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ABSTRACT

Generalized Predictive Control (GPC) is a part of a family of Model Predictive
Controllers, which predicts the future output using the concept of Receding Hori-
zon. A cost function is then optimized based on the predicted error and optimized
control sequence is calculated. The standard GPC algorithm, proposed in 1987,
finds many applications. It has several modifications and extensions to incorpo-
rate adaptiveness and constraints. Though GPC is inherently discrete, current
research trend is development of continuous GPC algorithms. GPC controller
has four tuning parameters, control weight, minimum and maximum prediction
horizon and control horizon. This thesis tries to address the effect of these tun-
ing parameters on the performance of a First-Order Plus Dead-Time (FOPDT)
process. The performance was measured in terms of three important dynamic
characteristics- settling time, rise time and peak overshoot. Lower values of con-
trol weight and higher values of prediction horizon gave better performance with
regards to these criteria. The observations from these simulations were used as
guidelines for tuning the GPC controller for a tank level control system. Single
tank system is an example of an FOPDT process. Due to the non-linearity in
the process model, it was found to perform better under adaptive GPC (AGPC)
algorithm. Simulations were also performed to take the input constraints into
consideration. Then, disturbance rejection and robustness behaviour of the adap-
tive constrained GPC (ACGPC) controller was studied. It was found that, GPC
gives many configurable parameters to deal with different control problems. The
performance was found to be better than conventional PI controller.
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Chapter 1

Introduction

Model Predictive Control (MPC) is a family of controllers that contain following
common concepts:

• Output of the process is predicted using a mathematical model, known as
prediction model.

• The reference trajectory is known beforehand.

• A control sequence is calculated by solving an optimization problem. Con-
straints can also be incorporated at this step.

• Receding strategy i.e. at each sampling instant, only the first control signal
of the calculated sequence is applied.

1.1 Principle of MPC

Figure 1.1 shows the principle of MPC, which is based on receding horizon strategy.

1. Future output (ŷ) are predicted over some time length (N), konwn as the
prediction horizon. This is achieved using a process model, which is generally
locally linearized.

2. The control sequence (u) is obtained as a solution of a constrained optimiza-
tion problem, which consists of a cost function. The cost function comprises
of predicted output sequence (ŷ), future reference trajectory (w).

3. Although the control action is predicted for some horizon in future, only the
first element of the sequence is applied to the process. At next sampling time
the procedure is repeated. This is known as the Receding Horizon concept.
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Figure 1.1: Concept of Receding Horizon

1.2 Prediction Model

The process model used in a predictive control should capture the process dynam-
ics, should be preferably linear, and should be able to predict future output based
on past and present input-output data. The model which is used for Generalized
Predictive Control is based on the discrete-time transfer function of the process.

A(z−1)y(n) = B(z−1)u(n− 1) (1.1)

This representation is also applicable to unstable processes, unlike other represen-
tations like step response model.
Incorporating the noise in eq(6.7) we obtain a CARIMA model.

A(z−1)y(n) = B(z−1)u(n− 1) + C(z−1)
ξ(n)

∆
(1.2)

which can be written as,

∆A(z−1)y(n) = B(z−1)∆u(n− 1) + C(z−1)ξ(n) (1.3)

Here, ξ(n) represents white noise and C(z−1) represents a design polynomial.

1.3 Optimization Function

The standard optimization cost function used in GPC contains quadratic terms
of predicted future error (between predicted output and future reference) and con-
trol increments calculated over a finite horizon in the future.
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J =

N2∑
i=N1

[P (z−1)ŷ(n+ i)− w(n+ i)]2 + λ
Nu∑
i=1

[∆u(n+ i− 1)]2 (1.4)

N1 is called minimum prediction horizon, N2 is called as maximum prediction
horizon, and Nu is known as control horizon. The time interval from N1 to N2

represent the future time interval over which the output is supposed to follow the
reference trajectory. If d is the time delay of the process, the value of N2 should
be at least d + 1. N2 should be large enough to cover the important dynamics of
the process response curve. Value of Nu helps to reduce the computational load
and thus the time taken to calculate the control sequence. λ is known as control
weight. More the value of λ, lesser the control effort is allowed to be.

1.4 Advantages

GPC, and MPC in general, has following advantages when compared with con-
vention control strategies:

• MPC is inherently discrete in nature.

• Predictive control algorithms are robust and the constraints can be easily
incorporated.

• They usually outperform conventional PID controllers and are applicable
to non-minimum phase, open-loop unstable, time delay and multivariable
processes.

1.5 Disadvantages

Besides the advantages above, GPC has following disadvantages:

• GPC is computationally very demanding. It requires several complex math-
ematical operations like matrix formation, inversion and multiplication.

• Due to computational complexity, GPC can’t be applied to hard real-time
processes, which have stringent time restrictions.

• It is difficult to implement the GPC algorithm using an embedded processor,
as the memory requirement may be higher.

3



Chapter 2

Literature Review

Introduced in 1987 by Clarke, Mohtadi and Tuffs, GPC is a widely used member
of MPC family. Initial work including standard GPC algorithm, its adaptive
nature, application of constraints was done by Clarke and his colleagues. Recent
trends in the topic show different extensions, modifications and applications of
standard GPC algorithm. Also different configurations like cascade GPC, feed-
forward GPC are now being studied.

• D. W. Clarke, C. Mohtadi, and P. S. Tuffs, ”Generalized predictive control-
Part I. The basic algorithm,” Automatica, vol. 23, no. 2, pp. 137-148, Mar.
1987. [1]
This paper proposes the standard GPC algorithm. Solving Diophantine
equation in two unknown polynomials is an important part of the algorithm.
This paper gives an iterative method for solving such equations.

• D. W. Clarke, C. Mohtadi, and P. S. Tuffs, ”Generalized Predictive Control-
Part II Extensions and interpretations,” Automatica, vol. 23, no. 2, pp.
149-160, Mar. 1987.
This is second part of the previous paper and talks about self-tuning per-
formance of GPC. The simulation examples show the effect of under and
over-parameterization. It proposes extensions of GPC to deal with the noise
part.

