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ABSTRACT 

The present work deals with the static and free vibration analysis of a beam with partially covering 

constraining layer with magnetorheological fluid core. For the analysis fixed free end cantilever has been 

considered. The beam has been modelled using finite element method. The sandwich beam element has six 

degrees of freedom per node, whereas the base beam element has three degrees of freedom per node. The 

governing equation of motion have been derived using Hamilton’s principle in conjunction with finite element 

method. The effect of magnetic field strength and constraining layer position on the frequency and critical 

buckling load of the beam has been studied. It has been found that increase in magnetic field strength enhances 

the first three mode frequencies. Constraining layer nearer to the free end gives highest value of frequencies. 

Maximum buckling capacity is achieved by placing the constraining layer at the mid position of the beam. 

Experiments have been carried out to validate a few theoretical findings.   

Keywords: Magnetorheological fluid core, FEM, Magnetic Field 
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NOMENCLATURE: 

{Δ(e)} : Nodal Displacement 

 ui      : Axial Displacement 

 wi       : Transverse Displacement 

 θi        : Rotary Moment 

 U     : Potential Energy  

 T     : Kinetic Energy 

 K     : Stiffness Matrix 

M     : Mass Matrix 
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γv        : Shear Deformation 

єvl       : Longitudinal Deformation 

єvT      : Transverse Deformation 

Gv       : Complex Shear Modulus 

Gv
*    : In Phase Shear Modulus 

Gr    : Shear Modulus of rubber 

Kg    : Element Geometric Matrix 

P      : Axial Load 

L      : Length of the specimen 

G     : Magnetic Field Strength Unit i.e. Gauss 
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1.1INTRODUCTION 

Damping is very important in substructures and systems which are being subjected to either 

force of dynamic nature or shock. One of the many alternative ways to control the noise which 

is being generated and the vibration been produced in structures and systems is the passive 

damping treatment. The traditional or conventional passive control methods include use of 

absorbers, barriers, dampers, silencers, etc. which are subjected to excitation of dynamic origin 

or shock in nature. For systems of frequency of excitation of external origin, either modifying 

in system stiffness value or mass value reduces the unwanted vibrations as the above mentioned 

parameters have an effect on the resonant frequency of so called system. But in most of the real 

cases, the dampening of vibrations may use isolators or damping materials for the reduction in 

vibration. Advancement in technology which are used in the fabrication of materials and more 

usage of sophisticated analytical and modelling techniques to study the dynamic characteristics 

of materials and structures facilitates the user to improve the reduction in vibration of a system. 

Viscoelastic materials shares both the characteristics and properties of   viscous fluid and elastic 

solid materials. There are mainly two methods of usage of viscoelastic material. First one in 

the constraining layer and the other one in free layer treatment or the unconstrained layer. 

Depending on the usage sandwich structure utilizes the constrained layer treatment method in 

obtaining better properties of all the layers in the sandwich beam. In the above mentioned case 

the viscoelastic material is sandwiched between the structure surface and the layer of metallic 

material. The conventional sandwich construction includes a relatively thick core of a material 

of low density, being sandwiched between the top and bottom face sheets which are the face 

layers of relatively thinner size. 
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1.2 DAMPING     

Damping refers to the extraction of mechanical energy from a system in vibration usually from 

conversion of the energy to heat. Damping serves to control the steady-state resonant response. 

There are two types of damping: material damping and system damping. Material damping is 

the damping inherent to the material while system damping includes the damping at the 

supports, boundaries, joints, interfaces, etc. Various terms such as viscous damping, hysteretic 

damping, Coulomb damping, linear and proportional damping, etc. represent vibration 

damping. The following types of damping are normally seen: 

1. Coulomb /dry friction damping  

2. Material / solid damping  

3. Viscous damping  

4. Viscoelastic damping  

COULOMB / DRY FRICTION DAMPING  

The damping force is constant is magnitude but opposite in direction to the motion of the 

vibrating body. It is due friction between rubbing surfaces which are either dry or with 

insufficient lubrication.  

MATERIAL / SOLID DAMPING  

 As the materials are deformed, energy is being either absorbed or dissipated by the material. 

This effect is due to friction between the internal planes, which either slip or slide with the 

deformation. When a body with material damping is being subjected to vibration, the stress-
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strain diagram shows a hysteresis loop. The area of this loop denotes the energy lost per unit 

volume of the body per cycle due to damping.  

VISCOUS DAMPING  

Viscous damping is the most commonly used damping mechanism in vibration analysis. When 

a mechanical system vibrates in a fluid medium such as air, gas, water, and oil, the resistance 

offered by the fluid to the body causes energy to be dissipated. In this present case, the amount 

of dissipated energy depends on factors such as the size and shape of the vibrating body, the 

viscosity of the fluid, the frequency of vibration, and the velocity of the vibrating body. In 

viscous damping, the damping force is proportional to the velocity of the vibrating body.  

