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Introduction

1 Some Terms Associated With Control Theory

The theme of this chapter is to introduce some basic concepts and re-
sults related to Control theory which will be required latter. The first two
sections deals with control theory on a vector space .The particular sec-
tion contains some definitions and results for control systems on a vector
space.Where as the last section provides an preface of geometric control
theory. A description of control theory on a manifold is given.The chap-
ter ends with some well-known results of control theory on Lie groups.A
general exposition is given and some results without proofs are presented.
Further details can be found in the cited references.

1.1 Control System

Let V be an n-dimensional vector space , called the state space,and let
(xV be a state vector. A control system σ on V is defined by

ẏ = f(y, u(t)), x(t0) = x0 (1)

where the control functions u belongs to a class Uof admissible controls
with values in a subset of Rm and f is continuously differentiable.It is

provided that sufficiently smooth control function (uεU), is a solution of
the system termed as a trajectory, is determined. Such type of solution
can be explained using the transition function φ. Specifically φ(t, t0, x0, u)
denotes the state that results at time t if the system was in state x0 at
time t0 and the control u was applied.



Definition the state z can be reached from the state x if and only if
there is a trajectory of σ whose initial state is x and whose final state is
z,that is , if there exist uU such that φ(tf , 0, x, u) = z. One can also say
that x can be controlled to z. The controllable set at t1 is the set of initial

states that can be controlled to the origin in time t1 using an admissible
control , that is,

C(t1) = x0 : φ(t1, 0, x0, u) = 0forsomeuεU (2)

The controllable set C is the set of states that can be controlled to the
origin in any finite time i.e,

C = ut1>=0C(t1)

.
The system σ is called controllable at x if z can be controlled to x for all
zεV .Therefore , σ is controllable at the origin if and only if C=V.
If all initial states can be controlled to x for all xεV , then the system σ is
controllable.

1.2 Linear Control Systems

A linear control system σ is defined as

ẋ = Ax+Bu

where A(n,n)and B(n,m) are scalar matrices and the dimension of the state
space is n and the control uεU , where U is the class of integrable functions
of t. The solution of the system 2 starting at x0 has the form

x(t) =

we can define the exponential of a matrix by the using the definition of
infinite series

exp(A) =
Ak

k
It follows that x0εC(t1) if and only if there is an admissible control uεU
such that

x0 = −exp(−A
The following lemma shows some controllability equivalences for a linear
system.



Lemma 1. If σ is a linear control system , then
(i) State space(x) is controllable to another State space (z) iff the origin 0
is controllable to z − exp(At)x.
(ii) The Control system σ is controllable iff the origin is controllable to y
for all yεRm.

Proof . (i) Note that x can be controlled to z that implies there exist an
admissible control uεU such that

z = exp(At)(x+

z − exp(At)x = exp(At)(exp(−A)

the origin can be controlled to z − exp(At)x by definition.

Proposition C(t1)and C are both symmetric and convex.

Example Consider the linear system given by the following state equations

ẋ1 = x1 + u, ẋ2 = x2 + u

where uεUb and the matrices A and B are given by

A =

[
1 0
0 1

]
, B =

[
1
1

]
(3)

so we have that x=(x1,x2) belongs to C(t1) if

x1 = −
∫ t1

0

exp(−τ)u1dτ = x2

since |u| ≤ 1 then |x1| ≤ 1− exp(−t1).
Therefore, C(t1) is the closed diagonal segment C(t1) =x1=x2:|x1| ≤ 1 −
exp(−t1) and C is the open diagonal segment C=x1=x2:—x1 ≤ |1.

In general , it would be impossible to control both components simultane-
ously with identical controls.To control both components using the same
control , the initial deviation of the component must be equal.

To get controllability there are two necessary conditions on the controllable
set, namely it must have full dimension and be bounded.



1.3 The Reachable Set

In this section the properties of the reachable set for the linear systems are
presented. These properties will be compared to results of linear systems
on Lie Groups.

