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ABSTRACT 

 The tremendous worldwide growth in the use of Internet and multimedia services 

prompted the ambitious planning for evolution of commercial and broadband satellite 

communication systems.  The traditional C and Ku bands in satellite communications are 

getting crowded, So the systems are moving towards higher frequency ranges above 20 

GHz. The Ka-band (18-40 GHz) frequency spectrum has gained attention for satellite 

communication. The inherent drawback of Ka-band satellite system is that increase in signal 

distortion resulting from propagation effects. Atmospheric attenuation in Ka-band is always 

severe, especially in the presence of rain. Thus, New technologies are required for Ka-band 

systems, such as multiple hopping antenna beams and regenerative transponders to support 

aggregate data rates in the range of 1 - 20 Gbps per satellite, which can provide DTH,  

HDTV, mobile and fixed Internet users with broadband  connection. Currently in India C 

and Ku-band frequencies are being used for commercial satellite communications. In future 

Ka-band will be used for wideband applications. Keeping in view of the socio-economic and 

geographical diversities of India. Propagation studies are essential for estimation of 

attenuation, so that Ka-band satellite links operating in different parts of Indian region can be 

registered appropriately. Ka-band system is recognized as a new generation in 

communication satellites that encompasses a number of innovative technologies such as on 

board processing (OBP) for multimedia applications and switching to provide two way 

services to and from small ground terminals. To do this efficiently multiple pencil like spot 

beams are used. One distinct feature of this propagation being used to address this problem is 

Satellite Spot-Beam. To design effective satellite communication system, the arrangement of 

spot beam locations in Indian subcontinent, the study and analysis of link availability for Ka-

band satellite communication in various geographically separated spot beams in India using 

statistical data is necessary. Based on global rain models integrated with the link budget, the 

study allows us to examine major system design issues encountered in Ka-band satellite 

communication  that are susceptible to propagation impairments. This system can be flexible 

enough to increase power on specific transmissions to compensate for local weather 

conditions. This can make better use of the available bandwidth than C or Ku-band satellite, 

and more users can get higher level of services. 

Key words: Satellite communication in India, Ka Band, Rain attenuation, OBP, Power control. 
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    Chapter 1 

 Introduction  

1.1  Introduction 

  Satellite communication systems have become an essential part of world’s 

communication infrastructure, serving billions of people with telephone, data, and video 

services. Despite the growth of fibre-optic links, satellite systems continue to dominate 

attracting fresh investment in new systems. The proposed systems must provide two-way   

interactive services to support data rates of 1 to 20 Gbps [48] per satellite. The International 

Telecommunication Union (ITU) has granted licenses to satellite organizations to operate 

broadband satellite systems in the Ka-band spectrum, which is often referred to as 30/20 

GHz [29]. This paper assesses the future role of satellite communications in providing 

mobile, fixed Internet users with broadband connection in India. It analyzes Ka-band 

satellite communication link available in geographically dispersed zones through spot beam 

techniques in India. It is based on global rain models integrated with the link budget [29]. 

The rain models developed, allow us to examine major system design issues encountered in 

Ka-band or higher satellite communication bands   that are susceptible to propagation 

impairments.  

Today’s communications satellites offer extensive capabilities in applications 

involving data, voice, and video, with services provided to fixed broadcast, mobile systems, 

personal communications, and private network users. Worldwide, there have been 

considerable experiments on   Ka-band Satellites to solve the problem of saturation of the 

available orbital slots at C and Ku-band and to provide new services for the information 

age. Ka-band system is recognized as a new generation for communication satellites [47] 

[8] that encompasses a number of innovative technologies such as on board processing 

(OBP) for multimedia applications and switching to provide   two way services  to and from 

small ground VSAT terminals[5]. To do this efficiently multiple pencil like spot beams are 

used. This paper proposes 16 spot-beam locations to cover Indian main land. The on board 

processing and switching (effectively the provision of the equivalent of a sophisticated 

telephone switch board on a satellite) are already employed in satellites providing mobile 

communications to handheld receivers in some western part of world.  
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1.2 Background and Motivation 

The growing demand for advanced telecommunication services, due to an increase 

of  traffic and the number of users, requires the extension of the capacity assigned to the 

services. Satellite systems can be very useful to this, because of their typical flexibility in 

terms of coverage area and the possibility of being utilized as private networks or for 

interconnecting public at large. Capacity enhancement can be achieved both the ways with 

new available spectrums and efficient use of the existing ones [52]. 