VISCOELASTIC DAMPING  

Viscoelasticity may be defined as material response that exhibits characteristics of both a 

viscous fluid and an elastic solid. A viscoelastic material (VEM) combines the two properties 

to return to its original shape after being loaded. The degree to which a material behaves either 

viscously or elastically depends mainly on temperature and rate of loading (frequency). Many 

polymeric materials having long chain molecules exhibit viscoelastic behaviour such as 

plastics, rubbers, acrylics, silicones, vinyl’s, adhesives, urethanes, epoxies, etc. The use of 

complex modulus brings a lot of convenience in studying the material properties of viscoelastic 

materials. The material properties of viscoelastic materials depend significantly on 

environmental conditions such as environmental temperature, vibration frequency, pre-load, 

dynamic load, environmental humidity and so on. Therefore, a good understanding of such 

effects, both separately and collectively, on the variation of the damping properties is necessary 

in order to tailor these materials for specific applications. 
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1.3 FINITE ELEMNT METHOD 

In finite element, initially the domain is subdivided into many sub domains or elements which 

are called finite elements. The computation of the solution or its approximation is been done 

on selected points called nodes. The approximate solution in the given node gives rise to the 

approximate solution of the geometrical figure. The approximate solution becomes exact in 

two cases: One dividing the domain into infinite number of sub domain. And the other one 

primary variable should contain a whole set of polynomials. 

Steps involved in Finite Element method: 

1. Discretize and select the element types. 

2. Select a primary variable function. 

3. Defining Relations. 

4. Deriving the element stiffness matrix and equation. 

5. Assemble the matrix and substitute the boundary equation. 

6. Solve for primary and secondary unknowns. 

7. Interpret the results. 

Applications of finite element method: 

Structural Areas: 

1. Stress Analysis. 

2. Buckling Analysis. 

3. Vibration Analysis. 

Non Structural Areas: 

1. Heat Transfer. 

2. Fluid Mechanics. 

3. Distribution of electric and magnetic potential. 
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Advantages of Finite Element method: 

The following advantages are shown below:  

1. Easy modelling of complicated shapes. 

2. Handling of general load conditions without difficulty. 

3. Handling of any number of boundary conditions. 

4. Includes dynamic effect. 

5. Handling of nonlinear behaviour with large deformations. 

Limitations of Finite Element method: 

1. The value of stress accuracy depends on mesh size. 

2. The approximate solution may not be accurate. 

1.4 SANDWICH STRUCTURE:  

A sandwich-structured composite is a special class of composite materials which is fabricated 

by attaching two thin layers but with high stiffness compared to a lightweight. The core material 

is normally a low strength material, but its higher thickness provides the sandwich composite 

with high bending stiffness with overall low density. The strength of the composite material is 

dependent largely on two factors the outer skins and the interface between the core and the 

skin. 

1.4.1 MATERIAL PROPERTIES OF THE SANDWICH STRUCTURE: 

Depending on the function performed in which the sandwich beam is utilized, the material 

properties are being varied. The advancement in newer technology in composite materials and 

functionally graded materials had open many options for the researchers in choice of material 

selection for varied purposes. The choice of material in sandwich structure depend mainly upon 

the property or the desired need of purpose  for example high strength, high temperature 

http://en.wikipedia.org/wiki/Composite_material
http://en.wikipedia.org/wiki/Bending
http://en.wikipedia.org/wiki/Stiffness
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resistance, surface finish to name a few. The number of cores which are been available in recent 

times has increased too many folds due to the introduction of more advancement in cellular 

plastics.  The combining options of the face sheet materials with core materials of varied 

characteristics make us used to play a role in a wide range of applications which are of immense 

importance.   

 

Fig 1: Sandwich Model 

The designer should have adequate information on the properties of the material such as 

stiffness for the better analysis and usage of the material used in the sandwich structure. 

Obtaining results on the various properties dealing with the sandwich structure one should do 

experimental work as it is very hard to obtain the results theoretically. In sandwich structures 

one would find difficult in maintaining a relation between the varied properties but it can be a 

great boon if one uses it effectively. The properties which is fruitful to one’s result may not 

show better results in some other cases, so it depends totally on individual choices to use which 

properties. The primary objective of any researcher or engineer would be to obtain better results 

from the existing properties which would be helpful for the future generation. 

The materials used in the core are used to support the beam as well as not to deform under the 

application of load. They serve the function of holding the beam to a particular position and do 
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not fail under the applied force. The core material should be of low density material, dampening 

the vibration and noise, of high shear modulus, higher stiffness normal to the face sheet and in 

addition of the above properties should be thermally insulated. The following materials are 

used as the core material polymeric foam, polyethylene terephthalate, polymethacrylimide, 

PVC (polyvinylchloride), wood cores, and honeycomb cores. 

The top and the bottom layers of the sandwich structure are the base layer and the constraining 

layer. They are in the form of sheets. The properties in the layers which are ask for are the high 

impact, wear, chemical and heat resistance, better tensile and compressive properties along 

with high stiffness which give rise to high flexural rigidity. The layers should have high degree 

of surface finish. The materials which are being used for face materials are the metal and alloys, 

composites, wood etc. 

1.4.2 DESIGN CONSIDERATIONS OF THE SANDWICH STRUCTURE  

The sandwich structure prepared are design to satisfy the following criteria: 

 The face sheets should be able to sustain tensile, compressive as well as shear stress. 

 The core sheet should be able to withstand the shear stress as well as overall buckling 

of the beam. 

 The core sheet should have sufficient compressive strength. 

 The sandwich beam must have necessary flexural rigidity as well as shear rigidity to 

sustain deflections on the application of load. 

 The sandwich beam should hold the structural virtue on account of application of force. 