• D. W. Clarke and C. Mohtadi, ”Properties of generalized predictive control,”
Automatica, vol. 25, no. 6, pp. 859-875, Nov. 1989. [2]
Clarke and Mohtadi talk about different properties of Generalized Predictive
Control in this paper. The special focus is on the stability based on choices
of prediction horizon.

• C. Bordons and E. F. Camacho, ”A generalized predictive controller for a
wide class of industrial processes,” IEEE Transactions on Control System
Technology, vol. 6, no. 3, pp. 372-387, May 1998. [3]
This paper proposes an approximated method of the standard GPC algo-
rithm so as to reduce the computational time required. The method is
applicable only to first-order and dead-time processes. The simulation re-
sults from the paper show that the approximated method takes very less
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computation time and the performance is comparable with the standard
GPC.

• J. L. Garriga and M. Soroush, ”Model Predictive Control Tuning Methods:
A Review,” Industrial & Engineering Chemistry Research, vol. 49, pp.3505-
3515, 2010. [4]
It gives review of various tuning methods proposed upto 2010 for tuning of
model predictive controllers, including DMC and GPC.

Various modifications, extensions and analysis studies of basic GPC algorithm
are available in literature.

• M. Xu, S. Li, and W. Cai, ”Cascade generalized predictive control strategy
for boiler drum level,” ISA Trans., vol. 44, pp. 399411, 2005. [5]

• A. Krolikowski and D. Jerzy, ”Self-tuning generalized predictive control with
input constraints,” Int. J. Appl. Math. Comput. Sci., vol. 11, no. 2, pp.
459479, 2001. [6]

• P. Sarhadi, K. Salahshoor, and A. Khaki-Sedigh, ”Robustness analysis and
tuning of generalized predictive control using frequency domain approaches,
Appl. Math. Model., vol. 36, no. 12, pp. 61676185, 2012. [7]

• M. Short, ”Input Constrained Adaptaive GPC for Simple Industrial Plant,”
18th Int. Conf. Autom. Comput., 2012. [8]

Other than this fundamental literature, which gives the basic theory on GPC,
there are various papers which show performance of GPC in specific applications.

• P. Alkorta, O. Barambones, J. Cortajarena, and A. Zubizarreta, ”Efficient
multivariable generalized predictive control for sensorless induction motor
drives,” IEEE Transactions on Industrial Electronics, vol. 61, no. 9, pp.
5126-5134, 2014. [9]

• H. Hapoglu, S. Karacan, Y. Cabbar, C. E. Balas, and M. Alpbaz, ”Applica-
tion of Multivariable Generalized Predictive Control To a Packed Distillation
Column,” Chemical Engineering Communications, vol. 174, no. 1, pp. 61-
84, Aug. 1999. [10]

• Kay-Soon Low, Koon-Yong Chiun, and Keck-Voon Ling, ”Evaluating gen-
eralized predictive control for a brushless DC drive,” IEEE Transactions on
Power Electronics, vol. 13, no. 6, pp. 1191-1198, 1998.
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• Y. Shoukry, M. Watheq El-Kharashi, and S. Hammad, ”An embedded im-
plementation of the Generalized Predictive Control algorithm applied to
automotive active suspension systems,” Elsevier, Computer & Electronics
Engineering, vol. 39, no. 2, pp. 512-529, Feb. 2013.
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Chapter 3

Generalized Predictive Control

In its most simple form, a GPC controller represents a linear SISO controller.
Consideration of disturbances is not taken into account. The model with which a
process is described is known as CARIMA (Continuous Auto-Regressive Integrated
Moving Average). This model is based on the discrete-time transfer function of
the system.

G(z−1) =
B(z−1)

A(z−1)
=
b0 + b1z

−1 + b2z
−2 + · · ·+ bnbz

−nb

1 + a1z−1 + a2z−2 + · · ·+ anaz
−na

(3.1)

If the system is affected with a dead-time, the first elements of the polynomial
B(z−1) are equal to zero.

3.1 Prediction

The CARIMA model mentioned in eq1.2 can be used to predict the future
output of the process over certain time interval, known as Prediction Horizon. In
order to obtain j-step ahead prediction, following Diophantine equation[1] with
C(z−1) = 1 needs to be solved.

1 = Ej(z
−1)A(z−1)∆ + z−jFj(z

−1) (3.2)

Let,

Ã(z−1) = A(z−1)∆ = 1 + (1− a1)z−1 + (a1 − a2)z−2 + · · ·+ anaz
−na (3.3)

1 = Ej(z
−1)Ã(z−1) + z−jFj(z

−1) (3.4)

where, j takes values from N1 to N2. Clarke et al. [1] proposed a method to
solve this Diophantine equation. Using this method, the polynomials Ej and Fj
can be calculated iteratively. Once the these unknown polynomials were obtained,
the system output was predicted using the following equation.

ŷ(n+ j) = Ej(z
−1)B(z−1)∆u(n+ j − 1)

+Ej(z
−1)ξ(n+ j) + Fj(z

−1)y(n)
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Defining Gj(z
−1) = Ej(z

−1)B(z−1),

ŷ(n+ j) = Gj(z
−1)∆u(n+ j − 1)

+Ej(z
−1)ξ(n+ j) + Fj(z

−1)y(n)

Let g0, g1, · · · , gN−1 be the coefficients of Gj(z
−1). Then the predicted output can

be divided into future and past values as below:

ŷ(n+ j) = Gũ+ f (3.5)

where

G =


g0 0 0 · · · 0
g1 g0 0 · · · 0
g2 g1 g0 · · · 0
...

...
...

. . .
...

gN2−1 gN2−2 gN2−3 · · · g0

 (3.6)

Here, N1 is assumed to be 1. If higher value of N1 needs to be considered, then
the initial rows of the matrix G will become zero. Also ũ is the calculated control
sequence.

ũ = [∆u(n),∆u(n+ 1), · · · ,∆u(n+N2 − 1)]T (3.7)

f = Fj(z
−1)y(n) +G′(z−1)∆u(n− 1) (3.8)

where, G′(z−1) is part of Gj(z
−1) which will consider only past values of control

input u. The term Gũ is called as the forced response, as it depends on future
values of the control input and f is called as the free response, as it depends on
only past values of the control input.

