs can be found quickly. In ad hoc testing,

where testing takes place in an improvised, impromptu way.

2.4 Testing Levels

Test levels are categorized into four types according to their level of complexity

of the code. Among these one is integration testing. the second one is system

9

Chapter 2 Basic Concepts

testing and the third one is user acceptance testing. Tests are frequently grouped

by where they are integrated in the software development process, or by the level

of specificity of the test.

2.4.1 Unit Testing

These sorts of tests are typically composed of software engineers as they are

complying with codes, to guarantee that the particular capacity is functioning

of course. One capacity may contain different tests, to get a different branch in

the code. Unit testing alone can’t check the usefulness of a block of code, rather,

is utilized to guarantee that the building hinders the software users a free function

of one another.

Unit testing is a part of software implementation that includes synchronized

provision of a wide range of deformity discovery and anticipation procedures so

as to diminish implementation risk, time, and software development expenses.

It is performed by the developer in a software enterprise throughout the

implementation phase of the software development Life cycle. Instead of supplant

customary QA focuses, it encourages it. Unit testing expects to wipe out

development failures before code is elevated to the QA team. This method should

increment the nature of the product come about and in addition the productivity

of the general development procedure and quality assurance.

Contingent upon the desire of organization for development of software, unit

testing may incorporate static analysis of code, data flow analysis, matrix analysis,

peer code review, code coverage analysis and other software assurance hones.

2.4.2 Integration Testing

Integration testing is the process of testing the integrated modules. It is used in the

v model approach of testing, in which it comes after the unit testing. Basically, this

type of testing is carried out by the testers so as to check the interfaces among the

different modules. In this type of testing, the defects related to module interfacing

is detected. It can be considered as a part of both development and testing phase.

10

Chapter 2 Basic Concepts

2.4.3 System Testing

After a system is completely integrated and handed over to the testing team for

testing, the system testing begins by the testing team. It is basically considered

as black box testing as the testing team does not have prior knowledge about

the development structure of the application. In this testing, the business

requirements are met. Sometimes it is also called end-to-end testing as it covers

the whole system

2.5 Software Quality Assurance and Quality

Control (SQA/SQC)

Testing software strengthens software quality assurance and quality control

(SQA/SQC) handle in a software industry. In SQA/SQC, software analysts and

business analysts concern for the software development procedure instead of simply

the depicting for example, documentation, code et al. They research and adjust

the software implementation methodology itself to decrease the numbers of gaps

that comes about in the conveyed product which is called defect rate.

What constitutes an ”acceptable defect rate” relies on upon the characteristics

of the product, for instance, a flight simulator program can have much higher

defect tolerance limit than programming for an actual airplane. In spite of

the fact that there are close connections with SQA/SQC, testing team regularly

exists autonomously, and there may be no SQA/SQC work in a few organizations

depending on the sorts of software projects they are executing.

Testing the software is an errand expected to detect faults in software by

challenging a computer program expected results with its actual results for a

given set of inputs. By complexity, SQA/SQC is the approaches for usage and

strategies with a proposition to keep defects from happening in the first endeavor.

11

Chapter 3

Literature Survey

In this chapter we have reviewed a variety of survey papers, publications and

journals regarding our thesis work. This chapter is categorized into two parts

where first part represents the survey about Collaborative invention mining and

the second section represents the survey about generating test cases from different

uml diagrams of the design documents.

3.1 Collaborative Invention Mining

Invention Mining is the process of working incessantly so as to discover potential

inventions as early as possible during the development Lifecycle. This process

makes the invention matured So achieving this process by a group of people

belonging to different geographical location is termed as Collaborative Invention

Mining. So as to automate this process, much more research is being carried out

by different people in the world to propose such an application over the internet.