1.4.3 APPLICATION AREA OF THE SANDWICH STRUCTURE  

The sandwich structures has varied applications and can be used in the following areas: 

 Aerospace industry 
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 Construction Industry 

 Ship Building 

 Railway Manufacturing 

 Automobile Industry 

 

1.5 SANDWICH STRUCTURES WITH MAGNETORHEOLOGICAL ELASTOMERS 

The sandwich specimen along with the use magnetorheological elastomers (MRE’s) can 

drastically improve the properties of the sandwich beam. Magnetorheological fluids are special 

class of fluids which on subjected to magnetic field drastically increases the viscosity of the 

fluid to the level of being a viscoelastic material. The properties of the MRE’s such as the shear 

modulus, damping factor can be improved by the use of magnetic field. Therefore they can be 

used as an effective dampener to the vibration on the application of the load. Silica oil with 

definite proportion of iron particles can be effectively used as MRE’s. On the application of 

magnetic field the iron particles get aligned in the same pattern, which eventually lead the 

MRE’s to behave as viscoelastic material which effectively reduces the dampening effect. The 

core material is normally poured of MRE’s as it is the most risky part due to the high shear 

stress acting on it. Thus, MRE’s can be used in the core material, which absorbs the vibration 

due to the application of load and can dampen the vibration induced. Commonly referred 

MRE’s fluid are oleic acid, citric acid, tetramethylammonium hydroxide etc. 
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Fig 2. Without Magnetic Field                    Fig 3. With Magnetic Field 

1.5.1 APPLICATION AREA OF MAGNETORHEOLOGICAL ELASTOMERS 

 Mechanical Engineering. 

 Military sector. 

 Optics. 

 Automobile industry. 

 Aerospace field. 

1.5.2 LIMITATIONS OF MAGNETORHEOLOGICAL ELASTOMERS 

 Due to the presence of iron particles, the MRE’s fluid become heavy. 

 The high quality fluids are expensive in nature. 

 After a period, the fluid become thicker in size. 

 The settling down of iron particles might be a problem in some cases. 
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2.1 LITERATURE REVIEW: 

2.1.1 SANDWICH BEAM  

Di Taranto [11] formulated a procedure to calculate natural frequencies, loss factors for a finite 

length of sandwich beam. The damped natural frequencies and logarithmic decrement for the 

fundamental mode of vibration of a simply supported sandwich beam was calculated by 

Chatterjee and Baungarten [9]. They also did experiments to verify their theoretical results, 

which showed good agreement with their theoretical part. Asnani and Nakra [5] found the 

effect on the number of layers and thickness ratio on the system loss factors for a simply 

supported multilayered beam. Vaswani et al. [6] formulated the equations of motion for a 

multilayer curved sandwich beam which is been subjected to harmonic excitation. Lall et al. 

[20] analyzed the partially covered sandwich beams using three different methods and found 

that method by Marcus [21] estimates modal loss factor only, whereas Rayleigh-Ritz and 

classical search method give both loss factor and resonant frequencies. Dewa et al. [10] studied 

the damping effectiveness of partially covered sandwich beams. They found that partially 

covered beams have better damping capacity than fully covered beams. He also proved the 

validation by experimental results. Bhimaraddi [8] solved both the resonant frequencies and 

loss factors for a simply supported beam with constrained layer damping using a model, which 

accounted for the continuity of displacements and the transverse shear stresses across the 

interfaces of the layers.  

Ungar [28] derived general expressions in terms of the properties of the constituting materials 

to find the loss factors of uniform linear composites. Rao [23] investigated the influence of 

pretwist on the resonant frequency and loss factor for a symmetrical pretwisted simply 

supported sandwich beam and prove that pretwisting reduces the loss factor and very soft thick 

cored beams is especially sensitive to even small changes of pretwist. Rao [2] in another work 
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plotted graphs and gave equations to estimate frequencies and loss factors for sandwich beam 

under various boundary conditions. Fasana and Marchesiello [12] used Rayleigh-Ritz method 

to find out the mode shapes, frequencies and loss factors for sandwich beams. They choose 

polynomials in the sandwich beam, which satisfied the geometric boundary conditions as 

admissible function.  

Kerwin [19] carried out a quantitative analysis of the damping effectiveness of a constrained 

viscoelastic layer and he found an expression to calculate the loss factor. Rao and Stühler [24] 

analyzed the damping effectiveness of tapered sandwich beam with simply supported and 

clamped free end conditions. Rubayi and Charoenee [26] studied both theoretical and 

experimental to obtain the natural frequencies of cantilever sandwich beams subjected to 

gravity force only. Johnson [16-17] analyzed the frequencies and loss factors for beams and 

plates with constrained viscoelastic layer by finite element method. Imaino and Harrison [15] 

adopted modal strain energy method and finite element technique to investigate damping of 

the first and second bending resonance of a sandwich beam with constrained damping layer. 

Jones et al. [18] investigated both theoretically and experimentally the damping capacity of a 

sandwich beam with viscoelastic core. Rao [25] investigated the free vibration of a short 

sandwich beam considering the higher order effects such as inertial, extension and shear of all 

the constrained layers. He found that if these parameters are neglected for short sandwich beam 

there is an error as high as 45% in estimation of the loss factor and frequencies. He and Rao 

[13] carried out a parameter study of the coupled flexural and longitudinal vibration of a curved 

sandwich beam. The study indicates the effect of curvature, core thickness and adhesive shear 

modulus on the system loss factors and resonant frequencies. He and Rao [14] in another work 

studied the vibration of multispan beams with arbitrary boundary condition. Effects of 

parameter like location of intermediate supports and adhesive thickness on the resonant 

frequencies and loss factors were investigated. 
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Asnani and Nakra [4] did analysis on multilayer simply supported sandwich beams and 

estimated loss factors and displacement response effectiveness for beams of different number 

of layers. Sakiyama et al. [27] developed a method analytically for free vibration analysis of a 

three layer continuous sandwich beam and investigated the effect of shear parameter and core 

thickness on the resonant frequencies and loss factors. Banerjee [3] investigated the free 

vibration of a three layer sandwich beam using dynamic stiffness matrix method. He calculated 

the natural frequencies and mode shapes. Nakra and Grootenhuis [22] analyzed theoretically 

as well as experimentally, the characteristics of asymmetric dual core sandwich beams in 

vibration. They ignored the rotary and longitudinal inertia terms in their analysis. Later Rao 