3.2 Optimization

The optimization function used in GPC is usually quadratic. This function is
optimized with respect to the required control sequence. The values of the future
control increments thus obtained are the optimal values. The equation for the
cost function is as follows:

J =

N2∑
i=N1

[ŷ(n+ i)− w(n+ i)]2 + λ
Nu∑
i=1

[∆u(n+ i− 1)]2 (3.9)

J = (Gũ+ f − w)T (Gũ+ f − w) + λũT ũ (3.10)

Taking the partial derivative of J with respect to ũ and equating it to zero,

∂J

∂ũ
= 2GT (Gũ+ f − w) + 2λũ

2(GTG+ λI)ũ = 2(w − f)G

ũ = (GTG+ λI)−1(w − f)TG

8



Thus,
ũ = H−1g (3.11)

where, H−1 = GTG+ λI and g = (f − w)TG.
This equation gives the whole trajectory of the future control increments. Only

the present value, i.e. first row of matrix u is applied to the process and the whole
algorithm is computed at time t+ 1. This strategy is called as Receding Horizon
Strategy.

9



Chapter 4

Extensions of GPC

GPC, in its standard form, is designed based on the transfer function of the process
under control. But for the processes with modelling uncertainties or unknown pa-
rameter variations, desired performance may not be achieved using standard GPC.
Also, for practical implementation, input and output constraints, like actuator sat-
uration constraints, must be applied. Mathematical treatment of GPC allows to
incorporate the adaptive parameter estimation algorithm and also various input-
output constraints.

Figure 4.1 shows a block diagram of adaptive, constrained GPC. Before the
prediction, the process parameters are estimated using a Recursive Least-Square
(RLS) estimator, based on the past input-output data of the process. The con-
straints are applied at the optimization block. GPC uses quadratic optimization,
thus the problem of finding optimized control sequence becomes the constrained
optimization problem or quadratic programming problem.

Figure 4.1: Block Diagram of Adaptive, Constrained GPC

10



4.1 Adaptive GPC

The biggest challenge in applications of control theory is to find out appropriate
model of the process under control. The modelling uncertainties can not only
degrade the performance of the overall control loop, but also make the system
unstable. Thus robustness is important and the system should be able to adapt
to the changes occurring in the process parameters.
In adaptive GPC, the modelling coefficients, i.e. polynomials A(z−1) and B(z−1),
are on-line estimated continuously based on the real-time input-output data, and
the control law is modified accordingly.
The CARIMA model is given by-

A(z−1)∆y(n) = B(z−1)∆u(n− 1) + ξ(n)

Then,
∆y(n) = −A1(z

−1)∆y(n) +B(z−1)∆u(n− 1) + ξ(n)

where,
A1(z

−1) = A(z−1)− 1

Denote the modelling parameters and data in the vector forms,

θ = [a1, a2, · · · , ana , b0, b1, · · · , bnb ]T

φ(n) = [−∆y(n− 1), · · · ,−∆y(n− na),∆u(n− 1), · · · ,∆u(n− nb − 1)]T

Then,
∆y(n) = φ(n)T θ + ξ(n)

The iterative least square method can be used to estimate the parameter vector.

θ̂(n) = θ̂(n− 1) +K(n)[∆y(n)− φ(n)T θ̂(n− 1)] (4.1)

K(n) = P (n− 1)φ(n)[φ(n)TP (n− 1)φ(n) + µ]−1 (4.2)

P (n) =
1

µ
[I −K(n)φ(n)T ]P (n− 1) (4.3)

where, 0 < µ < 1 is known as the forgetting factor, K(n) is known as the weighting
factor and P (n) is a positive-definite covarince matrix. Generally value of µ is
taken as 0.95 < µ < 1. The initial value of P is taken as P (−1) = α2I, where α is
a sufficiently large positive scalar. Whereas the initial value of θ depends on the
available information about the process.

Algorithm

1. Based on the newly obtained input-output data, use the iterative formula to
estimate the modelling parameters, so as to obtain A(z−1) and B(z−1).

2. Based on the obtained A(z−1), solve the Diophantine equation (Eq 3.2).
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3. Calculate G (Eq 3.6), H−1 and g (Eq 3.11), accordingly.

4. Calculate the optimized control sequence (Eq 3.11) and apply it to the pro-
cess.

5. Repeat steps (1) to (4) at each time step.

4.2 Constrained GPC

The optimization part of GPC allows various input-output constraints to be incor-
porated within the GPC law. There are various types of constraints, amplitude and
rate constraints on the process input are the most common type. For the control
horizon Nu = 1, the constrained optimization problem becomes trivial. Whereas,
as discussed in detail in [11], Nu = 2 is the easier case for applying amplitude
and rate constraints. Both amplitude and rate constraints can be simultaneously
applied, detailed account of which is given in [8]. A saturation function sat(x, a, b)
is defined as-

sat(x, a, b) =


a if x<a

b if x>b

x otherwise

4.2.1 Rate Constraints

Rate constraints are the constraints on the rate of change of process input, i.e ∆u.
Let RC+ and RC− be the upper and lower rate constraints respectively. Then
there are two cases in the quadratic optimization problem. These cases consider
the value of control horizon Nu = 2.

When ∆u(n+ 1) is feasible
That is for RC− < ∆u(n+ 1) < RC+. Then-

∆uc(n) = sat(∆u(n), RC−, RC+) (4.4)

When ∆u(n+ 1) is not feasible

ũc = ũ+H−1L2e2 (4.5)

where, H is the Hessian matrix in eq 3.11, L2 is the Lagrange multiplier, given
by-

L2 =
(RC− −∆u(n+ 1))

H(2, 2)

e2 = [0, 1]T
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Algotithm

1. Calculate the unconstrained GPC control increment sequence ũ, using the
GPC control law eq 3.11.

2. If ∆u(n+ 1) satisfies the constraints, set ∆uc(n) = ∆u(n).

3. If the constraints are not satisfied, re-optimise using eq 4.5.

4. Implement the control increment ∆u(n) by clipping it to appropriate value.

∆uc(n) = sat(∆u(n), RC−, RC+)

5. Repeat steps (1)-(4) at next time step.

4.2.2 Amplitude Constraints

Amplitude constraints are nothing but saturation constraints. For example, if
a control valve can provide maximum flow of 400LPH, then it is an amplitude
constraint which should be applied. Let AC+ and AC− be upper and lower am-
plitude constraints respectively. Following algorithm [11] shows how to implement
amplitude constraints for Nu = 2. Let u(n) = u(n − 1) + ∆u(n) be the control
signal obtained by standard GPC law.