Jim Anderson [1] has proposed an approach for internet data mining

collaboratively from different geographical locations that facilitate a group to

automatically process the information provided by the guides and thereby creates

a brand and a charming look and feel to the web site supported by the plurality

of the groups. Subsequently, a system for mining and strengthening an invention

or idea is implemented by Santosh Mohanty which is termed as Collaborative

12

Chapter 3 Literature Survey

Invention Mining (CIM) [2]. Here a new ideation data are being processed through

a 48-cell Idea Detailing Tree (IDT) that systematically validates and matures it

in an iterative manner. The cells are filled in different stages of the application

leading to a final score. Here, a score of 450 is considered as a threshold value,

i.e., if an idea carries a score more that 450 then it can be patentable otherwise it

may not.

3.2 Test case generation from UML diagrams

In [2], a generous test cases are generated from a system under test by using a

Java program. After that the program is run with the generated test cases to get

a corresponding test path. Finally, these generated test paths are compared with

the activity diagram which implies the coverage criteria [3]. This approach can

also be used to draw a general idea about the behavior of the activity diagram

and the program execution.

Kundu and Samant [4] have considered the activity diagram to generate test

cases. Initially, they have drawn the activity diagram with necessary test data

the converted the diagram into a graph called an activity graph. And finally,

generated the test cases from the activity graph generated above .

Mishra [5] have proposed a methodology for embedded system. Here, they

have considered the activity diagram for test case generation. They have used

the specification coverage criteria which used to generate system test cases for

embedded systems. This approach is helpful in reducing the efforts for validation

not only in specification level but also in implementation level.

Xu et al. [6] has proposed an automatic approach to generate test case by using

activity diagram. They have used adaptive agents to achieve this methodology. [7]

Kim et al. [9] has considered th activity diagram to generate test cases as it

represents the dynamic behavior of a system by interaction of different objects

among them selves. Here, the number of test cases are minimized depending

upon their applicability in the system. Initially they have drawn an input out

explicit activity diagram from which, they generated a directed graph. Form this

13

Chapter 3 Literature Survey

graph, the test cases are generated.This methodology avoids the problem of stste

explosion by using principle of single stimulus to represent the dynamic behavior

of the system.

14

Chapter 4

Collaborative Invention Mining

(CIM)

4.1 Introduction

A framework of mining invention from different geographical locations by a group

of people is termed as Collaborative Invention Mining. It has been presented here

in focusing on articulation and segmentation of a raw idea through an exhaustive

matrix containing 48 cells in it called as an Idea Detailing Tree (IDT) and

ratifying systematically and iteratively maturing towards an invention that can be

patentable. The IDT is figured based on three dimensions such as Category, Area

and Characteristics. Here Category represents the process of widening the scope

of the ideation data, Area defines the lengthening the coverage and Characteristics

defines the deepening the sustainability of the invented idea. The collaboration is

achieved through a systematic phase as Storm phase Form phase Norm phase

Compose phase representing the hierarchical maturity level if the ideation data

which is to be converted into the ideation object through the above mentioned

approaches. Evaluating the score of the IDT matrix positions and manipulates

the cell pattern cell pattern. A system implemented application to exercise CIM

is integrated with existing systems for invention management for administration,

valuation and portfolio analysis.

15

Chapter 4 Collaborative Invention Mining (CIM)

4.2 Background

The process of strengthening and maturing a raw idea, i.e., an ideation

data through a collaborative interaction by a group of experts from different

geographical locations is known as invention mining. The mere purpose of such

process is to frame questionnaire to increase capability to widen, lengthen and to

deepen the thought and hence maturing it and finally position it as a patentable

invention in a selected jurisdiction. In this way an ideation data is made to be

emergent sharpened resulting in the establishment of an invention community in

an enterprise.

A focused program coupled with management commitment to encourage

Inventions (and Innovations) is essential for survival of any business. The

outputs need to be protected and monetized through a mature IPR strategy.

Collaborative Invention Mining is the process of transforming A Concept or

An Idea in an enterprise through a collaborative deliberation into a sustainable

invention, applying the EA3 Business Principle. The objective of such a process

is to impart various dimensional rigor across category dimension, area coverage

and business characteristic to widen, lengthen and deepen an idea, thereby further

maturing/composing it as a sustainable, patentable invention. The process in turn,

facilitates the emergence of new inventors, sharpens the skill towards inventions

and institutionalizes the culture of invention in an enterprise.