[25] included both these effects in his analysis. Rao and He [7] analyzed the sandwich beam in 

the dynamic state and of laminated composite simply supported beams with multiple damping 

layers. They found out the solution for the resonance frequencies and modal loss factors using 

energy and Ritz method.  Rao and his colleagues studied the variation of dynamic stiffness and 

modal loss factor of the system with structural parameters, operating temperature zone, and 

damping material characteristics. Finally experiment was conducted and compared with theory. 

A good agreement was achieved between predicted and measured natural frequencies. Nakra 

et al. [35] studied the effect of curvature, lack of symmetry, core thickness and modal number 

on the resonant frequency parameter and associated loss factor. Lall et al. [36] with the help of 

Rayleigh-Ritz Method and classical Euler Theorem found the core loss factor for a partially 

covered sandwich beam. 

2.1.2. SANDWICH BEAM WITH MAGNETORHELOGICAL ELASTOMER  

Chen et al. [29] developed natural rubber based MRE’s to develop the mechanical properties 

by considering different percentage of iron particles and reported that with the increase in iron 

particles the shear modulus of the MRE get increased. Nayak et al. [30] found the effects of 

magnetic fields on the dynamic characteristics of the sandwich beam. The work would be 
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useful in the passive and active vibration reduction application. Nayak et al. [31] suggest the 

stability of the MRE embedded sandwich beam can be improved by using magnetic field. Davis 

[32] did the point dipole method to calculate the shear modulus of the sandwich beam using 

the magnetic field applied in the beam. Rajamohan et al. [33] results suggests that the natural 

frequencies along with the transverse displacement of the partially treated MR beams are not 

only influenced by the magnetic field, but also by the location and length of the fluid pocket. 

Ulicny et al. [34] the iron subjected due to oxidation, there is a gradual loss of fan clutch torque 

capacity. Sun et al. [37] studied the relationship between the magnetic field and the complex 

shear modulus of the MR fluids. They studied the vibration minimization capabilities of the 

MR beam at different magnetic fields. Yalcintas et al. [38] studied and presented a detailed 

analysis of vibration control capabilities of adaptive structures based on MR and ER materials, 

and compared their vibration minimization rates, time responses and energy consumption rates. 

2.2 BLUEPRINT OF THE PRESENT WORK: 

The present work deals with the buckling and free vibration analysis of a beam with partially 

covering constraining layer with magnetorheological fluid core. For the analysis a fixed free 

cantilever was been used. The cantilever beam was partially covered and the equations of 

motion were derived using Finite Element method in conjunction with Hamilton’s principle. 

The displacement found out were used to find the global mass and stiffness matrix which was 

eventually used to find out the natural frequency. The first three mode of frequency was found 

out theoretically using MATLAB code. The patch at a distance of 3L/4 shows the maximum 

frequency in the three cases. The results found out for 3L/4 patch were used to look into the 

effect of magnetic field on the frequency. It was seen that the frequency increases with the 

increase in magnetic field. Also the buckling capacity of the beam gets increased when the 

patch is attached in the L/2 length. The experimental verification was done to verify the 

increase in frequency with increase in magnetic field. 
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3.1 FORMULATION OF THE PROBLEM: 

 

 

Fig 4. Cantilevered layered Sandwich Beam 

Figure (4) shows a three layered cantilevered symmetric sandwich beam of length L. The finite 

element model is been developed on the following assumptions: 

 The rotary inertia and shear deformations in the constraining layers are assumed to be 

negligible. 

 Linear theories of elasticity and viscoelasticity is been used.  

  In the layers no slip occurs and there is perfect continuity at the interfaces. 

3.2 Element matrices of the three layered Beam 

As shown in figure the element model shown here consists of two nodes and each node has 

four degrees of freedom. Nodal displacements are given by  

{ e} ={u1i  u3i  w1i  w3i θ1i θ3i u1j u3j w1j  w3j θ1j θ3j}T                                                                 (1) 

where i and j are the elemental nodal numbers. The axial displacement of the constraining layer, 

the transverse displacement and the rotational angle, are expressed in terms of nodal 

displacements and finite element shape functions. 

 u1 = [ Nu1 ] { e}, u3 = [ Nu3 ] { e}, w1 = [ Nw1 ] { e}, w3 = [ Nw3 ] { e}, 
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 θ1= [Nw]'{e}, θ3= [Nw3]'{e}                                                                                                   (2)  

where the prime denotes differentiation with respect to axial coordinate x and the shape 

functions are shown below:  

[Nu1] = [1- ξ 0 0 0 0 0 ξ 0 0 0 0 0] 

[Nu3] = [0 1- ξ 0 0 0 0 0 ξ 0 0 0 0] 

[Nw1] = [ 0  0  (1-3 2 +23 )  0 (-2 2 +3 )Le  0  0  0 3 2 -23  0  (- 2 +3 ) Le  0 ]  

[Nw3] = [ 0  0  0 (1-3 2 +23 )  0 (-2 2 +3 )Le  0  0  0 3 2 -23  0  (- 2 +3 ) Le ]                                            

where ξ = x / L and L is the length of the element. 

