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Abstract

In this thesis we study the properties of some G-family of distributions, such as, Kumara-

swamy-G family, Zografos-Balakrishnan-G family and Ristic-Balakrishnan-G family for

any continuous baseline G distribution. Here, we provide a thorough study of general

mathematical properties of these family of distributions. We are trying to find out some

new distributions by making use of the families demonstrated. We discuss the proper-

ties of Zografos-Balakrishnan-generalized exponential distribution, such as, probability

density function (pdf), cumulative distribution function (cdf), hazard rate function, mo-

ments, quantile function, entropy and estimation of the parameters by maximum likeli-

hood method.
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Chapter 1

Introduction

In statistics continuous distributions are generally amenable to more elegant mathematical

treatment than discrete distributions. This makes them especially useful as approxima-

tions to discrete distributions. Continuous distributions are used in both construction

of models and in applying statistical techniques. The fact that most uses of continuous

distributions in model building are as approximations to discrete distributions may be

less widely appreciated but is no less true.

An essential property of a continuous random variable is that there is zero probability

that it takes any specified numerical value, but in general a non-zero probability, calculable

as a definite integral of a probability density function that it takes a value in specified

intervals. When an observed value is represented by a continuous random variable, the

recorded value is, of necessity “discretized”. For example, if measurements are made to

the nearest 0.01 units, then all values actually in the interval (8.665,8.675) will be recorded

as 8.67.

In this chapter a review of Kumaraswamy-G family and Zografos-Balakrishnan-G fam-

ily is discussed which are very much essential for the development of the entire project

work. Later, we discuss the properties of Zografos-Balakrishnan-generalized Exponential

distribution, such as, probability density function (pdf), cumulative distribution function

(cdf), hazard rate function, moments, quantile function, entropy and estimation of the
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parameters by maximum likelihood method.

1.1 A Review of Kumaraswamy-G family

Kumaraswamy (1980) introduced a distribution for double bounded random processes

with hydrological applications. Based on this, he described a new family of generalized

distributions (denoted as Kw) to extend several well-known distributions. In economet-

rics, commonly the data are modeled by finite range distributions. Summed up generalized

beta distributions have been generally mulled over in insights and various authors have

created different classes of these distribution. Eugene et al. (2002) proposed a general

class of distributions for a random variable defined from the logit of the beta random

variable by employing two parameters whose role is to introduce skewness and to vary

tail weight. Following the work of Eugene et al. (2002), who defined the beta nor-

mal distribution, Nadarajah and Kotz (2004) introduced the beta Gumbel distribution,

Nadarajah and Gupta (2004) proposed the beta Frechet distribution and Nadarajah and

Kotz (2006) worked with the beta exponential distribution. However, all these works

lead to some mathematical difficulties because the beta distribution is not fairly tractable

and, in particular, it’s cumulative distribution function (cdf) involves the incomplete beta

function ratio.

1.2 A Review of Zografos-Balakrishnan-G family and

Ristic-Balakrishnan-G family

Zografos and Balakrishnan (2009) and Ristic and Balakrishnan (2012) proposed two gen-

eralized gamma-generated distributions with an extra positive parameter, for any contin-

uous baseline G distribution. They studied the mathematical properties of these family

and put forward some models. The number of parameters of The Zografos-Balakrishnan-

G and Ristic-Balakrishnan-G distributions is equal to that of the G distribution plus an

additional shape parameter a > 0. For a = 1, the G distribution is a basic exemplar of
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the Zografos-Balakrishnan-G and Ristic-Balakrishnan-G distributions with a continuous

crossover towards cases with different shapes (for example, a particular combination of

skewness and kurtosis).