When u(n+ 1) is feasible
That is for AC− < u(n+ 1) < AC+. Then-

uc(n) = sat(u(n), AC−, AC+) (4.6)

When u(n+ 1) is not feasible
Let σ1 and σ2 be the sums of row 1 and row 2 of matrix H. Then-

∆uc(n) = ∆u(n)− σ1
σ1 + σ2

{AC− − u(n− 1)−∆u(n)−∆u(n+ 1)} (4.7)

Algotithm

1. Calculate the unconstrained GPC control sequence u, using the GPC control
law eq 3.11.

2. If u(n+ 1) satisfies the constraints, set ∆uc(n) = ∆u(n) and go to step(4)
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3. If the constraints are not satisfied, re-optimise using eq 4.7.

4. Implement the control signal u(n) by clipping it to appropriate value.

uc(n) = sat(u(n− 1) + ∆u(n), AC−, AC+)

5. Repeat steps (1)-(4) at next time step.

4.2.3 Simultaneous Constraints

To apply both amplitude and rate constraints, positive and negative slacks are
defined as [8]-

Sp(n) = min(AC+ − u(n− 1), RC+)

Sn(n) = max(AC− − u(n− 1), RC−)

Sp(n+ 1) = min(AC+ − u(n− 1), 2.RC+)

Sn(n+ 1) = max(AC− − u(n− 1), 2.RC−)

Algorithm

1. If u(n+ 1) is feasible, check for ∆u(n+ 1).

(a) If ∆u(n+ 1) is feasible, then-

∆uc(n) = sat(∆u(n), Sn(n), Spk))

(b) If ∆u(n + 1) is not feasible, then calculate ∆uc(n) by the Rate Con-
straints algorithm given above.

2. If u(n+1) is not feasible, then calculate uc(n) by the Amplitude Constraints
algorithm given above and compute the corrected control increments as-

∆up(n) = uc(n)− u(n− 1)

∆up(n+ 1) = sat(u(n+ 1), AC−, AC+)−∆up(n)

Check for feasibility of ∆up(n+ 1).

(a) If ∆up(n+ 1) is feasible, then-

∆uc(n) = sat(∆up(n), Sn(n), Spk))

(b) If ∆up(n + 1) is not feasible, then calculate ∆uc(n) by applying Rate
Constraints algorithm given above to the control increment, which is
unconstrained and uncorrected in amplitude. Redefine positive and
negative slacks as-

Sp(n) = min(Sp(n+ 1)−RC+, RC+)

Sn(n) = max(Sn(n+ 1)−RC−, RC−)

Then the optimal control increment is given by,

∆uc(n) = sat(∆u(n), Sn(n), Spk))
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Chapter 5

Effect of Tuning Parameters

GPC controller has four tuning parameters, minimum and maximum prediction
horizon (N1, N2), control weight (λ) and control horizon (Nu). To study the effect
of each tuning parameter on closed-loop system performance, an arbitrary transfer
function 5e−10s

(150s+1)
was considered. The process was sampled at sampling time of

Tsamp = 1sec. The discrete-time transfer function was found to be 0.3333z−1

1−0.9933z−1 z
−10.

While studying the effect of one tuning parameter, the other tuning parameters
were kept constant (at N1 = 11, N2 = 200, Nu = 2, λ = 0.1). The performance
was measured in terms of dynamic characteristics, like percentage peak overshoot
Mp, rise time Tr and settling time Ts.

5.1 Prediction Horizon

Prediction horizon is the time length over which the GPC controller predicts the
future output of the process. As such the value of the prediction horizon should
be such that the process dynamics should be sufficiently covered. Thus larger
prediction horizons should give stable output. But the computational requirements
increase exponentially with increasing prediction horizon values. Thus optimum
value for prediction horizon should be selected such that the response is relatively
more stable and also the computational burden is not too much for the controller
hardware to meet. With larger computational burden, there is also a possibility
that the sampling time requirements are not met. To reduce some of this burden,
minimum prediction horizon can also be introduced. For instance, if the process
has some time delay td, the input does not affect the output upto time t = td.
Thus, logically, the prediction should start after td. This can be achieved using
minimum prediction horizon. Both minimum and maximum prediction horizon
are configurable in GPC algorithm. The Value of maximum prediction horizon
(N2) can’t be less than the time delay of the process, otherwise the output would
always be zero. It should also be greater than the value of minimum prediction
horizon. Thus-

N2 > min(td, N1) (5.1)

1 < N1 < N2 (5.2)

15



Figure 5.1: Effect of (a)Minimum Prediction Horizon & (b)Maximum Prediction Horizon

From the graphs it was noted that value ofN1 should be as minimum as possible
and value of N2 should be as large as possible. But the added computational
burden limits these values. The performance criteria remained same for N1 = 1
to N1 = 10, which is the time delay of the process. Thus value of N1 should be
fixed at N1 = td. Optimum value of N2, considering the computational burden,
was found to be around N2 = 160.

5.2 Control Horizon

Control horizon is the length over which the optimized future control sequence is
calculated. Its value can be any whole number. Its effect on different performance
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criteria can be observed from below graphs.

Figure 5.2: Effect of Control Horizon

It was observed that, the optimum value of Nu was 2. Nu = 2 not only gives
the optimum performance, but it is also an easier case of solving and implementing
the constrained optimization problem.