 

 

 

 

 

 

The element potential energy (U (e)) of the beam is equal to sum of potential energy of the 

constraining layers and viscoelastic layers. 

U (e) =  Uc
(e)

  + Uv
(e)

                                                                                                                   (3)  

3.2.1 Element Matrices of constraining layers: 

The potential energy of the constrained layers is been written as: 

W1i 

U1i 

U3i 

W3i 

W1j 

U1j 

U3j 

W3j 

L 

Fig.5 Finite Beam Element for a three layered Sandwich Beam 
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Uk
(e)

=  
1

2
∫ EkIk [

d2wk

dx2
]

2

dx +

l

0

1

2
∫ EkAk [

duk

dx
]

2

dx

l

0

                 k = 1,3                                    (4) 

where E, A and I are the Young's modulus of the beam, cross-sectional area and moment of 

inertia respectively. The notations 1 and 3 represents the upper and lower constraining layer, 

respectively. 

The kinetic energy of the constraining layers is been written as  

Tk
(e)

=
1

2
∫ ρ

k
Ak [

dwk

dt
]

2

dx +

l

0

1

2
∫ ρ

k
Ak [

duk

dt
]

2

dx

l

0

            k = 1,3                                            (5) 

where  is the mass density. 

By substituting Eq. (2) in to Eq. (4) and Eq. (5), the elemental potential energy and the kinetic 

energy of the constraining layers can be written as  

Uk
(e)

=
1

2
{∆(e)} ([Kku

(e)
] + [Kkw

(e)
]) {∆(e)}                              k = 1,3                                              (6) 

and 

Tk
(e)

=
1

2
{∆(e)} ([Mku

(e)
] + [Mkw

(e)
]) {∆(e)}                            k = 1,3                                              (7) 

where, 

 [Kku
(e)

] = [K1u
(e)

] + [K3u
(e)

] = E1A1 ∫ [N1]Tl

0
[N1]dx + E3A3 ∫ [N3]Tl

0
[N3]dx     

 [Kkw
(e)

] = [K1w
(e)

] + [K3w
(e)

] = E1I1 ∫ [Nw]′′Tl

0
[Nw]′′dx + E3I3 ∫ [Nw]′′Tl

0
[Nw]′′dx                      (8)                                                      

 [Mku
(e)

] = [M1u
(e)

] + [M3u
(e)

] = ρ
1

A1 ∫ [N1]Tl

0
[N1]dx + ρ

3
A3 ∫ [N3]Tl

0
[N3]dx    

 [Mkw
(e)

] = [M1w
(e)

] + [M3w
(e)

] = ρ
1

A1 ∫ [Nw]Tl

0
[N1]dx + ρ

3
A3 ∫ [Nw]Tl

0
[N3]dx 
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and the dot denotes the differentiation with respect to time t. 

3.2.2 Element Matrices of viscoelastic layer: 

The potential energy of Viscoelastic layer due to shear deformation is written as 

Uv
(e)

=
1

2
∫ GvAvγ

v
2dx +

1

2
∫ EvAvεvL

2 dx +
1

2

l

0

l

0

∫ GvAvεvT
2 dx

l

0

                                                       (9) 

where Av is the cross-sectional area and Gv is the complex shear modulus of viscoelastic layer. 

Gv = Gv
*[1+i (ηc)]. Gv

*
 is the in-phase shear modulus of the viscoelastic material layer and ηc 

is the associated core loss factor and i=√-1.  

For sealing of MR fluid a silicone gel was applied at the edges having uniform thickness to 

hold the MR fluid within the beam. The middle layer of the sandwich beam contains the 

silicone seal and the MR fluid, however, it is considered as homogenous material layer having 

equivalent shear modulus and can be represented by moduli and width of two material such as, 

 G̅ = Gr (
br

b
) + G∗(1 −

br

b
) 

where, Gr and G* are the shear modulus of the rubber and MR fluid respectively. G̅ is the 

equivalent shear modulus of the homogeneous layer, 𝑏𝑟 and b are the widths of the rubber and 

entire beam respectively,. In the pre yield region, the MR material exhibits viscoelastic 

behavior, which can be described in terms of the complex modulus G* and given by, 

G∗ = G′ + iG′′ 

where, 𝐺′ is storing modulus of the MR fluid, which represent during a deformation cycle 

average energy stored per unit volume of the material, and 𝐺′′ is the loss modulus, it represent 

the energy dissipated per unit volume of the material over a cycle. 
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The simulation is performed for a sandwich beam with MR core with a dimensions of elastic 

layer is 300mm×30mm×1mm with an identical thickness of MR fluid layers. The various 

properties of material are, 

E1=E3=68GPa;ρ1 = ρ3 = 2700kg/m3; ρ2 = 3500kg/m3; ρr = 1233kg/m3;  

There exist a relation between a shear modulus and applied magnetic field and is given by, 

G′(B) = −3.3691B2 + 4.9975 × 103 B + 0.893 × 106 

G′′(B) =  −0.9B2 + 0.8124 × 103 B + 0.1855 × 106   

The shear strain 
v
 , longitudinal strain (εvL) and transverse shear strain (εvT) due to thickness 

deformation in the  viscoelastic layer from kinematic relationship between the constraining 

layers  shown as follows: 

γ
v

=
𝑢1 − 𝑢3

2
+

(t1 + t2)

2t2

∂w1

∂x
+

(t2 + t3)