Well known distributions can be extended in many ways. The earliest of the extended

distributions is the class of distributions generated by a standard beta random variable

introduced by Eugene et al. (2002). The more recent ones are: the class of distribu-

tions generated by Kumaraswamy (1980), random variable introduced by Cordeiro and

de Castro (2011); the class of distributions generated by McDonald (1984), generalized

beta random variable introduced by Alexander et al. (2012); the class of distributions

generated by Ng and Kotz (1995), Kummer beta random variable introduced by Pescim

et al. (2012).
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Chapter 2

Kumaraswamy-G family of
distribution

2.1 Introduction

The pdf and cdf of the Kumaraswamy’s distribution (2009) (Kw), with shape parameters

a < 0 and b < 0 are defined by

f(x) = abxa−1(1− xa)b−1 and F (x) = 1− (1− xa)b.

Let us start from a parent continuous distribution function G(x). A way of generating

families of distributions is starting from a parent distribution with pdf g(x) = dG(x)
dx

to

apply the quantile function to a family of distributions on the interval (0, 1).From an

arbitrary parent cdf G(x), the cdf F (x) of the Kw-G distribution is defined by:

F (x) = 1− (1−G(x)a)b. (2.1)

where a > 0 and b > 0 are two additional parameters which introduce skewness and vary

tail weights. Because of its tractable distribution function, the Kw-G distribution can

be used quite effectively even if the data are censored. The probability density function

(pdf) of this family of distribution is

f(x) = abg(x)G(x)a−1(1−G(x)a)b−1 (2.2)

1
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The Kumaraswamy-G density function has an upper hand over the class of general-

ized beta distributions as it does not involve any type of special function. When a = 1,

the Kw-G distribution coincides with the beta-G distribution generated by the beta(1, b)

distribution. One of the significant advantages of the Kw family of generalized distribu-

tions is its capacity of fitting skewed data that can not be properly fitted by any existing

distributions.

2.2 Some special Kw generalized distributions

Some special Kw generalized distributions as discussed by Cordeiro and Castro (2011)

are mentioned below.

a. Kumaraswamy-normal: The Kumaraswamy-normal density function can be

obtained by taking G(.) and g(.) to be the cdf and pdf of the normal N(µ;σ2) distribution,

so that

f(x) =
ab

σ
φ(
x− µ
σ

)[Φ(
x− µ
σ

)]a−1(1− Φ(
x− µ
σ

)a)b−1,

where x ∈ R,µ ∈ R is the location parameter, σ > 0 is the scale parameter, a, b > 0

are the shape parameters, and φ(.) and Φ(.) are the probability density function and

cummulative distribution function of the standard normal distribution, respectively.

b. Kumaraswamy-Weibull: The cdf of the weibull distribution is G(x) = 1 −
exp[−(βx)c], with parameters β > 0 and c > 0 and for x > 0. So, the density of the

Kw-Weibull distribution, say KwW (a, b, c, β), reduces to:

f(x) = abcβc(x)c−1 exp[−(βx)c][1−exp[−(βx)c]]a−1[1−(1−exp[−(βx)c])a]b−1, x, a, c, β > 0

c. Kumaraswamy-gamma: G(y) =
Γβy (α)

Γ(α)
, fory, α, β > 0, where Γ(.) is the gamma

function for a gamma random variable Y and

Γz(α) =

∫ z

0

tα−1 exp(−t)dt
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is the incomplete gamma function. The pdf of a random variable X following a KwGa

distribution, say X ∼ KwGa(a, b, β, α) is

f(x) =
abβαxα−1e−βx

Γ(α)ab
Γβx(α)a−1{Γ(α)a − Γβx(α)a}b−1

2.3 A general expansion for the density function

The expansion of the density function (f(x)) expressed by Cordeiro and Castro(2011) is

f(x) = g (x)
∞∑

i,j=0

j∑
r=0

wi,j,rG(x)r,

where the coefficients

wi,j,r = wi,j,r(a, b) = (−1)i+j+rab
(
a(i+1)−1
j

) (
b−1
i

)
(jr)

are constants satisfying
∞∑

i,j=0

j∑
r=0

wi,j,r = 1.