 The satellite communication system providers are moving towards Ka-band and 

other higher frequency ranges, as the pre-allocated satcom bands have become crowded [8]. 

Ka-band satellite systems use uplinks at a frequency of about 30GHz and downlinks near 

20GHz. More than a dozen Ka-band systems have been proposed for launch in this decade. 

One inherent drawback of Ka-band satellite systems is increase in signal distortion resulting 

from propagation effects [28]. Atmospheric attenuation in Ka-band is severe, especially in 

the presence of rain [7]. Tropospheric scintillation increases with frequency, creating fast 

amplitude variations and additional phase noise in the transmission [55]. The scintillation is 

generally enhanced by smaller antenna apertures and very small aperture terminals 

(VSATs), which are becoming very popular.  

The NASA Advanced Communication Technology Satellite (ACTS) program has 

provided a means to investigate the problems associated with Ka-band satellite 

transmissions [7]. ACTS is the first Ka-band communication satellite in geostationary orbit 

(GSO) over the western hemisphere (September 1993).  ACTS has served as a test bed for 

many of the new technologies needed for Ka-band systems, such as multiple hopping 

antenna beams and regenerative transponders [54]. 

 During last five years Indian Space Research Organisation (ISRO) has started 

investigating the problems in Indian region. It had launched GSAT4 satellite on 15th April 

2010 but the mission failed. So the investigation through this satellite as envisaged could 

not materialise. Here we have tried by collecting the standard data from Indian meteorology 

and the international agencies like ITU, NASA, journals and research papers, to compare 

the behaviour with the tropical countries reports to get a step ahead on the study of Ka band 

in Indian region [2].  
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1.3  Features of Ka- Band 

Ka-band is having raw bandwidth of around 13 GHz (27-40 GHz) and some 

additional 9 GHz of K-band (18-27 GHz) typically used for Ka-band satellite downlinks, 

compares well with the 6 GHz of Ku-band  [8][52]. 

The advantage of Ka-band over other forms of internet via satellite is that it only 

requires a dish antenna of size 65 cms×75cms.  Additionally Ka-band uses spot beams for 

service via satellite, which makes better use of the available bandwidth than a C or Ku-band 

(12-18 GHz) satellite, i.e. more users can get higher level of services.  

At Ka-band the propagation impairment strongly limits the quality & availability 

service in satellite communications [8]. Attenuation due to rain plays a significant role in 

tropical regions [20], especially with a great diversity of climatic conditions in India. 

Currently in Indian region C and Ku-band frequencies are being used for commercial 

satellite communication applications. In future Ka-band will be used for wideband 

applications. Propagation studies are essential for estimation of attenuation so that Ka-band 

satellite links operating in different parts of Indian region can be registered appropriately. 

The details of Ka band and its difficulties are discussed in chapter 2. 

1.3.1 Ka-band Earth-GEO Links 

 In the last decades, satellite communications have been moving from lower 

frequency band, i.e., C-band (6/4 GHz) and Ku-band (14/12 GHz), to higher frequency 

band, i.e., Ka-band (30/20 GHz). Moving to higher frequencies [37] will offer several 

advantages [8]: 

− Less congested spectrum: C-band frequencies have been used for a long time for 

satellite communications and is already saturated. Afterwards, satellite 

communications migrated to Ku-band frequencies, but have been filling up rapidly. 

Higher frequency band is hence needed badly to solve the problem. 

− Reduced interference potential: Because Ka-band has not yet been used widely, 

cross interference is expected to be less.  