To have significant value in the world of intellectual property, an ideation

object must be matured in the context of technical, business, regulatory and

socio-economics which can be carried forward as Intellectual property creation

. This may create a focussed inventors portfolio I a community where ideation

data are more resilient and aligned to a business footprint of an enterprise.

16

Chapter 4 Collaborative Invention Mining (CIM)

4.3 Objectives of Collaborative Invention

Mining

Following are the objectives of designing CIM Module:

• To automate the Collaborative Invention Mining activities/process

• To set up an organization wide Inventors Community.

• To institutionalize the culture of sustainability, patentable

invention/innovation.

• To create a collaborative platform for knowledge sharing for an Enterprise.

• To map it directly with the TCS Valuation Module for the predictive

estimation of Non-linear in revenue.

• To Multi facet Usage of the Template and Process for Portfolio Analysis/

Landscaping, Gap Analysis, FTO Analysis.

• To enable multi-view Capability of the Framework: Stakeholders across all

domains of IP .

17

Chapter 4 Collaborative Invention Mining (CIM)

4.4 System users and Stakeholders

Role Description

Inventor TCS employee New/existing Inventor

Moderator TCS employee Member of Inventor community/CIG Member

NIU Hat, PTMS Hat, EA3 Hat TCS employee Member of Inventor community/CIG Member

Prior Art Analyst TCS employee – CIG Member/TCS Search Team

Technical Writer TCS employee Inventor/ Member of Inventor community

Claims Analyst TCS employee Inventor, CIG Member

Table 4.1: System users and Stakeholders for CIM

4.5 Application development methodology

The aforementioned module (CIM) in developed and integrated with the existing

by following the following software development phases.

4.5.1 Business Requirement Analysis and Design

This phase of application development strategy contains the details regarding the

requirements from the business point of view. This includes the client or the

customer of the application as the TCS Corporate Intellectual Property Rights

(IPR) Group who is also the owner of the application. In this phase the Business

requirement of the system is analyzed and the documented, which is termed as

BRD. This document records hereby the business requirement specifications of

the Collaborative Invention Mining Module (CIM). The requirements are specified

with the help of a set of Use Cases, and other UML diagrams.Here the use case of

the application is discussed as follows.

In this phase several diagrams are drawn according to the BRD which will help

in the coding phase of the system. Here, the diagrams are drawn and represented

18

Chapter 4 Collaborative Invention Mining (CIM)

for several purposes. The use case diagram of the system represents the various

use cases carried out during the development of the system. The following diagram

represents the different use case. Here the use case diagram represents the different

Figure 4.1: Use Case Diagram

functionalities of the application being developed. This is also represented in the

tabular form out of which some are shown as below.

After that the behavioral diagrams are drawn that contains the sequence

diagram, activity diagram, collaboration diagram and the state machine diagram.

Some of these diagrams are depicted for one functionality from each section in the

following.

19

Chapter 4 Collaborative Invention Mining (CIM)

20

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.3: Sequence Diagram for IST Review

Figure 4.4: Corresponding Collaboration Diagram

21

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.5: Activity Diagram

Figure 4.6: State Chart Diagram

22

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.7: Class Diagram

23

Chapter 4 Collaborative Invention Mining (CIM)

4.5.2 Coding and Implementation Phase

In this phase the code has been developed in FLEX 3.0 technology for UI design

and for back-end, the code is developed in Java. For FLEX Caraingorm framework

is used to interact between the back end and front end through Data Transfer

Object (DTO). Basically, we were involved in the development of the front end

of the application.In this phase, the front-end of the application been developed

using Adobe Flex 3.0 technology. Some of the screen shots of the application user

interface part are depicted as follows.