2.4 General formulae for the moments

Let Y and X follow the baseline G and Kw-G distribution, respectively. The s-th moment

of X, say µ′s expressed in terms of the (s, r)-th PWMs τs,r = E{Y sG(Y )r} of Y for

r = 0, 1, · · · , as defined by Greenwood et al. (1979). For a integer

µ′s =
∞∑
r=0

wrτs,a(r+1)−1,

whereas for a real non-integer

µ′s =
∞∑

i,j=0

j∑
r=0

wi,j,rτs,r.
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Some power series expansions are preferred to calculate the moments of any Kw-G distri-

bution than computing the moments directly by numerical integration of the expression

µ′s = ab
∫
xsg(x)G(x)a−1(1−G(x)a)b−1dx.

2.5 Maximum likelihood estimation

Let us consider independent random variables X1, · · · , Xn, each Xi following a Kw-G

distribution with parameter vector θ = (a, b, γ). So, the log-likelihood function l = l(θ)

for the model parameters obtained by Cordeiro (2011) is:

l(θ) = n{log(a) + log(b)}+
n∑
i=1

log{g(xi; γ)}+ (a− 1)
n∑
i=1

log{G(xi; γ)}

+(b− 1)
n∑
i=1

log{1−G(xi; γ)a}

On differentiating with respect to the parameters:

∂l(θ)
∂a

= n
a

+
n∑
i=1

log{G(xi; γ)}{1− (b−1)G(xi;γ)a

1−G(xi;γ)a
}, ∂l(θ)

∂b
= n

b
+

n∑
i=1

log{1−G(xi; γ)a}

and
∂l(θ)
∂γj

=
n∑
i=1

{ 1
g(xi,γ)

∂g(xi,γ)
∂γj

+ 1
G(xi,γ)

∂G(xi,γ)
∂γj

{1− a(b−1)
G(xi;γ)−a−1

}},
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Zografos-Balakrishnan-G family

3.1 Introduction

For any baseline cumulative distribution function (cdf) G(x), and x ∈ R, Zografos and

Balakrishnan (2009) defined a distribution with probability density function (pdf) f(x)

and cdf F(x) given by:

f(x) =
1

Γ(a)
{− log[1−G(x)]}a−1g(x) (3.1)

and

F (x) =
γ(a, log[1−G(x)])

Γ(a)
=

1

Γ(a)

∫ − log[1−G(x)]

0

ta−1 exp(−t)dt, (3.2)

respectively, for a > 0, where g(x) = dG(x)
dx

,

Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt

is the gamma function, and

γ(a, z) =

∫ z

0

ta−1 exp(−t)dt

is the incomplete gamma function. The distribution given by (3.1) and (3.2) is known as

the Zografos-Balakrishnan-G distribution. The corresponding hazard rate function (hrf)

1
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is

h(x) =
{− log[1−G(x)]}a−1g(x)

Γ(a,− log[1−G(x)])
. (3.3)

3.2 Some special Zografos-Balakrishnan-G distribu-

tions

Here, we present and study some special cases of this family because it extends several

widely-known distributions in the literature.

a. Zografos-Balakrishnan-normal distribution The Zografos-Balakrishnan-normal

(GN) distribution [Nadarajah (2013)] obtained by taking the cdf and pdf of the normal

N(µ;σ2) distribution in Zografos-Balakrishnan-G family is:

fGN(x) =
1

σΓ(a)
{− log[1− Φ(

x− µ
σ

)]}a−1[φ(
x− µ
σ

)],

where x ∈ R,µ ∈ R is the location parameter, σ > 0 is the scale parameter, a > 0 is the

shape parameter, and φ(.) and Φ(.) are the probability density function and cumulative

distribution function of the standard normal distribution, respectively.

b. Zografos-Balakrishnan-weibull: The cdf of the weibull distribution is G(x) =

1 − exp[−(βx)α], with parameters β > 0 and α > 0. So, the density of the Zografos-