2t2

∂w3

∂x
                                                                                     

εvL =
1

2
(

∂u1

∂x
+

∂u3

∂x
) +

t1

4
(

∂w1

∂x
) −

t3

4
(

∂w3

∂x
)                                                           (10)                                                                         

εvT = (
w1−w3

t2
) 

Substituting Eq. (2) in to Eq. (10) γ
v
,εvL, εvT and uvcan be expressed in terms of nodal 

displacements and element shape functions:  

γv = [Nγ]{∆(e)}                                                                                                                       

𝜀vL = [𝑁𝐿]{∆(𝑒)}                                                                                                                                (11)    

𝜀vT = [𝑁𝑇]{∆(𝑒)}                                                                                                                                           

where 



19 
 

 [Nγ] =
([Nu1] − [Nu1])

𝑡2
+

(t1 + t2)

2t2

[Nw1] −
(t3 + t2)

2t2

[Nw3]                             

[NL] =
1

2
([Nu1]′ + [Nu3]′) +

t1

4
[Nw1]′′ −

t3

4
[Nw3]′′                                                                 (12) 

[NT] =
1

t2

([Nw1] − [Nw3])                                                                                                                       

Substituting eq. (11) in to eq. (7) the potential energy of the viscoelastic material layer is 

shown as 

Uv
(e)

=
1

2
{∆(e)}

T
([Kvγ

(e)
] + [KvL

(e)
] + [KvT

(e)
]) {∆(e)}                                                                     (13) 

where, 

[Kvγ
(e)

] =  GvAv ∫[Nγ]
T

[Nγ]dx 

l

0

                                                                                                                  

[KvL
(e)

] = EvAv ∫[NL]T[NL]dx

l

0

                                                                                                        (14) 

[KvT
(e)

] = EvAv ∫[NT]T[NT]dx

l

0

                                                                                                                 

The kinetic energy of the viscoelastic layer is shown as below 

Tv
(e)

=  
1

2
∫ ρ

v
Av {[

∂wv

∂t
]

2

+ [
∂uv

∂t
]

2

}

l

0

dx                                                                                       (15) 

where Av is the cross-sectional area and ρ
v

 is the mass density of the viscoelastic layer. The 

axial and lateral displacement uv and wv of the viscoelastic layer were derived from kinematic 

relationships between the constraining layers is expressed as follows: 
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uv =
u3 + u1

2
+

t1

4

∂w1

∂x
−

t3

4

∂w3

∂x
                                                                                                  (16) 

wv =
w3 + w1

2
                                                                                                                                             

Substituting eq. (2) in to eq. (16) uv and wv can be expressed in terms of nodal displacements 

and elemental shape functions: 

uv = [NvL]{∆(e)}                                                                                                                                (17) 

wv = [NvT]{∆(e)}                                                                                                                                         

where, 

[NvL] =
1

2
([Nu3] + [Nu1]) +

t1

4
[N𝑤1] −

t3

4
[Nw3]                                                                      (18) 

[NvT] =
1

2
([Nw3] + [Nw1])                                                                                                                        

Substituting eq. (2) in to eq. (17) and (15), the kinetic energy of viscoelastic material layers is 

shown as 

Tv
(e)

=  
1

2
{∆̇(e)}

T
([MvL

(e)
] + [MvT

(e)
]) {∆̇(e)}                                                                                  (19) 

where, 

[MvL
(e)

] = ρ
v

Av ∫[NvL]T[NvL]dx

l

0

                                                                                                      (20) 

[MvT
(e)

] = ρ
v

Av ∫[NvT]T[NvT]dx

l

0

                                                                                                                

The total potential energy of the element is shown below: 
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U(e) = ∑
1

2
k=1,3

{∆(e)}
T

([K(k)u
(e)

] + [K(k)w
(e)

]) {∆(e)} +
1

2
{∆(e)}

T
([Kvγ

(e)
] + [KvL

(e)
] + [KvT

(e)
]){∆(e)}  

U(e) =
1

2
{∆(e)}

T
[K(e)]{∆(e)}                                                                                                              (21) 

where, 

[K(e)] = ∑ ([K(2k−1)u
(e)

] + [K(2k−1)w
(e)

])

k=1,2

+ [Kvγ
(e)

] + [KvL
(e)

] + [KvT
(e)

]                                     (22) 

[K(e)] is the element stiffness matrix. 

The total kinetic energy of the element is shown below: 

T(e) = ∑
1

2
k=1,3

{∆̇(e)}
T

([M(k)u
(e)

] + [M(k)w
(e)

]) {∆̇(e)} +
1

2
{∆̇(e)}

T
([MvL

(e)
] + [MvT

(e)
]) {∆̇(e)}  

T(e) =
1

2
{∆̇(e)}

T
[M(e)]{∆̇(e)}                                                                                                             (23) 

 where, 

[M(e)] = ∑ ([M(2k−1)u
(e)

] + [M(2k−1)w
(e)

]) + ([MvL
(e)

] + [MvT
(e)

])

k=1,2

                                            (24) 

[M(e)] is the elemental mass matrix. 

3.2.3 Element geometric stiffness matrix: 

The elemental work done by axial force P is written as:  

22

( ) 31

0

1

2

l

e

p

ww
W P dx

x x

    
     

      
                                                                               (25)                                                                                                                                                                                                                               

The work done by the axial load can be rewritten as:  

   ( ) ( ) ( ) ( )1

2

T
e e e e

p gW K                                                                                                      (26) 
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where 

        ( )

1 1 3 3

0

[ ]

l
T Te

g w w w wK N N N N dx
   

                                                                                             (27)   

is the elemental geometric stiffness matrix. 