Define the reachable set R(x0,t1 as the set of points that can be reached
from the initial state x0 in time t1. As we know there is a reciprocal
relationship between reachable sets and the controllable sets , namely if
z ∈ R(x0, t1) then x0 ∈ C(z, t1).
if the system σ is linear then x1 ∈ R(x0, t1) implies

x1 = exp(At1)(x0 +

∫ t1

0

exp(−Aτ)Bu(τ)dτ)

for some u ∈ U . The following results are straightforward.

Proposition. If the system σ is linear tehn R(x0, t) = exp(At)x0 +R(0, t).
The property that any point in Rn can be reached from the origin is called
reachability.



2 Some Terms Associated With Lie Group and their

Lie algebra

In simple geometry Lie groups are smooth manifolds.They can be studied
using differential calculus ,They are the most general admirable space than
that of topological spaces .

Definition: A well defined set G is termed as a Lie group if it satisfies the
following conditions:
1)If Set G is a smooth manifold.

2)Must satisfies the Group properties.

3) The all Group operations must be smooth.

2.1 Lie Algebra

Let K be a field. A Lie algebra over K is an vector space L, along with a
bi-linear map, known as Lie bracket given by:

L× L→ L, (x, y → [x, y])

this lie bracket satisfies the following properties:

[y, y] = 0 (4)

[x, [y, z]] = [y, [z, x]] + [z, [x, y]] (5)

This [., .] is also known as commutator of Lie algebra.

2.2 Relation between Lie group and its Lie algebra

In the general theory it has been shown that the structure( vector space)
of the Lie algebra of a Lie group is isomorphic to the tangent space at
the identity element of the Lie group. Consider in GL(n,C) a subset of



operators depends onto a real parameter t and satisfies A(0) = 1, where 1
is the identity operator on the given vector space V.Now we can consider
the tangent vector at t = 0 with the aid of Taylor’s expansion of A(t) upto
first order term.

A(t) = A(0) +N(t) +O(t2)

where N determines the derivative of A(t) at t=0.

Hence these linear operators N obtained by this way are the elements of Lie
algebra of GL(n,C). With the help of the basis elements k1, k2, ..., kn these
operators can be represented by n × n matrices say nij .On consideration
of all possible smooth curves through the unit element of the group ,we
will be having a vector space of the Lie algebra whose dimension will be
n2 consisting of nn matrices. Now in order to obtain the Lie bracket of the
elements i.e. for M,N ∈ N(n,C), assume the group commutator:

C(t) = A(t)B(t)A−1(t)B−1(t)

Here (0) = M and (0) = N represents the tangent vectors of C(t).After a
very simple calculation we will be having the following result:

[M,N ] = MN −NM

It can be easily seen they both can be easily achieved by using exponential
mapping which is given as:

exp : M ∈ gl(n,C)→ expM ∈ GL(n,C)

Hence we are provided with the technique to obtain the Lie algebra corre-
sponding to Lie group.



3 Control Theory Using Lie Groups

3.1 Pontryagin’s Principle

Pontryagin’s Maximum Principle applies to a particular type of problem
called a Bolzano Problem. Most optimization problems can be put into the
form of a problem involves a number of state variables which can change
over time where time t runs from 0 to T. Let us suppose the state variables
are Y1(t), Y2(t), Y3(t)...Yn(t) The target is to minimize

V (T ) = c1Y1(T ) + c2Y2(T ) + ...+ cnYn(T )

where we are provided with the initial points Y1(0), Y2(0), ..., Yn(0) , here
the coefficients are provided with certain conditions and T is some definite
finite time. Suppose we are provided with steering functions for controlling
the changes in the state variables I.e.

dY1
dt

= f1(Y1, Y2, ..., Yn, u1, u2..., un) (6)

dY2
dt

= f2(Y1, Y2, ..., Yn, u1, u2..., un) (7)

. (8)

. (9)

.
dYn
dt

= fn(Y1, Y2, ..., Yn, u1, u2..., un) (10)

where the variables u1, u2, ..., un are functions of time and are called the
control variables. Our aim is to determine the control variables at each
point in order to steer the state variables from their starting states. i.e.