Figure 4.8: CIM Landing Page

24

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.9: My Ideas

Figure 4.10: Advance Filter

25

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.11: Idea Sharing Template

Figure 4.12: Add Participants

26

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.13: Idea Sharing Template Review

Figure 4.14: Parking Lot

27

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.15: Storm Phase

Figure 4.16: Form Phase

28

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.17: Norm Phase

Figure 4.18: Matrix View

29

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.19: Norm Pad Matrix View

Figure 4.20: Cluster by Area

30

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.21: Cluster By Category

Figure 4.22: Compose Phase

31

Chapter 4 Collaborative Invention Mining (CIM)

Figure 4.23: Claim Bar Representation

Figure 4.24: Claim Tree Representation

32

Chapter 4 Collaborative Invention Mining (CIM)

4.5.3 Testing Phase

In this phase, initially the unit test cases are written according to the

functionalities and these are uploaded in the Application Life Cycle manager

(ALM)-Testing tool. Then the TCs are mapped to the requirements with the help

of the ALM tool. Simultaneously the system TCs are written by the testing team,

according to the Business Requirement Documents (BRD). Then the system TCs

are uploaded in the ALM tool for execution. 3600 TCs are written and uploaded

in the ALM tool for execution. The Test case has special format for its execution.

33

Chapter 5

Test Case Generation Using

Activity Diagram

5.1 Basic Concepts

Before entering into our thesis, we should have some basic idea regarding

generation og test cases, some testing terminologies, etc. In this chapter, we

discuss the basic definitions and terminologies, on which our research is based.

Test Case: A test case is a set of trios such as, set of inputs, processing

conditions, and expected outputs which is developed to achieve a particular

objective, such as exercising a specific scenario, a particular scenario sequence

or to verify compliance with a particular argument.

Test Adequacy Criterion: As we realize that the dependability of a software

application accomplished by testing the application which makes the software bug

free. Be that as it may, when to quit testing is still unanswerable. Contingent upon

a few demands and due dates, the testing process typically halted. A paramount

standard of those is a test adequacy criteria which demonstrate the predicate

sufficiency. Transition coverage, branch coverage, path coverage and activity

coverage are few of such test sufficiency criteria, though we have utilized just

34

Chapter 5 Test Case Generation Using Activity Diagram

transition coverage and path coverage for our work. A test sufficiency foundation

helps in deciding test targets that are to be attained while performing a particular

software testing. Case in point, path coverage obliges that each path in a system

under test is to be practised by at least once.

5.1.1 Brief notes on Model Based Testing

To describe the behaviors of a system by designing its model has contributed a

major advantage to the testing team of an enterprise. In many ways, model can

be used throughout the development life cycle with improvement in quality of

specification, analysis of reliability and generate test cases.

A model is used to describe the concurrent behavior of a system as a result of

which it can be used to represent the system hence can be used for system testing.

This model can also be used to analyse its quality, robustness et al [12].

Model-based testing has turned into another and advancing method to create

a suite of test cases from the software requirement. The testers utilize this

methodology and concentrate on an data model and create framework as opposed

to handcrafting unique tests. Numerous a little research has been done, how

combinatorial test derivation process permit the testers to attain expansive scope

of the data area with a little number of tests [13]. We have led a few generally

extensive application in which we connected these procedures to frameworks

with a large number of lines of code. Given the intricacy of testing, the model

based testing methodology was utilized within conjunction with test automation

outfits and as no vast exact study has been led to measure adequacy of this new

approach, we cover our experience with creating models and systems in backing

of model-based testing [14].

5.1.2 Overview of UML Diagrams

Unified Modeling Language (UML) is a semi-final visual modeling language,

which is a collective approach of trio James Rumbaugh (Object Management

Technology), Grady Booch (Boochs Methodology) and Ivar Jacobson

35

Chapter 5 Test Case Generation Using Activity Diagram

(Object-Oriented Software Engineering). It was adopted as a de facto standard for

modeling software systems by the OMG in 1997 [15]. Of late, popularity of UML

models in academic and industrial levels is attracting the focus of researchers for

test case generation in the context of model based testing. The UML diagrams

generally describe the different views of the system. In one view it describes the

users’, In second view, it describes the structural view. In third, it describes the

implementation view and in fourth, it describe the behavioral view. In fifth, it

describes the Environmental View.