5.3 Control Weight

Control weight is the most important tuning parameter of all. It directly affects
the control efforts. More the value of the control weight, lesser is the value of the
controller output. From the graphs, it was observed that, increasing the value of
λ increased the settling time Ts and rise time Tr, i.e the response became more
sluggish, though the peak overshoot was reduced to 0%. Also, much lower values
of λ gave latger values of peak overshoot. Thus the optimum value was found to
be λ = 0.1
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Figure 5.3: Effect of Control Weight

Based on the observations from these tuning simulations, GPC control algo-
rithm was applied to a tank level control system, which is also a first order plus
dead-time process. Next chapter gives the mathematical modelling of tank level
system and extensive simulation study using GPC control.
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Chapter 6

Single Tank Level System

Liquid level is a widely measured and controlled phenomenon in industry. With
variable resistance provided by an outlet valve to the flow of liquid, tank level sys-
tems exhibit non-linear nature, as there exists square-root relationship between
the level and outlet flow. A single tank level system is a first-order system, whereas
various interacting and non-interacting combinations of multiple tanks are possi-
ble, which can be second order or higher based on number of tanks involved. This
section includes mathematical model of single tank level system, followed by sim-
ulations of off-line GPC controller and adaptive GPC controller applied to the
system.

6.1 Mathematical Modelling

Tank level system is a capacitive process. Together with an outlet valve which
provides resistance to the flow of liquid, it exhibits first order behaviour with time
constant equal to the product of capacitance and resistance.

qo

h

qdqi

(a)

qd

Σ

+

+

qi

K

τs + 1
h

(b)

Figure 6.1: Single Tank Level System (a)Process Diagram, (b)Block Diagram

Figure 6.1 shows a tank level system with input flow qi, outlet flow qo, instan-
taneous level h, surface area of tank A, and surface area of outlet a. The mass
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balance equation for the system can be given as below.

A
dh

dt
= qi − qo

The output flow qo can be calculated by applying Bernoulli’s equation to the sys-
tem,

h1 +
P1

ρg
+
v21
2g

= h2 +
P2

ρg
+
v22
2g

where 1 is the point where the liquid surface is open to atmosphere in the tank,
and 2 is the point at the outlet at bottom of the tank. Thus (h1 − h2) = h is the
liquid level in the tank, P1 = P2 = Patm. The velocity of the liquid at the outlet
is then given by-

v =
√

2gh (6.1)

Eq 6.1 is known as Toricelli’s equation. Thus theoretical value of outlet flow is
given by-

qoth = av = a
√

2gh

But the theoretical value of flow is never equal to its actual value. Introducing
discharge coefficient Cd gives the expression for the outlet flow as-

qo = Cda
√

2gh = β
√
h

The output flow qo has square-root relationship with level h. Thus,

dh

dt
=

1

A
(qi − β

√
h) (6.2)

This equation gives continuous-time mathematical model of single tank level sys-
tem in the form of a differential equation.

6.1.1 Linearization

Eq 6.2 gives a non-linear relationship between the input flow and tank level. Sys-
tem transfer function can not be derived from this equation. Even design of GPC
controller for the system assumes a locally linearized model. Such a model can be
obtained by Taylor series expansion of eq 6.2, around a steady-state (qis, hs).
Linearizing the term β

√
h using Taylor series expansion and neglecting the higher

order terms gives,

A
dh

dt
+

β

2
√
hs
h = qi −

β
√
hs

2
(6.3)

Eq 6.3 is a linear equation. The effect of linearization can be observed from a plot

of
dh

dt
against h, i.e. rate of change of level versus the level. Figure 6.2 shows

linearization around the steady-state qis = 330LPH, hs = 36.79cm. The input
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Figure 6.2: Linearization of Single Tank Level System

flow was kept constant at its steady-state value and the level was varied from 0 to
50cm.
Following facts can be observed from the figure,

• As the level increases, the out flow also increases, which causes the rate of
change of level to decrease.

• The plot of
dh

dt
is non-linear for eq 6.2, whereas it is linear for eq 6.3.

• The two plots meet tangentially at the steady-state operating point, around
which the model was linearized.

• The system is highly non-linear for lower values of steady-state height.

6.1.2 Transfer Function

To derive the transfer function, deviation variables need to be introduced. These
variables give the deviation of input or output from its steady-state. At steady-
state eq 6.3 becomes,

A
dhs
dt

+
β

2
√
hs
hs = qis −

β
√
hs

2
(6.4)

Subtracting eq 6.4 from eq 6.3 gives,

A
d(h− hs)

dt
+

β

2
√
hs

(h− hs) = (qi − qis) (6.5)
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Let h− hs = H and qi − qis = Q, then eq 6.5 becomes,

A
dH

dt
+

β

2
√
hs
H = Q (6.6)

Taking Laplace transform and rearranging the terms gives system transfer func-
tion,

H(s)

Q(s)
=

K

τs+ 1
(6.7)

where, K =
2
√
hs
β

and τ = AK.

It can be observed that, the transfer function is not same for the entire range,
but depends upon the steady-state condition. Also, practically, along with the
first-order nature of the transfer function, there is an input delay (td), which ac-
counts for time taken by the liquid flow to reach the tank after the input is applied.
Thus the transfer function of the system is given by,

H(s)

Q(s)
=

K

τs+ 1
e−std (6.8)

6.2 Descretization

GPC is inherently discrete control algorithm. Thus the process model must be
discretized before applying GPC. As the CARIMA model given in eq 1.2 is based
on transfer function model of the system, locally linearized model 6.6 is consid-
ered for discretization. The selection of sampling time (Tsamp) depends on process
dynamics. Let the samplind time (Tsamp) and time delay (td) be related such that
td = dTsamp , where d is an integer. Introducing the time delay in eq 6.6 and using
Euler’s forward difference approximation for Tsamp = 1sec, the difference equation
can be written as,

H(n+ 1)−H(n) +
β

2
√
hs
H(n) =

1

A
Q(n− d)

H(n+ 1)−H(n) +
1

τ
H(n) =

K

τ
Q(n− d)

Taking the z-transform of above equation, we get

zH(z)−H(z) +
1

τ
H(z) =

K

τ
Q(z)z−d

H(z)(z − 1 +
1

τ
) =

K

τ
Q(z)z−d

H(z)

Q(z)
=

K

τ
z−d

(1− z−1 +
1

τ
z−1)

z−1
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H(z)

Q(z)
=

bz−1

1− az−1
z−d (6.9)

where, b = K
τ

and a = τ−1
τ

. Eq 6.9 gives the discrete-time transfer function a
first-order plus dead-time system.