Y1(0), Y2(0), ..., Yn(0)

, to some point
Y1(T ), Y2(T ), ..., Yn(T )

such that
V (T ) = c1Y1(T ) + c2Y2(T ) + ...+ cnYn(T )

is minimized.



Pontryagin’s Maximum Principle provides us a very clean,appreciable and
systematic solution.

3.2 Hamiltonian function

To implement Pontryagin’s method one defines a stable function which
could help us in approaching the desired task.We are defining the Hamil-
tonian function which is given as follow :

H = ϕ1f1 + ϕ2f2 + ...+ ϕnfn

=
∑

ϕifi

where these ϕ1, ϕ2, ...ϕn are ad-joint variables, such that

dϕi
dt

= −∂H
∂Yi

= −
∑
i

ϕj(
∂fi
∂Yi

)

where ϕi(T ) = ci.

Hence the value of control variables are obtained at time T which maxi-
mizes H are termed to be optimal values.

3.3 Poisson structure

A Poisson structure on a smooth manifold SM is a Lie bracket {., .} on
the algebra of smooth functions which subjects to the lebinitz rule , It is
given by:

{AB,C} = A {B,C}+B {A,C}
where A,B,C are the smooth functions of the manifold .

Else in simplest form we can define this structure on a vector space of
Smooth functions on SM as a Lie algebra given by:

YA = {A, .} ...C∞ → C∞



such that YA will act as a vector field for each smooth function A.

Definition
Let us consider SM be a smooth manifold and C∞(SM) represents the
algebra of smooth functions defined on SM. Hence Poisson structure on
SM is given by:

{., .} : C∞(SM)× C∞(SM)→ C∞(SM)

satisfies the following three conditions:

{A,B} = −{B,A} (11)

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0. (12)

{AB,C} = A {B,C}+B {A,C} (13)



4 Schrodinger Group

The Schrodinger group for one dimensional particle is given by :

i~
∂ψ(y, t))

∂t
= − ~2

2m

∂2ψ(y, t)

∂y2

where the particle has to be described by the wave function which is given
by ψ(y′, t′). as it satisfies

i~
∂ψ(y′, t′))

∂t′
= − ~2

2m

∂2ψ(y′, t′)

∂y′2

It ha s already proven that the Schrodinger equation is invariant under
conformal coordinate transformations

t′ =
αt+ β

γt+ δ
, y′ =

ay + ut+ c

γt+ δ
, a2 = δα− βγ 6= 0

Hence as a result the it forms a group known as Schrodinger group, whose
basis elements are given by:

A1 = −i~ ∂
∂y

(14)

A2 =
A2

1

2m
(15)

A3 = tA1 −my (16)

A4 = tA2 −
1

4
(yA1 + A1y) (17)

A5 = t2A2 −
t

2
(yA1 + A1y) +

m

2
y2, A6 = 0. (18)

Now using the Exponential mapping we can obtain the Schrodinger Lie
Algebra from the group. Also it can be very easily seen that the basis
elements for this Schrodinger Group also satisfies all the properties of Lie
Bracket. Hence they form a algebra. The commutation table for the ele-



ments of Schrodinger Lie algebra is given by:

[., .] A1 A2 A3 A4 A5 A6

A1 0 −2A1 A2 0 A4 0
A2 2A1 0 −2A3 A4 −A5 0
A3 −A2 2A3 0 A5 0 0
A4 0 −A4 −A5 0 A6 0
A5 −A4 A5 0 0 0
A6 0 0 0 0 0 0


(19)



5 Left-Invariant Control Problem on the Schrodinger

Group

In this section we are considering the left invariant control affine system on
Schrodinger Lie Group. Here we are showing that any left invariant control
problem can be lifted to a Hamiltonian system on the dual of Schrodinger
lie algebra.Also here we are deriving the reduced Hamiltonian equations as-
sociated with extremal curves obtained by describing Lie-Poisson structure
on dual space of Schrodinger Lie algebra .