An automatic approach for test case generation will be futile if we proceed at

the end of the development phase. So, automatic test case generation using design

document (or system specification or model) is more reasonable.

Activity Diagram

An alternative imperative outline in UML to portray the concurrent behaviors of

the framework is the activity diagram. Activity diagram is an alternate imperative

diagram in UML to portray dynamic aspects of the framework.

Activity diagram is fundamentally a flow chart to speak to the flow from one

activity to another activity. The activity might be portrayed as an operation of

the framework.

This flow could be branched, concurrent or sequential. Activity diagram

manages numerous types of flow control by utilizing distinctive components like

decision node, fork, join and so on.

Purpose of Activity Diagram

The essential purposes of activity diagram are like other four diagrams. It catches

the dynamic behaviors of the framework. Other four diagrams are utilized to show

the message stream starting with one item, then onto the next, yet the activity

diagram is utilized to show message stream starting with one action then onto the

next.

Activity is a specific operation of the framework. Activity diagrams are

36

Chapter 5 Test Case Generation Using Activity Diagram

not just utilized for picturing dynamic behaviors of a framework, yet they are

additionally used to develop the executable framework by utilizing forward and

reverse engineering. The main limitation of this diagram is that it does not contain

the message in the path.

It doesn’t demonstrate any message path starting with one activity, then onto

the next. Activity diagram is sooner or later acknowledged as the flow chart.

Despite the fact that the diagram resembles a flow diagram, yet it is most certainly

not. It indicates diverse flow like single, branched, parallel, concurrent et al.

Fundamentally, the basic purposes of the activity diagram of an application or

a framework can be best demonstrated as:

• Draws the activity flow of the application or framework.

• Describes the sequential path from one activity to another.

• Describes the branched, concurrent, parallel flow of the application.

How to draw Activity Diagram?

Activity diagrams are for the most part utilized as a flow diagram is comprised

of activities performed by the framework. However activity diagrams are not

precisely a flow chart as they have some extra abilities. These extra capacities

incorporate parallel flow, branching, swimlane and so on.

Before drawing an activity diagram, we must have a reasonable idea about the

components utilized within activity diagram. The fundamental component of an

activity diagram is the activity itself. An activity is a unit of work performed by

the framework. In the wake of recognizing the activities we have to see how they

are connected with stipulations and conditions.

So before drawing an activity diagram, we should identify the following

elements:

• Activities

• Association

37

Chapter 5 Test Case Generation Using Activity Diagram

• Conditions

• Constraints

Once the aforementioned parameters are distinguished we have to make a mental

design of the whole flow. This mental design is then converted into an activity

diagram. Here the activities are represented as follows, which is followed by the

transition components of activity diagram.

Figure 5.1: Activity Components

Figure 5.2: Trnasition Components

38

Chapter 5 Test Case Generation Using Activity Diagram

Where, the business process is shown by the activity diagram with a sequence

of activities. It can also be used to show the software as a work flow through a

sequence of activities. Some of the fundamental elements of activity diagram and

their use are described below.

• Swimlanes: It is used to configure the activities into different areas

corresponding to different components or business requirements that can

be used to perform an action.

• Initial Node: The node from which the control starts after an activity is

called.

• Final Node: This node indicates that the activity is completed.

• Decision Node: The decision node indicates decision control from which

multiple outgoing can be possible with a single input.

• Merge Node: Merge node combines multiple incomes and produces a single

out put.

5.2 Implementation and Result

In this section, we discuss the approach by which we have implemented our

research work. We have considered the application termed as Collaborative

Invention Mining (CIM) implemented in Tata Consultancy Services, Bhubaneswar

as the primary system based on which we implement the automatic test case

generation from its activity diagram. The step by step approach defined below

represents and outlook of the work.

• Activity diagram using IBM RSA (Rational software Architect).

• Generate XMI code from the activity diagram using RSA.

• Parse the XMI code using Java code to generate the corresponding test

scenarios.