6.3 Simulation Study

6.3.1 Tank Specifications

LT LC

SP

I/P

reservoir

DP
transmitter

GPC

or PID
hand

operated
valve

valve
positioner

rotameter

control
valvepump

qo

qdqi

Figure 6.3: Tank Level Control System:Process Diagram

The specifications of the tank level system under study were taken from a lab-
oratory set-up. The diameter of tank was 15cm, diameter of the outlet pipe was
1.5cm. The input flow qi can be varied from 0LPH to 400LPH. The input delay,
that is time taken by the controller output to affect the tank level, was approxi-
mately td = 10sec. The final control element, in this case, was a control valve. A
valve positioner was also used to convert 4− 20mA signal from the controller into
3 − 15psi. This pressure signal from the valve positioner controls the position of
control valve stem. The control valve was assumed to be linear for simulation pur-
poses. The maximum flow from the control valve was 400LPH = 111.1111cm3/sec
and the input to the I/P converter was 4 − 20mA. Thus, the combined transfer
function of the control valve and I/P converter was found to be-

111.1111− 0

20− 4
= 6.9444cm3s−1mA−1
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6.3.2 Process Response

As suggested by eq 6.7, the transfer function of the system depends on the
steady-state conditions. Different step inputs were applied to the system and
corresponding steady-state conditions and transfer function at that steady-state
were calculated. The polynomials A(z−1) and B(z−1) were also calculated using
the discretiztion technique discussed in Section 6.2. Following table shows the
results.

Table 6.1: Dependence of Transfer Function on Steady-State

In Flow Steady-State Transfer A(z−1) B(z−1) d

(qi) (LPH) Level (cm) Function

50 0.8879
0.1278

25.959s+ 1
e−10s 1− 0.9629z−1 0.00474 10

100 3.5516
0.2557

43.918s+ 1
e−10s 1− 0.9777z−1 0.00569 10

150 7.9911
0.3835

65.877s+ 1
e−10s 1− 0.9850z−1 0.00573 10

167.832 10
0.4291

73.702s+ 1
e−10s 1− 0.9866z−1 0.00574 10

200 14.2063
0.5114

87.8357s+ 1
e−10s 1− 0.9887z−1 0.00575 10

237.348 20
0.6068

104.23s+ 1
e−10s 1− 0.9904z−1 0.00576 10

250 22.191
0.6391

109.779s+ 1
e−10s 1− 0.9909z−1 0.00576 10

290.7 30
0.7432

127.659s+ 1
e−10s 1− 0.9922z−1 0.0577 10

300 31.9566
0.7669

131.738s+ 1
e−10s 1− 0.9924z−1 0.00577 10

335.628 40
0.8581

147.389s+ 1
e−10s 1− 0.9932z−1 0.00578 10

350 43.498
0.8948

153.697s+ 1
e−10s 1− 0.9935z−1 0.00578 10

375.192 50
0.9592

164.763s+ 1
e−10s 1− 0.9939z−1 0.00578 10
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Eq 6.2 was simulated to obtain response of single tank level system with above
specifications. Fig 6.4 shows response of the system to a step input of qi = 0LPH
to 300LPH, which was applied at t = 0sec.

Figure 6.4: Step Response for qi = 0LPH to 300LPH

Following facts were observed from the response-

• The response to the input flow qi is a first-order response.

• The first-order response is characterized by gain and time-constant of the
system, which are approximately,

gain =
38.63cm

330LPH
=

38.63cm

91.67cm3/sec
= 0.4214cm−2sec

τ = 122sec

td = 10sec

6.3.3 PI Control

Level systems are conventionally controlled by proportional-integral (PI) con-
troller. The derivative term is generally not used because, the oscillations (up-
down motion) of stem of control valve around certain position introduces noise
in the system. As the noise is a rapidly changing signal, its derivative is higher,
which results in higher derivative action. This may cause the closed-loop system
to become unstable. Table 6.1 suggests that, the transfer function depends on
the steady-state conditions. In order to obtain the response of the system under
PI control, the Zeigler-Nicholas Tuning parameters were obtained for following
transfer functions corresponding to respective steady-state conditions.
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Table 6.2: Zeigler-Nicholas Tuning Parameters

In Flow Steady-State Transfer KP KI

(qi) (LPH) Level (cm) Function

167.832 10
2.9798

73.702s+ 1
e−10s 2.226049 0.0066848

237.348 20
4.2138

104.23s+ 1
e−10s 2.226185 0.0066852

290.7 30
5.1611

127.659s+ 1
e−10s 2.226163 0.0066851

335.628 40
5.9589

147.389s+ 1
e−10s 2.226084 0.0066849

375.192 50
6.6611

164.763s+ 1
e−10s 2.226159 0.0066852

It should be noted from table 6.2 that, though the transfer functions are dif-
ferent for different steady-state conditions, the tuning parameters KP and KI

are almost equal. The performance of the system under PI control, tuned with
Zeigler-Nicholas tuning rules, was observed by applying different steps of set-point
change to the closed-loop system.

Figure 6.5: PI Control of Tank Level System (Set-point Step: 10-50cm)
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Figure 6.6: PI Control of Tank Level System (Set-point Step: 10-20cm)

Figure 6.7: PI Control of Tank Level System (Set-point Step: 20-30cm)
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Figure 6.8: PI Control of Tank Level System (Set-point Step: 30-40cm)

Figure 6.9: PI Control of Tank Level System (Set-point Step: 40-50cm)
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6.3.4 Non-Adaptive GPC Control

Basic theory of non-adaptive GPC is discussed in Chapter 3. For the design of
and implementation of this standard GPC algorithm, A(z−1) and B(z−1) polyno-
mials need to be known. These polynomials can be obtained from discrete-time
transfer function of the process. As the tank level system under consideration
is non-linear, both continuous-time and discrete-time transfer functions depend
on the steady-state conditions. Thus A(z−1) and B(z−1) polynomials were calcu-
lated for different steady-state conditions (Refer table 6.1). Based on these values,
different step inputs were applied to the system and its performance is plotted.
Based on the experience gained from tuning simulations presented in Chapter 5,
the tuning parameters were selected N1 = 12, Nu = 2, λ = 0.1. Value of N2 was
kept different due to different values of process time constant at different steady-
states.