Theorem The constants of structure of the Schrodinger Lie algebra are
given by: where A1,A2,A3,A4,A5,A6 is the canonical basis of Schrodinger
Lie algebra, i.e.:
Then we have successively:

[A1, A1] = ck11Ak

c111 = c211 = c311 = c411 = c511 = c611 = 0

[A1, A2] = ck12Ak

c112 = c212 = c312 = c412 = c512 = c612 = −2

[A1, A3] = ck13Ak

c113 = c213 = c313 = c413 = c513 = c613 = 1

[A1, A4] = ck14Ak

c114 = c214 = c314 = c414 = c514 = c614 = 0

[A1, A5] = ck15Ak

c115 = c215 = c315 = c415 = c515 = c615 = 1

[A1, A6] = ck16Ak

c116 = c216 = c316 = c416 = c516 = c616 = 0

[A2, A2] = ck22Ak

c122 = c222 = c322 = c422 = c522 = c622 = 0



[A2, A3] = ck23Ak

c123 = c223 = c323 = c423 = c523 = c623 = −2

[A2, A4] = ck24Ak

c124 = c224 = c324 = c424 = c524 = c624 = 1

[A2, A5] = ck25Ak

c125 = c225 = c325 = c425 = c525 = c625 = −1

[A2, A6] = ck26Ak

c126 = c226 = c326 = c426 = c526 = c626 = 0

[A3, A3] = ck33Ak

c133 = c233 = c333 = c433 = c533 = c633 = 0

[A3, A4] = ck34Ak

c134 = c234 = c334 = c434 = c534 = c634 = 1

[A3, A5] = ck35Ak

c135 = c235 = c335 = c435 = c535 = c635 = 0

[A3, A6] = ck36Ak

c136 = c236 = c336 = c436 = c536 = c636 = 0

[A4, A4] = ck44Ak

c144 = c244 = c344 = c444 = c544 = c644 = 0

[A4, A5] = ck45Ak

c145 = c245 = c345 = c445 = c545 = c645 = 1

[A4, A6] = ck46Ak

c146 = c246 = c346 = c446 = c546 = c646 = 0

[A5, A5] = ck55Ak

c155 = c255 = c355 = c455 = c555 = c655 = 0

[A5, A6] = ck56Ak

c156 = c256 = c356 = c456 = c556 = c656 = 0



[A6, A6] = ck66Ak

c166 = c266 = c366 = c466 = c566 = c666 = 0

As a consequence we obtain:

Theorem The minus Lie-Poisson structure on dual of Schrodinger Lie al-
gebra is given by the matrix:

π− =



0 2A1 −A2 0 −A6 0
−2A1 0 2A3 −A4 A5 0
A2 −2A3 0 −A5 0 0
0 A4 A5 0 −A6 0
A4 −A5 0 A6 0 0
0 0 0 0 0 0

 (20)

Remark 1 It is easy to see that the function C given by

C(P1, P2, P3, P4, P5, P6) = P1P2P3P4P5P6

is a Casimir of our configuration (h(3), π−) i.e.

(4C)t.π− = 0

Theorem There exist the following two types of controllable drift-free left
invariant systems on Schrodinger Lie Group, namely

Ẋ = X.(A1u1 + A2u2 + A3u3 + A4u4 + A5u5 + A6u6)

and
Ẋ = X.(A1u1 + A2u2 + A3u3 + A4u4 + A5u5)

Proof
The proof is a consequence of the Table 1 and Chow’s theorem.