Balakrishnan-weibull distribution [Nadarajah (2013)], say GW (a, α, β), reduces to:

fGW (x) =
αβαa

Γ(a)
(x)aα−1 exp[−(βx)α], x > 0

The above pdf is very important as it extends many distributions that are previously

considered in the literature. It is identical to the generalized gamma distribution.
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3.3 Expansions for density function and distribution

function

Some useful expansions for the pdf and cdf were derived by Nadarajah et al. (2013) using

the concept of exponentiated distributions. For an arbitrary baseline distribution function

G(x), an rv say X ∼ exp−G(a) is said to have the exponentiated-G distribution with

parameter a > 0, if its pdf and cdf are

f ∗a (x) = aGa−1(x)g(x) (3.4)

and

F ∗a (x) = Ga(x) (3.5)

respectively.

Note: For a < 1 and a > 1 and for larger values of x, the multiplicative factor aG(x)a−1

is smaller and greater than one, respectively. For smaller values of x, the reverse assertion

also hold.

The binomial coefficient generalized to real arguments is given by
(
Z
y

)
= Γ(x+1)/{Γ(y+

1)Γ(x− y + 1)}. For any real parameter a > 0, we define

bk =
(k+1−a
k )

(a+ k)Γ(a− 1)

k∑
j=0

(−1)j+k(kj )pj,k

(a− 1− j)
, (3.6)

and

pj,k = k−1

k∑
m=1

[k −m(j + 1)]

m+ j
cmpj,k−m, (3.7)

for k = 1, 2, 3, · · · with pj,0 = 1 and ck = (−1)k+1(x + 1)−1,a > 0. Then the pdf and cdf

can be expressed as

f(x) =
∞∑
k=0

bkf
∗
a+k(x) (3.8)

and

F (x) =
∞∑
k=0

bkF
∗
a+k(x), (3.9)

respectively, where f ∗a+k(x) and F ∗a+k(x) denote the pdf and cdf of the exp − G(a + k)

distribution.
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3.4 Asymptotes

The asymptotes of pdf, cdf and hrf as x → −∞,+∞ calculated by Nadarajah et al.

(2013) are given by:

f(x) ∼ 1

Γ(a)
Ga−1(x)g(x)

as x→ −∞,

F (x) ∼ 1

Γ(a+ 1)
{− log[1−G(x)]}a

as x→ −∞,

1− F (x) ∼ 1

Γ(a)
{− log[1−G(x)]}a−1[1−G(x)]

as x→ +∞,

h(x) ∼ 1

Γ(a)
Ga−1(x)g(x)

as x→ −∞,

h(x) ∼ g(x)

1−G(x)

as x→ +∞.

3.5 Quantile function

Let X ∼ Zografos−Balakrishnan−G random variable. The cdf of X is given by (3.2).

Inverting F (x) = u, we obtain

F−1(u) = G−1{1− exp[−Q−1(a, 1− u)]} (3.10)

for 0 < u < 1, where Q−1(a, 1− u) is the inverse of the function Q(a, x) = 1− γ(a,x)
Γ(a)

.



Chapter 4

Zografos-Balakrishnan-generalized
exponential distribution

4.1 Introduction

For any baseline cumulative distribution function (cdf) G(x), and x ∈ R, the pdf and cdf

defined by Zografos and Balakrishnan (2009) are

f(x) =
1

Γ(a)
{− log[1−G(x)]}a−1g(x) (4.1)

and

F (x) =
γ(a, log[1−G(x)])

Γ(a)
=

1

Γ(a)

∫ − log[1−G(x)]

0

ta−1 exp(−t)dt, (4.2)

respectively, for a > 0, where g(x) = dG(x)
dx

,

Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt

is the gamma function, and

γ(a, z) =

∫ z

0

ta−1 exp(−t)dt

is the incomplete gamma function.