− Higher data rates:  Compared with C-band (downlink frequencies between 3.7 to 

4.2GHz, and uplink frequencies between 5.925 to 6.425GHz) and Ku-band (uplink 

frequencies between 14 and l4.5GHz, and downlink frequencies between 11.7 and 

12.7GHz), Ka-band offers wider bandwidths, and as a result, higher data rates. 
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− Smaller equipment size: The diameters of Ka-band antennas varies between 2 feet 

and 5 feet, while for C-band, large dish is required with diameter of about 6 feet, and 

for Ku-band, the diameter is between 2.6 and 5 feet.  

1.3.2 Successful Ka band Missions 
 
 Ka-band satellite service on Earth-GEO (geostationary earth orbit) links was first 

introduced as early as the 1970’s in Japan. Afterwards, ESA and NASA both showed 

interests in introducing higher frequency band, i.e., Ka-band, to satellite communications. 

Several significant measurement campaigns were conducted and contributed greatly to 

characterization of the propagation channel, investigating the propagation impairments, and 

developing/improving the prediction models and fade mitigation techniques for Ka band 

Earth-GEO links [54]. 

• The OLYMPUS experiment started in 1989 by ESA, and terminated in August 

1993. During the satellite’s lifetime, the OLYMPUS beacon signal for propagation research 

was received and analyzed at more than fifty locations covering all of Western Europe with 

different climatic regions, and a few in North America. [8][45]. 

• The ITALSAT program was initiated by the Italian Space Agency, with the purpose 

of demonstrating advanced technologies in the field of Ka-band propagation. ITALSAT was 

launched in December 1991 into a geostationary orbit. The propagation measurements were 

performed at the frequencies of 20, 40 and 50 GHz. 

• The Advanced Communications Technology Satellite (ACTS) was conceived at the 

National Aeronautics and Space Administration (NASA). It was designed to obtain slant-

path attenuation statistics for locations within the United States and Canada for use in the 

design of low-margin Ka-band satellite communication systems. ACTS provided beacon 

signals at 20.2 and 27.5 GHz for use in making attenuation measurements [54]. 

 After the successful commercial application of Ku-band ,2000  onwards, there have 

been growing commercial interests in using Ka-band on Earth-GEO links to provide 

different kinds of service, especially low-price high-speed two-way broadband internet 

service [7][8]. Past successful events and future launches include Anik-F2 (Canada, 2004), 

WildBlue-1 (U.S., 2006), Spaceway system (U.S., 2005 and 2006), KA-SAT (Europe, 

2010) and ViaSat (U.S., 2011) [48]. 
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1.4 Rain and Attenuation  

  The attenuation is caused by the scattering and absorption of electromagnetic waves 

by drops of liquid water. The scattering diffuses the signal, while absorption involves the 

resonance of the waves with individual molecules of water. Absorption increases the 

molecular energy, corresponding to a slight increase in temperature [8], and results in an 

equivalent loss of signal energy. Attenuation is negligible for snow or ice crystals, in which 

the molecules are tightly bound and do not interact with the waves [7]. The attenuation 

increases as the wavelength approaches the size of a typical raindrop (water particles), 

which is about 1.5 millimetres. Wavelength and frequency are related by the relation           

c = λ. f, where λ is the wavelength, f is the frequency, and c is the speed of light 

(approximately 3 x 108 m/s). For example, at the C-band downlink frequency of 4 GHz, the 

wavelength is 75 millimetres. The wavelength is thus 50 times larger than a raindrop and 

the signal passes through the rain with relatively small attenuation. At the Ku-band 

downlink frequency of 12 GHz, the wavelength is 25 millimetres. Again, the wavelength is 

much greater than the size of a raindrop, although not as much as at C-band. At Ka-band, 

with a downlink frequency of 20 GHz, the wavelength is 15 millimetres and at V-band, at a 

downlink frequency of 40 GHz, it is only 7.5 millimetres. At these frequencies, the 

wavelength and raindrop size are comparable and the attenuation is quite large. 