6 An optimal control problem on Schrodinger Lie

Group

Let

J(u1, u2, u3, u4, u5, u6) = 1/2(

∫ Tf

0

(c1u
2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4 + c5u

2
5 + c6u

2
6)dt

(c1, c2, c3, c4, c5, c6 > 0) be the cost function. Then the problem which we
intend to solve is the following: find u1, u2, u3, u4, u5, u6that minimize J and
steer the above system from X = 0 at t = 0 to X = Xf at t = tf . We have
the following results:

Theorem The optimal controls of the above problem for our system are
given by

u1 = P1/c1

u2 = P2/c2

u3 = P3/c3

u4 = P4/c4

u5 = P5/c5

u6 = P6/c6

where Pi are solutions of the system:

Ṗ1 =
2P1P2

c2
− P2P3

c3
− P 2

5

c5

Ṗ2 =
−2P 2

1

c1
− 2P 2

3

c3
− P 2

4

c4
+
P 2
5

c5

Ṗ3 =
P1P2

c1
− 2P3P2

c2
− P4P5

c4



Ṗ4 =
P4P2

c2
+
P3P5

c3
− P6P5

c5

Ṗ4 =
P4P1

c1
+
P2P5

c2
− P6P4

c4

Ṗ6 = 0

Proof.
Let us take the extended Hamiltonian H given by:

H = P1u1 + P2u2 + P3u3 +
1

2
(c1u

2
1 + c2u

2
2 + c3u

2
3 + c4u

2
4 + c5u

2
5 + c6u

2
6)

Then using the maximum principle, we have the conditions:

∂H

∂u1
= 0

∂H

∂u2
= 0

∂H

∂u3
= 0

∂H

∂u4
= 0

∂H

∂u5
= 0

∂H

∂u6
= 0

which lead us to:
P1 = c1u1

P2 = c2u2

P3 = c3u3

P4 = c4u4

P5 = c5u5

P6 = c6u6



and so the reduced Hamiltonian (or the optimal Hamiltonian) is given by:

H =
1

2
(
P 2
1

c1
+
P 2
2

c2
+
P 2
3

c3
+
P 2
4

c4
+
P 2
5

c5
+
P 2
6

c6
)

It follows that the reduced Hamilton equations have the following expres-
sions:



Ṗ1

Ṗ2

Ṗ3

Ṗ4

Ṗ5

Ṗ6


=



0 2A1 −A2 0 −A6 0
−2A1 0 2A3 −A4 A5 0
A2 −2A3 0 −A5 0 0
0 A4 A5 0 −A6 0
A4 −A5 0 A6 0 0
0 0 0 0 0 0

×


P1

c1
P2

c2
P3

c3
P4

c4
P5

c5
P6

c6


as required. It is easy to see that the reduced Hamilton’s equations can be
put in the equivalent form:

Ṗ1 =
2P1P2

c2
− P2P3

c3
− P 2

5

c5

Ṗ2 =
−2P 2

1

c1
+

2P 2
3

c3
− 2P 2

4

c4
+

2P 2
5

c5

Ṗ3 =
P1P2

c1
− 2P2P3

c2
− P5P4

c4

Ṗ4 =
P4P2

c2
+
P5P3

c3
− kP5

c5

Ṗ5 =
P1P4

c1
− P2P5

c2
− kP4

c4
P6 = k

Theorem 5. The controls u1, u2, ...un are given by sinusoidal s, More ex-
actly

u1 =
l1
c1

cos

√
c1
c2

(
−p2ṗ1 + p12
p21 + p22

)
t+ C1



u1 =
l2
c2

sin

√
c3
c4

(
−p4ṗ3 + p34
p23 + p24

)
t+ C2

u1 =
l3
c3

cos

√
c5
c6

(
−p6ṗ5 + p56
p25 + p26

)
t+ C3

Proof Let us assume that :

p21
c1

+
p22
c2

= l21

p23
c3

+
p24
c4

= l22

p25
c5

+
p26
c6

= l23

On Substituting these values in Reduced Hamiltonian system of equation
, the equation becomes :

p21
c1

+
p22
c2

+
p23
c3

+
p24
c4

+
p25
c5

+
p26
c6

= l2

l21 + l22 + l23 + l24 + l25 + l26 = l2

For the convenience of the proof let us assume

p1 = l1
√
c1 cos Θ1

p2 = l1
√
c2 sin Θ1

p3 = l2
√
c3 cos Θ2

p4 = l2
√
c4 sin Θ2

p5 = l3
√
c5 cos Θ3

p1 = l3
√
c6 sin Θ3

such that we have:

u1 =
p1
c1

=
l1 cos Θ1√

c1

u2 =
p2
c2

=
l1 sin Θ1√

c2



u3 =
p3
c3

=
l2 cos Θ2√

c3

u4 =
p4
c4

=
l2 sin Θ2√

c4

u5 =
p5
c5

=
l3 cos Θ3√

c5

u6 =
p6
c6

=
l3 sin Θ3√

c6

now on simplifying we have :