3.3 Element matrices of the single layered Beam: 

From figure (4) we can clearly see that the sandwich beam is not three layered for the whole 

length. There is patch wise three layered beam, therefore for the single layered we have to 

consider the bottom beam without any effect of the viscoelastic layer. Nodal displacement are 

given by: 

{ e} ={u11  w11  θ11  u12  w12  θ12 }T                                                                                                                                    (28) 

where 1 and 2 are the elemental nodal numbers. The axial displacement of the constraining 

layer, the transverse displacement and the rotational angle, are expressed in terms of nodal 

displacements and finite element shape functions. 

 u1=[Nu1]{e},w1=[Nw1]{e}, θ1= [Nw1]'{e},                                                                        (29)                                                                                    

where the prime denotes differentiation with respect to axial coordinate x and the shape 

functions are shown below:  

[Nu1] = [1- ξ  0  0  ξ  0   0] 

[Nw1] = [0    (1-3 2 +23)   (-2 2 +3 )Le    0   3 2 -23   (- 2 +3 ) Le   ]  

where ξ = x / L and L is the length of the element. 
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Fig. 6 Finite Beam Element for a single Layered Sandwich Beam 

 

The element potential energy (U (e)) of the beam is equal to sum of potential energy of the 

constraining layers. 

U (e) =  Uc
(e)

                                                                                                                           (30)  

3.3.1 Element Matrices of constraining layers: 

The potential energy of the constrained layers is been written as: 

Uk
(e)

=  
1

2
∫ EkIk [

d2wk

dx2
]

2

dx +

l

0

1

2
∫ EkAk [

duk

dx
]

2

dx

l

0

                 k = 1                                  (31) 

where E, A and I are the Young's modulus of the beam, cross-sectional area and moment of 

inertia respectively. The notations 1 represents the lower constraining layer, respectively. 

The kinetic energy of the constraining layers is been written as  

Tk
(e)

=
1

2
∫ ρkAk [

dwk

dt
]

2

dx +

l

0

1

2
∫ ρkAk [

duk

d𝑡
]

2

dx

l

0

               k = 1                                           (32) 

where  is the mass density. 
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By substituting Eq. (29) in to Eq. (31) and Eq. (32), the elemental potential energy and the 

kinetic energy of the constraining layers can be written as  

Uk
(e)

=
1

2
{∆(e)} ([Kku

(e)
] + [Kkw

(e)
]) {∆(e)}                               k = 1                                               (33) 

and 

Tk
(e)

=
1

2
{∆(e)} ([Mku

(e)
] + [Mkw

(e)
]) {∆(e)}                                k = 1                                             (34) 

where, 

 [Kku
(e)

] = [K1u
(e)

] = E1A1 ∫ [N1]Tl

0
[N1]dx     

 [Kkw
(e)

] = [K1w
(e)

] = E1I1 ∫ [Nw]′′Tl

0
[Nw]′′dx                                                                                   (35)                                                       

 [Mku
(e)

] = [M1u
(e)

] = ρ1A1 ∫ [N1]Tl

0
[N1]dx 

 [Mkw
(e)

] = [M1w
(e)

] = ρ1A1 ∫ [Nw]Tl

0
[N1]dx                                                                                      (36) 

and the dot denotes the differentiation with respect to time t. 

The total potential energy of the element is shown below: 

U(e) = ∑
1

2
k=1

{∆(e)}
T

([K(k)u
(e)

] + [K(k)w
(e)

]) {∆(e)}                                                         

U(e) =
1

2
{∆(e)}

T
[K(e)]{∆(e)}                                                                                                             (37) 

where, 

[K(e)] = ∑ ([K(2k−1)u
(e)

] + [K(2k−1)w
(e)

])

k=1

                                                                                        (38) 
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[K(e)] is the element stiffness matrix. 

The total kinetic energy of the element is shown below: 

T(e) = ∑
1

2
k=1

{∆̇(e)}
T

([M(2k−1)u
(e)

] + [M(2k−1)w
(e)

]) {∆̇(e)}                                                                       

T(e) =
1

2
{∆̇(e)}

T
[M(e)]{∆̇(e)}                                                                                                            (39)  

where, 

[M(e)] = ∑ ([M(2k−1)u
(e)

] + [M(2k−1)w
(e)

])

k=1

                                                                                      (40) 

[M(e)] is the elemental mass matrix. 

The elemental work done by axial force P is written as  

2

( ) 1

0

1

2

l

e

p

w
W P dx

x

  
   

   
                                                                                                                (41)                                                                                                  

Work done by the axial load can be rewritten as  

   ( ) ( ) ( ) ( )1

2

T
e e e e

p gW K                                                                                                                             (42)        

where     ( )

1 1

0

[ ]

l
Te

g w wK N N dx
 

                                                                                               (43)                       

is the elemental geometric stiffness matrix. 

3.4 Governing Equation of motion: 

The element equation of motion for a sandwich beam is obtained by using Hamilton's principle. 
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  0
2

1

)()()(  dtWUT

t

t

e

p

ee                                                                                                  (44)                                                                  

Substituting the previous equation, the equation of motion for the sandwich beam element is 

obtained as follows: 

     ( ) ( ) ( ) ( ) ( ) ( ) 0e e e e e e

gM K P K                                                     (45)   

Assembling mass, elastic stiffness and geometric stiffness matrices of individual element, the 

equation of motion for the beam is written as: 

        0gM K P K                                                                                                  (46) 

Governing equation to determine natural frequency 

      0M K     

Governing equation to determine buckling load 

     0gK P K       

where    is the global displacement matrix. 
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4.1 Experimental methodology: 

The specimen was prepared for L/4, L/2 and 3L/4 patch to validate the results obtained by the 

theoretical one for magnetic field strength of 300G.  