39

Chapter 5 Test Case Generation Using Activity Diagram

• Traced out the paths using GVEdit software resulting in a graph containing

the test paths.

The activity diagram represents the co-ordination among the different activities

being carried out during the process of implementation of Collaborative Invention

Mining. Here is the activity diagram for the CIM.

40

Chapter 5 Test Case Generation Using Activity Diagram

Figure 5.3: Activity Diagram for CIM

41

Chapter 5 Test Case Generation Using Activity Diagram

5.2.1 XMI Generation

The XMI stands for XML Metadata Interchange is a standard for exchanging

metadata information through XML (Extensible Markup Language). XMI is

developed by the Object Management Group (OMG). It consists of the textual

representation of the activity diagram that has been drawn in RSA. The

corresponding XMI of the above diagram is as follows.

Figure 5.4: A Snap Shot of XMI Code

5.2.2 XMI to Test Case Generation

Here, the conversion of XMI code to test cases is divided into two parts. In the

first section, we convert the activity diagram into test paths. For this we use an

algorithm called as Activity Path Traversal(APT). And in the second section, we

generate the test cases from the test path generated in the first section and for

this we use an algorithm called as Test Path Traversal (TPT). Apart from that

we validate the generated test path with the corresponding activity diagram by

using GraViz Editor which represents the graphical view of the intermediate test

42

Chapter 5 Test Case Generation Using Activity Diagram

path generated. Finally, we get the test cases.

Activity to test path generation

In this approach we implement APT algorithm which takes the activity diagram

as input and produces the test paths as the output. The algorithm is illustrated

as below:

Activity Path Traversal (APT) Algorithm

Input :Activity control flow graph (ACFG).

Output :All test paths.

Step 1: push the initial node of the activity control flow.

Step 2: pop the node from the current stack of the graph(ACFG) in the

currentstack.

Step 2.1: push it to the display stack.

Step 2.2: if the node popped is not a condition node push the adjacent

node of the popped node to the currentstack.

Step 2.3 :if the node popped is the condition node then push it to the

conditionstack and push all the adjacent nodes to the currentstack.

Step 2.4: if the node poped is the final node then display the element of

the displaystack and pop the element of displaystack until the top of the

displaystack is equal to the top of the conditionstack.

step 2.4.1: pop the node from conditionstack

Step 3: repeat above step until the currentstack is empty.

In this way, the test paths are being generated from the Activity Control Follow

Graph (ACFG). Here we have generated 100 test paths for the application that

we have implemented. Some of the test cases are as follows.

43

Chapter 5 Test Case Generation Using Activity Diagram

test path 1: start –> Login –> Check user type –> My Idea –> check type

–> Add or Remove Participants –> Edit added participants –> Confirm –> end.

test path 2 : start –> Login –> Check user type –> My Idea –> check type

–> Input Problem Statement –> Input Keyword –> Input Idea details –>

Save textttas Draft –> Submit –> Ideate Object baselist –> Idea or Document

–> Update Ideation –> Save as Draft1 –> Submit parkinglot –>

Idea category –> Categorize as Utility –> Update Idea, Save as draft2

–> Submit Stormpad –> Idea Category1 –> Categorize as System –>

Update Idea1 –> Save as Draft3 –> Submit Formpad –> idea category3

–> Categorize as Anticipative –> Update Idea3 –> Score or Save –>

Save as Dreft4 –> Submit Normpad –> Draw Independent Node –>

Draw Dependent Node –> Draw Second dependent Node –> end.

test path 3:start –> Login –> Check user type –> My Idea –> check type

–> Input Problem Statement Input Keyword –> Input Idea details –>

Save as Draft –> Submit –> Ideate Object baselist –> Idea or Document

–> Update Ideation –> Save as Draft1 –> Submit parkinglot Idea category

Categorize as Utility –> Update Idea –> Save as draft2 –> Submit Stormpad

–> Idea Category1 –> Categorize as System –> Update Idea1

–> Save as Draft3 –> Submit Formpad –> idea category3 –>

Categorize as Anticipative –> Update Idea3 –> Score or Save –> View Score

–> end.

test path 15: start –> Login –> Check user type –> Categorize as Adaptable

–> Update Idea3 –> Score or Save –> View Score –> end.