Θ1 =

√
c1
c2

arctan(
p2
p1

)

Θ2 =

√
c3
c4

arctan(
p4
p3

)

Θ3 =

√
c5
c6

arctan(
p6
p5

)

take derivative of θ ,as a result we have :

Θ̇1 =

√
c1
c2

(
p12 −1 p2
p21 + p22

)

Θ̇2 =

√
c3
c4

(
p34 −3 p4
p23 + p24

)

Θ̇3 =

√
c5
c6

(
p56 −5 p6
p25 + p26

)

It clearly implies :

θ1 =

√
c1
c2

(
−p2ṗ1 + p12
p21 + p22

)
t+ C1

θ2 =

√
c3
c4

(
−p4ṗ3 + p34
p23 + p24

)
t+ C2

θ3 =

√
c5
c6

(
−p6ṗ5 + p56
p25 + p26

)
t+ C3



as a result we obtain the solutions given by :

u1 =
l1
c1

cos

√
c1
c2

(
−p2ṗ1 + p12
p21 + p22

)
t+ C1

u1 =
l2
c2

sin

√
c3
c4

(
−p4ṗ3 + p34
p23 + p24

)
t+ C2

u1 =
l3
c3

cos

√
c5
c6

(
−p6ṗ5 + p56
p25 + p26

)
t+ C3



7 Stability associated with Lie Groups

7.1 Stability associated with Schrodinger Lie Algebra

We investigate the stability nature of the dynamical system shown above
, The equilibrium states are
1. PM

e 1 = (M, 0, 0, 0, 0, 0),
2. PM

e 2 = (0,M, 0, 0, 0, 0),
3. PM

e 3 = (0, 0,M, 0, 0, 0),
4. PM

e 4 = (0, 0, 0,M, 0, 0),
5. PM

e 5 = (0, 0, 0, 0,M, 0),
6. PM

e 6 = (0, 0, 0, 0, 0,M),
here, M ∈ R\0) and the origin (0, 0, 0,0,0,0).

Proposition
The equilibrium state PM

e 1 = (M, 0, 0, 0, 0, 0) has the following behaviour:
1. If k(constant) is positive, then state is non linearly stable.
2. if k(constant) is negative , the state is not stable. For all c1, c@, c3, c4, c5, c6
the equilibrium state is unstable:

Proof : For calculating the eigen values of the derived dynamical system
we have to obtain the linearization matrix which is actually the Jacobian
matrix of the dynamics of the system. That is, we have Ṗ = F (P ) , so
matrix of the linearization is the Jacobian of F.

D(F (p)) =



2P2

c2

2p1
c2
− P3

c3
−P2

c3
−P5

c5
−P4

c5
0

−4P1

c1
0 4P3

c3
−2P4

c4
2P5

c5
0

P2

c1
P1

c1
− 2P3

c3
−2P2

c2
−P5

c4
−P4

c4
0

0 P4

c2
P5

c3
P2

c2
P3

c3
− k

c3
0

P4

c1
−P5

c2
0 P1

c1
−P2

c2
0

0 0 0 0 0 0


(21)



Thus The matrix of the linearization of the system at PM
e 1 is

0 2M
c2

0 0 0 0
−4M
c1

0 0 0 0 0

0 M
c1

0 0 0 0

0 0 0 0 −k
c3

0

0 0 0 M
c1

0 0

0 0 0 0 0 0


(22)

with eigenvalues are λ = 0, λ =
√

kM
c1c3

,λ1 =
√
−8M2

c1c2
Since c1, c@, c3, c4, c5, c6

are ≥ 0.
For k = positivevalue as a result the Real(λ) are ≥= 0
Hence the state is unstable by using the theory of stability.
For k= non positive value ,the stability is to studied using casimir energy
function: Let Hψ be the (energy-Casimir) function given by