Considerable research has been carried out to model rain attenuation mathematically and to 

characterize rainfall throughout the world. Many experimental measurements are done in 

western hemisphere related to this field. [7] 

 The standard method of representing rain attenuation is through an equation of the 

form (details in chapter 3)  

  Where, Lr is the rain attenuation in decibels (dB), R is the rain rate in millimetres 

per hour, L is an equivalent path length (km), and α and β are empirical coefficients that 

depend on frequency and to some extent on the polarization. The factor γ is called the 

specific rain attenuation, which is expressed in dB/km. The equivalent path length depends 

on the angle of elevation to the satellite, the height of the rain layer, and the latitude of the 

earth station.  The rain rate enters into this equation because it is a measure of the average 

size of the raindrops. When the rain rate increases, i.e. it rains harder, the rain drops are 

rL  =  R . L =  L                                                (1.1)βα ϒ         
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larger and thus there is more attenuation. Rain models differ principally in the way the 

effective path length L is calculated. Two authoritative rain models that are widely used are 

the Crane model and the ITU-R (CCIR) model [8][34]. The original Crane model is the 

global model which we have taken for our analysis for Indian region. A revision of this 

model that accounts for both the dense centre and fringe area of a rain cell is the so-called 

two component model (1.2)[7]. 

  In the design of any engineering system, it is impossible to guarantee the 

performance under every conceivable condition. One sets reasonable limits based on the 

conditions that are expected to occur at a given level of probability. In the design of a 

satellite communications link one includes margin to compensate for the effects of rain at a 

given level of availability, details in chapter 4. The statistical characterization of rain begins 

by dividing the world into rain climate zones [29]. Within each zone, the maximum rain rate 

for a given probability is determined from actual meteorological data accumulated over 

many years.  

1.5 Major Propagation Impairments on Ka-band Earth-Space Links  

 One major problem of using Ka-band on Earth-space links is that the propagation 

impairments become more severe at such high frequencies [18][19]. Free space loss is the 

dominant component of the propagation attenuation. It can be calculated by using the 

equation     

 
 
 

Where, L is the path loss, d is the distance between the satellite and the earth 

station, λ is the wavelength of the signal in use. Attenuation by atmospheric gases depends 

on frequency, elevation angle, and altitude above sea level and water vapour density. It is 

relatively small compared to rain attenuation. Rain affects the transmission of an 

electromagnetic signal in three ways [7]:   

� It attenuates the signal;  

� It increases the system noise temperature; 

� It changes the polarization. 
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Figure 1.1 Total dry air and water-vapour zenith attenuation from sea level for standard atmosphere.  

Surface pressure 1013hPa, surface temperature 15 °C, surface water-vapour density: 7.5g/m3 [14] 

 All three of these mechanisms cause degradation in the received signal quality and 

become increasingly significant as the carrier frequency increases. Frequency below 10GHz 

it may normally be neglected, however it is significant above 10GHz, especially for low 

elevation angles. Water vapour is the main contributor compared to gaseous attenuation in 

the frequency range below 30GHz with a maximum occurring at 22.275GHz, which is the 

resonance frequency of water particles with RF [8]. The attenuation due to oxygen 

absorption exhibits an almost constant behaviour for different climatic conditions, whereas 

the attenuation due to water vapour varies with temperature and absolute humidity. Rain 

fade is the signal degradation due to interference of rainfall or clouds with radio waves 

(RF). Attenuation due to rain is a dominant factor for determining link availability at 

frequencies above 10 GHz. It depends on temperature, drop size distribution, terminal 

velocity and the shape of the raindrops. Also Ka-band is affected by cloud in the path [45]. 

 Gas attenuation is caused by gas molecules (oxygen and water vapour) absorbing 

energy from the radio waves passing through them. Gas attenuation increases with 
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Dry Atmosphere 
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increasing frequency, and is dependent on temperature, pressure, and humidity. ITU-R 

P.676-6 includes and approximate model of calculating the gaseous attenuation. Clouds and 

fog consist of water droplets (less than 0.1 mm in diameter), which absorb and scatter 

energy and causes reduction in signal amplitude. Although cloud attenuation is not severe, it 

usually presents for large percentage of the time. The method of obtaining cloud and fog 

attenuation is described in ITU-R 840 [26]. 