Figure 6.10: GPC Control of Tank Level System (Set-point Step: 10-50cm)(N2 = 84)
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Figure 6.11: GPC Control of Tank Level System (Set-point Step: 10-20cm)(N2 = 84)

Figure 6.12: GPC Control of Tank Level System (Set-point Step: 20-30cm)(N2 = 115)
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Figure 6.13: GPC Control of Tank Level System (Set-point Step: 30-40cm)(N2 = 138)

Figure 6.14: GPC Control of Tank Level System (Set-point Step: 40-50cm)(N2 = 158)
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6.3.5 Adaptive GPC Control

Recursive Least Square (RLS) algorithm with fading memory is used in adap-
tive GPC technique to estimate the A(z−1) and B(z−1) polynomials of the process.
AGPC deals with these changes in the process parameters of a tank level system
and gives better results. In this subsection, AGPC was applied to the tank level
system and its results are compared with PI and standard GPC control. The tun-
ing parameters were selected as N1 = 12, Nu = 2, λ = 0.1. N2 was kept different at
different set-point changes. In addition to these parameters, RLS algorithms uses
two cofigurable parameters, the values for which were decided by trial-and-error
as α = 0.1, µ = 0.95.

Figure 6.15: Adaptive GPC Control of Tank Level System (Set-point Step: 10-
50cm)(N2 = 84)
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Figure 6.16: Adaptive GPC Control of Tank Level System (Set-point Step: 10-
20cm)(N2 = 84)

Figure 6.17: Adaptive GPC Control of Tank Level System (Set-point Step: 20-
30cm)(N2 = 115)
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Figure 6.18: Adaptive GPC Control of Tank Level System (Set-point Step: 30-
40cm)(N2 = 138)

Figure 6.19: Adaptive GPC Control of Tank Level System (Set-point Step: 40-
50cm)(N2 = 158)

34



6.3.6 Comparison of Different Control Schemes

The performance of diffenrent control schemes, PI, GPC and AGPC, can be
compared in terms of percentage peak overshoot Mp, settling time Tr and settling
time Ts. These values were calculated for each control scheme and for each step
change applied. The values of the performance criteria were different for different
step changes. General trend was that Mp and Ts decreased for upper ranges of
operation, whereas the value of Tr decreased with an exception of PI control, in
which the value of Tr rather increased.

Table 6.3: Comparison of Peak Overshoot under PI, GPC & AGPC control

Set-point Mp for Deviation for Deviation for

Change PI (%) GPC (%) AGPC (%)

10 to 50cm 66.6639 -91.47 -96.77

10 to 20cm 21.5281 -83.16 -95.02

20 to 30cm 12.9452 -69.95 -95.03

30 to 40cm 6.5901 -36.18 -93.72

40 to 50cm 3.4224 31.6 -91.73

Table 6.4: Comparison of Settling Time under PI, GPC & AGPC control

Set-point Ts for Deviation for Deviation for

Change PI (sec) GPC (%) AGPC (%)

10 to 50cm 184 -79.89 -84.24

10 to 20cm 133 -73.68 -81.95

20 to 30cm 135 -76.29 -83.70

30 to 40cm 136 -77.20 -85.29

40 to 50cm 137 -78.10 -86.13

Table 6.5: Comparison of Rise Time under PI, GPC & AGPC control

Set-point Tr for Deviation for Deviation for

Change PI (sec) GPC (%) AGPC (%)

10 to 50cm 9 -11.11 -11.11

10 to 20cm 13 -30.76 -30.76

20 to 30cm 16 -56.25 -56.25

30 to 40cm 18 -66.67 -66.67

40 to 50cm 21 -76.19 -76.19
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The values of the performance criteria for GPC and AGPC control were cal-
culated as the percentage deviation from the values under PI control. The results
are tabulated in table 6.3, 6.4 and 6.5. It can be readily observed that AGPC
performed much better in all regions of operation.

However, it was observed from the graphs that, the output of the controller,
which was given as input to the process, was well beyond its saturation limits. If
the standard industrial limit of 4−20mA is considered, the control valve, which is
calibrated for this range, will saturate beyond 20mA. Thus these control schemes,
when applied practically, will not give desirable results.

Next chapter discusses the constraint handling capability of GPC. Two input
constraints, namely amplitude constraint and rate constraint, were applied and
the results were observed.
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Chapter 7

Adaptive Constrained GPC

Though the performance of adaptive GPC was found to be better, there many
practical problems that need to be dealt with. One such important problem is
that of the constraints of the system. Constraints can’t be incorporated directly
in the classical PID controller. However, mathematical treatment of GPC allows
the constraints to be incorporated within the control law itself. The constrained
GPC was discussed in detail in Chapter 4. This section shows performance of
adaptive constrained GPC (ACGPC) applied to a tank level system.

There are various types of constraints, but amplitude and rate constraints on
the input are very important. As per the industrial standard, the output of a
controller is kept between 4 to 20mA. The current-to-pressure (I/P) converter
is calibrated to give 3 to 15psi output for a corresponding 4 to 20mA signal.
Correspondingly, the control valve is calibrated to give minimum flow for 3psi
pressure and maximum flow for 15psi pressue. Thus 4 to 20mA limits on the
controller are actually the saturation limits of the control valve. these limits
are taken as the amplitude constraints on the GPC controller output. The rate
constraints are the limits put on the rate of change of GPC output per second.
These are taken arbitrarily as−2mA to +2mA. Thus the constrained GPC ensures
that the output of the GPC controller stays within these two limits. In other words,
the constrained GPC output satisfies following inequalities, at each time step k:

4mA ≤ u(k) ≤ 20mA

−2mA ≤ ∆u(k) ≤ +2mA

7.1 Set-point Tracking

Figures 7.1, 7.2, 7.3, 7.4 and 7.5 show the response of tank level system under
ACGPC control for different step changes. The tuning parameters were selected
as N1 = 12, Nu = 2, λ = 0.1.
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Figure 7.1: Adaptive Constrained GPC Control of Tank Level System (Set-point
Change: 10-50cm)(N2 = 84)

Figure 7.2: Adaptive Constrained GPC Control of Tank Level System (Step Change:
10-20cm)(N2 = 84)
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Figure 7.3: Adaptive Constrained GPC Control of Tank Level System (Step Change:
20-30cm)(N2 = 115)

Figure 7.4: Adaptive Constrained GPC Control of Tank Level System (Step Change:
30-40cm)(N2 = 138)
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Figure 7.5: Adaptive Constrained GPC Control of Tank Level System (Step Change:
40-50cm)(N2 = 158)

The observations from above plotted graph are tabulated below.