44

Chapter 5 Test Case Generation Using Activity Diagram

Test Path Generation

In this algorithm, it takes the above generated test paths as input and generate

the corresponding test cases by using following steps.

Test Path Traversal (TPT) Algorithm

Step 1: Traverse the path in sequence.

Step 1.1: if the current node is not a condition node then go to next node.

Step 1.2: if the current node is a condition node then generate the test

cases where condition node represent the current state and labelled edge

represent the input, and next node is expected output.

Step 1.3: if the current node in end node then go to to next path.

Step 2: repeat the above step until all paths are travelled.

In this way, the test cases are being generated from the Test paths generated

from the above algorithm. Here we have generated 1944 test cases from 100 test

paths for the application that we have implemented. Some of the test cases are as

follows.

45

Chapter 5 Test Case Generation Using Activity Diagram

Figure 5.5: A Snap Shot of Generated System Test Case

5.3 Comparison with the Industry Test Cases

Many of the testing based on UML do not incorporate test case generation. This

has become a matter of consideration now [10]. In the other hand, generating

valid test data has become a great achievement. The test requirements were in

the form of a possible execution sequence of use cases, messages, transitions and

so on, that must be satisfied or covered during testing [17]. here we have generated

1944 system test cases for the application for which system test cases has been

designed in the industry. We will represent the deviation of the count of the

system test cases designed in the proposed approach and the same designed in

the industry. In industry they have designed 3630 system test cases for the same

application for which we have optimized the number of system test cases generated

by our approach. the percentage of reduction is 46.44%. The details is represented

in the following table.

46

Chapter 5 Test Case Generation Using Activity Diagram

ProposedApproach IndustryApproach

No. of System Test cases 1944 3630

Table 5.1: Result

In this we have generated 1944 test cases from 100 test paths which covers all

the generated paths that assures 100% branch coverage. Hence our generated test

cases are optimal and efficient with respect to the traditional approach followed

by the Industry.

47

Chapter 6

Conclusions

In this thesis, we have basically focused on front end development of the

Collaboration Invention Mining module using Adobe Flex 3.0 technology and

automatic test paths and test case generation from from the Activity Diagram of

the module. It is an automatic approach to generate the test case from the design

documents. The framework reported in this thesis is summarized in this chapter.

In chapter 5.1, we conclude with the development of the developed software with

our contributions to it. In chapter 5.2 we conclude our proposed framework that

has been discussed in aforementioned chapter. Finally, we discussed the scope and

possible future work of our thesis in chapter 5.3.

6.1 Contribution to Front End Development of

CIM

A focused program coupled with management commitment to encourage

Inventions (and Innovations) is essential for survival of any business. The

outputs need to be protected and monetized through a mature IPR strategy.

Collaborative Invention Mining is the process of transforming A Concept or

An Idea in an enterprise through a collaborative deliberation into a sustainable

invention, applying the EA3 Business Principle. Here we have implemented the

48

Chapter 6 Conclusions

front end of the application using Adobe Flex 3.0 technology. Almost 25 user

interfaces have been developed for collaborative invention mining (CIM). Apart

from that we were involved in the requirement analysis and design phase with

the team in the industry. Finally, we developed almost 3600 system test cases for

the application to execute it sot system testing. The testing activities were done

with the help of a tool called Application Life Cycle Management (ALM), A tool

developed by Tata Consultancy Services for smooth conduct of Testing process.

6.2 Contribution to Test Case Generation for

CIM

In chapter 4, we consider test requirements as a part of a test case, but our

automatically generated test cases specifies an optimized value of test data for

which a particular test sequence will be executed together with the expected

output. Automatically generated of test cases from activity diagrams plays a

vital role in terms of cost and time as it reduces the numbers of test cases by

46.44% satisfying the same criteria, constraints and coverage as the test cases

designed by the testing experts in the industry manually. So it can be considered

as an effective procedure to design system test cases.