 Raindrops absorb and scatter radio wave energy, resulting in rain attenuation, which 

is the major impairment for frequency bands above 10 GHz. Because of the smaller 

wavelength, transmission at Ka-band is more susceptive to rain attenuation, which could 

reach 40 dB at 30 GHz. Rain attenuation severely impairs the link performance, and 

therefore, fade mitigation techniques (FMT), such as power control and site diversity, are 

implemented to predict or compensate the rain fading [3]. 

1.5.1   Effect of scintillation 

 Scintillation, here defined as tropospheric scintillation, is a rapid and random 

fluctuation in one or more of the characteristics (amplitude, phase, polarization, and 

direction of arrival) of a received signal, which is caused by refractive index fluctuations of 

turbulence due to turbulent mixing of air masses with different temperatures, pressure and 

water vapour content. At low elevation angles and higher frequencies, scintillation could 

reach the value comparable to rain fading and impairs low margin systems. Such fast 

fluctuation could interfere with power control algorithms used to mitigate rain fading [7]. 

Determination of rain fading and scintillation are significant for estimating or designing the 

Earth-space links, as well as for the fade mitigation techniques. 

  For Earth-GEO links, both rain fading and scintillation occurring along the path has 

been well studied, and many prediction models have been developed and tested by being 

compared with the measurement data. The earth-space link is fixed for Earth-GEO links. 

Therefore, the range between the satellite and earth station, and the slant path through the 

atmosphere do not change, which make the prediction or calculation of the attenuation 

simple and straightforward. The analysis of rain and scintillation are analogous [55]. 

1.5.2 Attenuation levels effect on RF Bands 

 At C-band, the rain attenuation for an elevation angle of 50° and a maximum rain   

rate of 30 mm/hr is 0.1 dB. This is practically a negligible effect. At Ku-band, under the 

same conditions, the attenuation is 4.5 dB. This is a large but manageable contribution to 
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the link budget. However, at the Ka-band downlink frequency of 20 GHz, the attenuation is 

12.2 dB. This would be a significant effect, requiring over 16 times the power as in clear 

sky conditions. At the uplink frequency of 30 GHz, the attenuation would be 23.5 dB, 

requiring over 200 times the power.  

 These losses simply cannot be accommodated completely at extreme end but can be 

compensated partially; discussed in chapter 4 and the accessibility would be much less. In 

practice, these high rain attenuations are sometimes avoided by using site diversity, in 

which two widely separated earth stations are used [12]. The probability that both earth 

stations are within the same area of rain concentration is small. But a parallel system would 

be indispensable, which will be too expensive. Alternatively, a portion of spectrum in a 

lower band may be used where needed. For example, a hybrid Ka-band/Ku-band system 

might be designed in which Ka-band provides ample spectrum in regions of clear weather, 

but Ku-band is allocated to regions in which the rain margin at Ka-band is exceeded [8].  

1.5.3. Rain and temperature  

 The downlink system noise temperature increases due to rain. The figure of merit of 

the earth station receive antenna is the ratio of the antenna gain to the system temperature 

G/T. The effect of rain is to increase the system temperature and thus reduce the figure of 

merit. The antenna temperature is the integrated sky temperature weighted by the antenna 

gain. At a high angle of elevation, the clear sky temperature is typically about 25 K since 

the antenna looks at cold space. However, the temperature of liquid water is about 300 K. 

Thus the rain increases the sky temperature noteworthy.  Therefore, the noise admitted to 

the earth station receiving antenna increases and causes further signal degradation. 

However, rain does not affect the system noise temperature of the satellite and uplink chain 

more, because its antenna looks at the warm earth. The rain layer acts very much like a 

lossy waveguide [31][22]. 