Table 7.1: Performance under Adaptive Constrained GPC Control in Different Ranges
of Operation

Set-point Mp Ts Tr Max GPC

Change (%) (sec) (sec) Output (mA)

10 to 50cm 0.0292 303 218 20

10 to 20cm 0.8719 46 26 20

20 to 30cm 0.5021 58 37 20

30 to 40cm 0.2873 84 60 20

40 to 50cm 0.1109 160 120 20

Though the results seem to be inferior than previously applied control schemes,
in terms of the settling time and rise time, these results are more practically
achievable. Whenever the controller output, in non-constrained case, goes beyond
the limits of 4 to 20mA, the control valve saturates. Thus besides the fact that the
simulation results for non-constrained case are better, practically, the constrained
GPC should give better results.
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7.2 Disturbance Rejection

Till now, set-point tracking performance of the GPC was simulated and com-
pared with classical PI control. Now the disturbance rejection performance of
adaptive constrained GPC (ACGPC) is simulated. The disturbance under con-
sideration is an input disturbance (Refer fig 6.1). The step-change in disturbance
flow-rate of magnitude 50LPH was applied at t = 30sec. The tuning parameters
were selected as N1 = 12, N2 = 115, Nu = 2, λ = 0.1.

Figure 7.6: Disturbance Rejection under ACGPC Control of Tank Level System

Figure 7.7: Disturbance Rejection under PI Control of Tank Level System
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It can be clearly observed from these two plots that, adaptive GPC gave much
better performance even when the constraints are imposed. The response of PI
controller for disturbance rejection was found to be oscillatory.

7.3 Robustness

Adaptive GPC not only gives better performance under constantly changing
values of process parameters, but it also gives a more robust design for the con-
troller. The biggest problem faced in any control problem is of modelling. It is
difficult to find out accurate mathematical model for any process. Thus there is
always some uncertainty in the derived mathematical model, which is used for
control purposes. Primary objective of control system design is to make the sys-
tem robust to these modelling uncertainties as well as to the parameter variations,
which are inherent to the process or occur over a period of time.

To check the robustness of adaptive constrained GPC for a tank level system
under consideration, the initial values of modelling parameters, like time delay
td = 10, process gain K = 4.9798 and time constant τ = 104.23, at steady-state
conditions of (237.348 LPH, 20cm), were varied and its effect on the performance
criteria was observed. The under the adaptive GPC control, with tuning param-
eters set as N1 = 10, N2 = 164, Nu = 2, λ = 10, the performance criteria were
found to be Mp = 0%, Ts = 192sec, Tr = 101sec. The results are tabulated below.

It was observed that, higher values of control weight λ gave more robust per-
formance. But, as concluded in Chapter 5 and 6, higher values of λ gives sluggish
response. Thus there is a trade-off between the performance and the robustness.

Table 7.2: Robustness of ACGPC:Variations in Process Gain

Process Process Gain Mp Ts Tr

Gain Variation Variation Variation Variation

(%) (%) (%) (%)

2.9798 -40.16 0 -15.625 -16.83

3.9798 -20.08 0 -8.85 -9.9

4.9798 0 0 0 0

5.9798 20.08 0 10.93 9.9

6.9798 40.16 0 23.44 21.78
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Table 7.3: Robustness of ACGPC:Variations in Process Time Constant

Time Time Constant Mp Ts Tr

Constant Variation Variation Variation Variation

(sec) (%) (%) (%) (%)

84.23 -19.19 0 -18.75 -18.81

94.23 -9.59 0 -8.85 -8.91

104.23 0 0 0 0

114.23 9.59 0 7.29 7.92

124.23 19.19 0 13.54 14.85

Table 7.4: Robustness of ACGPC:Variations in Process Time Delay

Time Time Delay Mp Ts Tr

Delay Variation Variation Variation Variation

(sec) (%) (%) (%) (%)

8 -20 0 9.89 8.91

10 0 0 0 0

12 20 0 -11.98 -9.9

14 40 0 -18.23 -12.87

16 60 0 -20.31 -10.89
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Chapter 8

Conclusion

The effect of different GPC tuning parameters on performance of an arbitrary
stable first-order plus dead-time (FOPDT) system was studied. The performance
was measured in terms of settling time, peak overshoot and rise time. GPC
has four tuning parameters: minimum and maximum prediction horizon, control
weight and control horizon. The performance was observed to be better for lower
values of the control weight and larger values of prediction horizon. Minimum
prediction horizon reduced the computational load without any effect on the per-
formance, because for its values less than the process time delay, the performance
criteria remained constant.

From the observations made during the tuning simulations, GPC control was
implemented and tuned for a single tank level control system, which is also a
FOPDT process. Due to non-linear nature of the process, the transfer function
was not same throughout the operating change. It was rather found to be de-
pendent on the steady-state conditions. Thus the results obtained were different
in different ranges of operation. However, comparison with the performance of
conventional PI controller revealed that, the results obtained for adaptive GPC
control were much better.

Though the results of AGPC were found to be better, practically the problem
of actuator saturation is dominant and dictates the performance of the overall sys-
tem. To take such constraints into account, performance of adaptive constrained
GPC was studied. ACGPC was found to give practically acceptable results. The
disturbance rejection and robustness under ACGPC was also found to be accept-
able.

Overall, mathematical theory of GPC provides various extensions of the basic
algorithm to incorporate adaptive structure, constraints and multivariable control.
This makes GPC widely applicable in many areas. But computational burden of
GPC restricts its use in hard real-time processes.
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