1
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Here, we use the method proposed by Zografos and Balakrishnan (2009) to define a

new model, called as the Zografos-Balakrishnan-generalized exponential distribution(ZB-

GE), which generalizes the generalized exponential(GE) distribution by Gupta and Kundu

(1999). We try to find out some of the properties of the new model defined.

4.2 Some properties

Gupta and Kundu (1999) introduced the two-parameter generalized exponential distribu-

tion, whose cdf and pdf are given, respectively by (forx, α, λ > 0)

G(x;α, λ) = (1− e−λx)α, g(x;α, λ) = αλe−λx(1− e−λx)α−1. (4.3)

Inserting this g(x) and G(x) into (4.1) and (4.2), we can define the pdf and cdf of the

ZB-GE distribution (forx > 0)

f(x; a, α, λ) =
αλ

Γ(a)
e−λx(1− e−λx)α−1{− log[1− (1− e−λx)α]}a−1 (4.4)

and

F (x; a, α, λ) = 1− Γ(a,− log[1− (1− e−λx)α)]

Γ(a)
. (4.5)

A random variable X having density function (4.4) is denoted by X ∼ ZB−GE(a, α, λ).

The generalized exponential(GE) distribution is a basic example for a = 1. The survival

function and the hazard rate functions of ZB-GE distribution are given, respectively, as

S(x; a, α, λ) = 1− F (x; a, α, λ) =
Γ(a,− log[1− (1− e−λx)α])

Γ(a)
(4.6)

and

h(x; a, α, λ) =
αλe−λx(1− e−λx)α−1{− log[1− (1− e−λx)α])}a−1

Γ(a,− log[1− (1− e−λx)α])
(4.7)
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4.2.1 Expansions for density function and distribution function

For an arbitrary baseline distribution function G(x), an rv say X ∼ exp−G(a) is said to

have the exponentiated-G distribution with parameter a > 0, if its pdf and cdf are

f ∗a (x) = aGa−1(x)g(x) (4.8)

and

F ∗a (x) = Ga(x) (4.9)

respectively. We can also obtain expansion for the ZB-GE density function given by

f(x) =
∞∑
k=0

bkg(x;αk, λ), (4.10)

where

bk =
(k+1−a
k )

(a+ k)Γ(a− 1)

k∑
j=0

(−1)j+k(kj )pj,k

(a− 1− j)
, αk = α(a+ k)and (4.11)

pj,k = k−1

k∑
m=1

[k −m(j + 1)]

m+ j
cmpj,k−m, (4.12)

for k = 1, 2, 3, · · · with pj,0 = 1 and ck = (−1)k+1(x+ 1)−1,a > 0.

4.2.2 Quantile function

Here, we have calculated the quantile function for the Zografos-Balakrishnan-generalized

exponential distribution(ZB-GE).

F (x; a, α, λ) =
γ(a,− log[1− (1− e−λx)α])

Γ(a)
= u. (4.13)

Inverting F(x)=u, we get G−1{1−exp[−Q−1(a, 1−u)]}, for 0 < u < 1, where Q−1(a, 1−u)

is the inverse of the function Q(a, x) = 1− γ(a,x)
Γ(a)

.
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Now for Generalized Exponential distribution:

FGE = (1− e−λx)α

⇒ u = (1− e−λx)α

⇒ log u = α log(1− e−λx)

⇒ log u

α
= log(1− e−λx)

⇒ log u
1
u = log(1− e−λx)

⇒ 1− u
1
u = e−λx

⇒ log(1− u
1
u ) = −λx

⇒ x = −1

λ
log(1− u

1
u )

⇒ x = −1

λ
log(1− FGE

1
u )

So, now

F−1(u) = −λ−1 log(1− [1− exp[−Q−1(a, 1− u)]]
1
u ) (4.14)

4.2.3 Asymptotes

The asymptotes of the density function, distribution function and hazard rate function

as x→ −∞,+∞ are calculated as

f(x) ∼ 1

Γ(a)
Ga−1(x)g(x)