1.5.4. Rain and Polarisation 

 Rain changes the polarisation of the signal somewhat. Due to the resistance of air, a 

falling raindrop assumes the shape of an oblate spheroid. Wind and other dynamic force can 

cause the rain drop to be rotated at statistical distribution of angles. Consequently, the 

transmission path length through the rain drop is different for different signal polarisations 

and the polarisation of the received is altered. For a satcom system with dual linear 

polarisations, the change in polarisation has two effects. First, there is loss in signal strength 
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because of misalignment of the antenna relative to the clear sky orientation. Given by 

20log(cosτ), where τ is the tilt angle relative to the polarization direction induced by the 

rain. Second, there is additional interference noise due to the admission of a portion of the 

signal in opposite polarisation. 

1.6 Spot beam and its features 

  Figure1.2: Satellite communication system architecture. The satellite provides 

 broadband service across multiple spot-beam locations. 
Generally communication satellites transmitted with a very broad signal.  The same 

signal that is received in the New Delhi is from the same source as the signal that is 

received in Chennai. Satellites that are not having "Spot Beams" send out a signal over very 

large areas, transmitting data across the foot print. But Spot Beams are different.  It is 

similar to a searchlight focused on one area of the country. A typical Spot Beam has a 

radius of only 200-500Kms [19].  Depending on where you are in the country, you won't 

detect the beam unless you are in the focus.   With this tool, the same frequency spectrum 

can be used with different source material, in different regions.  In addition, the system is 

flexible enough to increase power on specific transmissions when needed to compensate for 

local weather condition. The transmission of regional TV channels is ideal since a signal 

focused on an area is a perfect fit for the application.   

The Spot Beam technology is being applied on newer satellites using the Ka-Band 

(e.g.; GSAT-4 of ISRO, India). Spot Beam technology is also ideal for the transmission of 

video requiring ultra high bit rates such as HDTV. But more than 100 kilometres from the 
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signal centre in a populated region, it is possible that you will not be able to receive the 

HDTV Spot Beams. .  The Spot Beam technology is being applied on newer satellites using 

the Ka Band [8]. There are several Ka band satellites in use that do not use Spot Beams: 

Advanced Communication Technology System (NASA, USA), Superbird and N-STAR 

(Japan), HOT BIRD 6 (Eutelsat, France), DFS Kopernikus (Germany), and Italsat (Italy), 

but the newer, more advanced satellites are using Spot Beam technology [48]. 

1.6.1 HDTV Spot Beams 

 High Definition TV Spot Beams with Ka band are often narrower in focus than the 

Ku/Ka band Spot Beams used for Standard Definition TV.  If the user placed more than 50 

miles from the signal center in a populated region, it is possible that one will not be able to 

receive the HDTV Spot Beams.   It makes good business sense for them to maximize 

service in coverage area, but there are tradeoffs [47]. 

In low population density areas like north east beam, it makes sense to have the 

Spot Beams cover a 300-400Kms radius, because that enables more subscribers which 

results into more revenue. In metro cities it sometimes makes sense to focus the signal more 

narrowly for HDTV, and users are more densely packed together. However, due to different 

frequencies are used for adjacent Spot Beams, overlap usually can be managed. 

1.6.2 Spot-Beam Satellites and Two-Way Communications 

   One advantage of Ka band is that it requires a smaller dish to offer very good 

performance. Ka band using Spot Beams is more efficient than a traditional C or Ku band 

satellites.  The service is able to deliver significant improvements in performance.  A Ka 

band satellite can provide as much as an 8X increase in capacity over Ku band satellites.  

The technology can provide upload speeds as fast as 16 Mbps and download speed as fast as 

30 Mbps.  Three Ka band satellites with Spot Beam technology are already in service in 

North America: Telesat Canada's Anik F2, WildBlue Communications Wildblue 1, and 

Hughes Network Systems SPACEWAY 3. According to Northern Sky Research, there are 

15 million U.S. households without access to broadband Internet service.  Spot Beam 

satellites operated by WildBlue and Telesat have already reached over 300,000 Internet 

subscribers in one year from their launch in 2005 [19]. 