4.1.1 Specimen preparation: 

The specimen was prepared in the following way: 

 Aluminium sheet of (40*4*0.5) cm was made as the base beam. 

 Aluminium sheet of (4*4*0.5) cm was made as the constraining layer at length of 10cm, 

20cm and 30 cm. 

 The top and the bottom layer was initially bonded with the help of silicone gel which 

was kept to be dried up for 48 hours. 

 The space between the top and bottom layer was filled up with magnetorheological 

fluid. 

 The magnetorheological fluid was prepared with the help of silica oil which was poured 

along with the iron particles in a definite proportion i.e. 20% of silica oil by weight. 

 The magnetorheological fluid was injected into the space provided with the help of 

syringe.  

4.1.2 Experiment procedure: 

 The specimen prepared was fixed at the holder of the electro dynamic shaker machine 

and magnetic field strength of 300G is been applied. 

 The specimen natural frequency was calculated theoretically to get a rough idea of its 

frequency. 
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 The accelerometer probe was connected to the oscilloscope at one end and to the other 

end to the specimen. 

 The digital switching power machine was connected to the dynamic shaker machine 

through which the frequency can be regulated. 

 The vibration was increased by the knob of frequency in the digital switching power 

machine. 

 The amplitude is viewed in the oscilloscope. 

 As the amplitude range gets increased there would be one point where there would be 

no further increase and there would be decrement in amplitude. 

 At that particular amplitude, the frequency recorded would be the 1st mode of the natural 

frequency. 

 Similarly the next mode of frequency could be calculated. 

 

 

 

          L/4               L/2                             3L/4                              L 

Fig.7 Schematic diagram of the specimen 

In the present figure: 

1. Base layer of Aluminium sheet. 

2. Middle layer of MR Fluid. 

3. Top layer of Aluminium sheet. 

1 

2 

3 
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Fig. 8 Experiment Set up. 

 

 

Fig.9 Experimental set up of L/2 specimen. 
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Fig. 10 Experimental set up of 3L/4 set up. 

                   ACCELEROMETER 

                                                                                                         MAGNET 

                            SPECIMEN                                                         

 

 

 

 

 

 

 

 

Fig. 11 Schematic diagram of the Experimental set up 

ELECTRO DYNAMIC 

SHOCKER 
SUPPORT 

OSCILLOSCOPE 

DIGITAL SWITCHING 

POWER AMPLIFIER 
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5.1 RESULTS AND DISCUSSION: 

The sandwich beam was discretized using Finite Elements. An eight element discretization 

satisfy the convergence requirement. The following graphs were obtained are shown below: 

 

Fig. 12 shows the plot between the effects of constraining layer position on 1st mode frequency. 

 

Fig.13 shows the plot between the effects of constraining layer position on 2nd mode frequency 
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Fig.14 shows the plot between the effects of constraining layer position on 3rd mode frequency. 

From the above three plot it clearly indicates the highest frequency is achieved nearer to the 

free end for the three mode of vibration.  

 

Fig.15 shows the plot between the effects of magnetic field strength on 1st mode frequency. 
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Fig.16 shows the plot between the effects of magnetic field strength on 2nd mode frequency. 

 

Fig.17 shows the plot between the effects of magnetic field strength on 3rd mode frequency. 

From the above three plot it clearly indicates with increase in magnetic field, there is 

considerable increase in the first three mode of frequency of the patch in the 3/4th end of the 

sandwich beam with the MR fluid. 
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Fig.18 shows the plot between the effects of constraining layer position on fundamental 

buckling load. The above plot shows maximum buckling capacity is achieved by placing the 

constraining layer at the mid position of the beam. 

Experimental results for magnetic field strength of 300G: 

Constraining Layer position 𝟏𝒔𝒕 mode frequency in Hz 𝟐𝒏𝒅 mode frequency in Hz 

 Theoretical Practical Theoretical Practical 

𝐿

4
 

15.4 17.0 29.4 28 

𝐿

2
 

18.57 20.0 20.49 24 

3𝐿

4
 

27.94 26.0 50.65 51 

 

Table 1: Experimental result for magnetic field strength of 300G 
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The discrepancy in the theoretically calculated and experimentally measured value may be due 

to experimental error or may be due assumptions made to derive the governing equations. 

However the values are very close to each other. 
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6.1 CONCLUSION AND FUTURE SCOPE OF WORK: 

In the present case the governing equation of motion have been derived using Hamilton’s 

principle in conjunction with finite element method.  

The effect of magnetic field strength and constraining layer position on the frequency and 

critical buckling load of the beam has been studied. The constraining layer nearer to the free 

end gives highest value of frequencies in the first three mode frequency. The effect of magnetic 

field on the constraining layer nearer to the free end is been investigated. It has been found that 

with increase in magnetic field strength there is a considerable increase in the frequencies of 

the constraining layer nearer to the free end. Maximum buckling capacity is achieved by 

placing the constraining layer at the mid position of the beam. 

The scope for future work can be seen as: 

 Forced vibration can be used. 

 Different types of MR fluids could be used. 

 Dynamic stability factors can also be considered. 

 Experimental results could be extended to other magnetic field strength. 

 The analysis can be extended to other structural elements like plates and shells. 
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