Hψ(P1, P2, P3, P4, P5, P6) =
1

2

(
(
P 2
1

c1
) + (

P 2
2

c2
) + (

P 2
3

c3
) + (

P 2
4

c4
) + (

P 2
5

c5
) + (

P 2
6

c6
)

)
+Hψ(P1P2P3P4P5P6)

where ψ ∈ C∞(R,R). The first variation is
∂Hψ(P1, P2, P3, P4, P5, P6) = (P1∂1

c1
)+(P2∂2

c2
)+(P3∂3

c3
)+(P4∂4

c4
)+(P5∂5

c5
)+(P6∂6

c6
)+

∂Hψ(P1P2P3P4P5P6) (∂1P2P3P4P5P6 + P1∂2P3P4P5P6+P1P2∂3+P4P5P6+P1P2P3∂4P5P6+P1P2P3P4∂5P6
)

equals to zero if and only if
˙ψ(0) = 0

The second variation at PM
e 1 : ∂2Hψ = ∂21

c1
+ ∂22

c2
+ ∂23

c3
+ ∂24

c4
+ ∂25

c5

is positive definite for PM
e 1 Hence by energy casimir function , the given

Equilibrium state is nonlinearly stable.

In a similar manner, we can prove the following result.

Proposition. The equilibrium state PM
e 2 = (0,M, 0, 0, 0, 0) has the follow-

ing behaviour:
1. If c1c3 ≤ c22 , then state is not linearly stable.
2. if c1c3 ≥ c22 , the state is non linearly stable.



Proof.The matrix of the linearization is the Jacobian of F is given by :

D(F (p)) =



2P2

c2

2p1
c2
− P3

c3
−P2

c3
−P5

c5
−P4

c5
0

−4P1

c1
0 4P3

c3
−2P4

c4
2P5

c5
0

P2

c1
P1

c1
− 2P3

c3
−2P2

c2
−P5

c4
−P4

c4
0

0 P4

c2
P5

c3
P2

c2
P3

c3
− k

c3
0

P4

c1
−P5

c2
0 P1

c1
−P2

c2
0

0 0 0 0 0 0


(23)

Thus The matrix of the linearization of the system at PM
e 2 is

2M
c2

0 −M
c3

0 0 0

0 0 0 0 0 0
M
c1

0 −2M
c2

0 0 0

0 0 0 M
c2
− k
c3

0

0 0 0 0 −M
c2

0

0 0 0 0 0 0


(24)

after the calculation of characteristic matrix the eigenvalues can be found

which are given by : λ = M
c2

√
c22−4c1c3
c1c3

using previous results we can easily

proof the provided results.

Proposition. The equilibrium state PM
e 3 = (0, 0,M, 0, 0, 0), PM

e 4 = (0, 0, 0,M, 0, 0)
and PM

e 5 = (0, 0, 0, 0,M, 0) are non linearly stable.



8 Conclusion

In this project we tried to cover the possible aspects of mathematical con-
trol theory, especially Left invariant optimal control on the very impor-
tant physical Group ”Schrodinger Lie Group”. Here we tried to restrict
our-selves only in the mathematical aspects,as a result we concluded the
stability factors of Schrodinger Lie Group at various equilibrium states.
However this group is related to many physical phenomenon, which are
interesting to physicist .We hope our study will be lead to a small step
towards such type of investigation.



9 Gaps

There are many things yet to be concluded:

1) We think Elliptic Jacobi integration may be possible for the optimal
control that are determined by us. In future we will surely find a suitable
way to solve this type of integration in this left invariant dynamical system.

2) More Casimir functions can be calculated in future.As only one Casimir
operator has been determined in this scope of paper.

3) Here the most general form of left invariant control systems is adopted
for calculation of optimal controls, in future more realistic and suitable left
invariant dynamical systems can be defined.
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