⇒ f(x) ∼ 1

Γ(a)
(1− e−λx)α(a−1)αλe−λx(1− e−λx)α−1

as x→ −∞,

F (x) ∼ 1

Γ(a+ 1)
{− log[1−G(x)]}a

⇒ F (x) ∼ 1

Γ(a+ 1)
{− log[1− (1− e−λx)α]}a



Chapter 4: Zografos-Balakrishnan-generalized exponential distribution 5

as x→ −∞,

1− F (x) ∼ 1

Γ(a)
{− log[1−G(x)]}a−1[1−G(x)]

⇒ F (x) ∼ 1

Γ(a)
{− log[1− (1− e−λx)α]}a−1[1− (1− e−λx)α]

as x→ +∞,

h(x) ∼ 1

Γ(a)
Ga−1(x)g(x)

⇒ h(x) ∼ 1

Γ(a)
(1− e−λx)α(a−1)αλe−λx(1− e−λx)α−1

as x→ −∞,

h(x) ∼ g(x)

1−G(x)

⇒ h(x) ∼ αλe−λx(1− e−λx)α−1

(1− (1− e−λx)α)

as x→ +∞.

4.2.4 Moments

The moment generating function (mgf) of a random variable X having the ZB-GE distri-

bution can be obtained as

M(t) =
∞∑
k=0

bk
Γ(α + 1)Γ(1− t

λ
)

Γ(α− t
λ
− 1)

. (4.15)

The expression for nth moment of the ZB-GE distribution can be written as

E(Y r) = αβ

∞∑
j=0

trτr,j, (4.16)

where,

tr =
(−1)jΓ(β)

j!

∞∑
k=0

(−1)kΓ[(k + 1)α]

Γ(β − k)Γ[(k + 1)α− j]k!
, (4.17)

and

τr,j = r!λr

∞∑
m=0

(−1)m+r(jm)

(m+ 1)r+1
. (4.18)
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4.2.5 Entropy

The Renyi entropy for the Zografos-Balakrishnan-generalized exponential distribution(ZB-

GE) is defined as

IR(γ) =
γ log Γ(a)

γ − 1
+

1

1− γ
log{

∞∑
k=0

wkB[γ, 1 + (γ − 1)(k + aγ)]}, (4.19)

where

wk = αγλ
γ−1

k∑
j=0

(−1)j+k(kj )(
k+γ(1−a)
k )

γ(a− 1)− j
.

and

B(a, b) =

∫ 1

0

wa−1(1− w)b−1dw

is the beta function.

4.3 Maximum likelihood estimation

Let us consider independent random variables X1, · · · , Xn, each Xi following a ZB −
GE(a, α, λ) distribution with parameter vector θ = (a, α, λ). So, the log-likelihood func-

tion l = l(θ) for the parameters obtained is

l(θ) = n log(
αλ

Γ(a)
) +

n∑
i=1

log{− log[1− (1− e−λxi)α]} − λ
n∑
i=1

xi + (α− 1)
n∑
i=1

(1− e−λxi).

(4.20)



Chapter 5

Conclusions and Scope of Future
Works

We have studied about two G-gamily distributions. We have presented some basic prop-

erties of Zografos-Balakrishnan-generalized exponential distribution(ZB-GE). We are now

trying to work on the estimation of these distributions. MLE can be studied easily but

we do not get that in closed form. Further future work is possible on Bayesian estimation.

Lindleys approximation, Gibbs sampling, EM Algorithm can be used. These distributions

have many applications as they always tend to give better fit than the parent distribu-

tion. We have observed that the pdf is a linear combination of Generalized exponential

distributions which elucidates the mathematical expressions related to the properties of

ZB-GE. Further, when the shape parameter a = 1, it coincides with the generalized ex-

ponential distribution and for α = 1, it follows one parameter exponential distribution.

We have demonstrated that some mathematical properties of the ZB-GE distribution can

be readily obtained from those of the GE distribution.

1
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