We have defined a methodology that comprises of two algorithms called as

Activity Test Path (ATP) and Test Path Traversal (TPT) to generate the test

cases from the design document, i.e., activity diagram of an application. To

validate the intermediate representation, we have used a tool called GraphViz

Editor, which generate the intermediate graph corresponding to the activity

diagram. As it produces a minimized set of test cases, it can be considered as

an optimal approach for the system test case generation in industry perspective.

49

Chapter 6 Conclusions

6.3 Scope and Future work

In the future, we will try to optimize the number of system test cases for

forthcoming modules. We will also try to prioritize the test cases according to

their severity and criticality by using Artificial Intelligence techniques such as

Genetic Algorithm Particle Swarm optimization etc.

50

Bibliography

[1] Anderson, Jim, et al. ”Collaborative internet data mining systems.” U.S. Patent No.

5,918,010. 29 Jun. 1999.

[2] [2] Mingsong, Chen, Qiu Xiaokang, and Li Xuandong. ”Automatic test case generation for

UML activity diagrams.” Proceedings of the 2006 international workshop on Automation

of software test. ACM, 2006.

[3] Chen, Mingsong, et al. ”UML activity diagram-based automatic test case generation for

Java programs.” The Computer Journal 52.5 (2009): 545-556.

[4] Kundu, Debasish, and Debasis Samanta. ”A Novel Approach to Generate Test Cases from

UML Activity Diagrams.” Journal of Object Technology 8.3 (2009): 65-83.

[5] Chen, Mingsong, Prabhat Mishra, and Dhrubajyoti Kalita. ”Coverage-driven automatic

test generation for UML activity diagrams.” Proceedings of the 18th ACM Great Lakes

symposium on VLSI. ACM, 2008.

[6] Xu, Dong, Huaizhong Li, and Chiou Peng Lam. ”Using adaptive agents to automatically

generate test scenarios from the UML activity diagrams.”Software Engineering Conference,

2005. APSEC’05. 12th Asia-Pacific. IEEE, 2005.

[7] Heinecke, Andreas, et al. ”Generating test plans for acceptance tests from uml activity

diagrams.” Engineering of Computer Based Systems (ECBS), 2010 17th IEEE International

Conference and Workshops on. IEEE, 2010.

[8] Swain, Santosh Kumar, Durga Prasad Mohapatra, and Rajib Mall. ”Test Case Generation

Based on State and Activity Models.” Journal of Object Technology9.5 (2010): 1-27.

[9] Kim, Hyungchoul, et al. ”Test cases generation from UML activity diagrams.”Software

Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2007.

SNPD 2007. Eighth ACIS International Conference on. Vol. 3. IEEE, 2007.

[10] Samuel, Philip, R. Mall, and Ajay Kumar Bothra. ”Automatic test case generation using

unified modeling language (UML) state diagrams.” IET software 2.2 (2008): 79-93.

51

[11] Samuel, Philip, Rajib Mall, and Pratyush Kanth. ”Automatic test case generation from

UML communication diagrams.” Information and software technology 49.2 (2007): 158-171.

[12] Apfelbaum, Larry, and John Doyle. ”Model based testing.” Software Quality Week

Conference. 1997.

[13] Utting, Mark, and Bruno Legeard. Practical model-based testing: a tools approach. Morgan

Kaufmann, 2010.

[14] Apfelbaum, Larry, and John Doyle. ”Model based testing.” Software Quality Week

Conference. 1997.

[15] Booch, Grady, James Rumbaugh, and Ivar Jacobson. The unified modeling language user

guide. Pearson Education India, 1999.

[16] Aiken, Leona S., and Stephen G. West. Multiple regression: Testing and interpreting

interactions. Sage, 1991.

[17] Briand, Lionel, and Yvan Labiche. ”A UML-based approach to system testing.” Software

and Systems Modeling 1.1 (2002): 10-42.