1.7   Fade Mitigation Techniques  

 Mitigating the effects of rain attenuation has been an area of focus in the research 

community. The measures against signal degradation can be grouped into two as diversity 

techniques and compensation techniques. Diversity techniques, such as site and frequency-
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diversity, avoid signal degradation by switching between the signals obtained at different 

receiver sites or between different frequency bands. Site diversity takes advantage of the 

fact that probability of high attenuation occurring simultaneously at two or more receiver 

sites is significantly lower than any single site. Therefore, signals obtained at multiple sites 

can be combined (at some central location) to improve the signal-to-noise ratio [12]. 

Frequency diversity makes use of the fact that signals suffer more from atmospheric 

attenuation as the frequency of operation increases. Hence, a Ka-band system may switch to 

lower frequency bands (C or Ku) when the attenuation due to rain exceeds a certain 

threshold. Other diversity techniques include time- and orbital-diversity [7][19]. But these 

all are too expensive and dependent. 

 Compensation   techniques, such as adaptive coding and modulation, transmission 

rate reduction, and power control, avoid signal degradation by restoring the signal quality to 

the initial level. Adaptive coding involves changing the amount of redundancy introduced to 

the transmitted information as the quality of the link changes. The probability of successful 

transmission increases as the redundancy level is increased; however, transmission 

(bandwidth) efficiency decreases at the same time. Adaptive modulation schemes decrease 

the required SNR for achieving a target bit error rate (BER) by reducing the spectral 

efficiency (in bps/Hz) of the transmitted signal when fading occurs. A satellite system may 

switch between higher-order modulation schemes, such as 16-PSK,16 QAM, 64-PSK, or 

254-QAM (quadrature amplitude modulation), under clear sky conditions, and lower-order 

modulation schemes like BPSK(binary PSK) and QPSK (quadrature PSK) under deep 

fading [25]. Data rate reduction, on the other hand, achieves an extra margin over the 

required signal-to-noise ratio by decreasing the information data rate whenever the system 

experiences deep fading. Finally, in adaptive power control schemes, transmitted power is 

adjusted dynamically based on the attenuation levels. Power control can be applied on the 

satellite downlink by changing the satellite effective isotropic radiated power (EIRP), or on 

the uplink, by controlling the power of earth stations. Adaptive power control (APC) is 

more efficient than providing fixed power margins, since severe attenuation occurs typically 

in short durations. APC can also be easily combined with other compensation techniques if 

larger fade margins are required [19]. 

 While diversity and compensation techniques improve transmission quality of the 

users located inside the footprint of the satellite spot-beam, they do not take into account the 

interaction between the users, such as those belonging to the same spot beam. The 
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heterogeneity in spot-beam queues arises not only as a result of the load variation and the 

types of communication sessions, but also because of the variation of the physical channel 

conditions. This heterogeneity results in lower allocated session rates for active flows. We 

propose an optimization-based approach that controls system power with the goal of 

smoothing users across multiple spot beam locations. 

 Fade mitigation techniques (FMT) are implemented in the satellite communications 

system to avoid or compensate for attenuations, mainly for countering rain fading. Two 

major techniques are power control and site diversity [8]. The objective of power control is 

to make the received power stay constant, by varying the transmitted power in direct 

proportion to the attenuation, mainly rain fading, on the link. Site diversity is a technique 

implemented to overcome the effect of path attenuation during intense rain events. Effective 

power control and site diversity depend on the accurate prediction of fading along the 

propagation paths, and the understanding of spatial behaviour of channels [7]. Therefore, 

channel models, which are able to characterise the propagation channels or predict the 

fading along the propagation path, play a significant role in developing FMTs. 

1.7.1 Rain rate and BER 

 For a digital signal, the required signal power is determined by the bit rate, the bit 

error rate, the method of coding, and the method of modulation. The performance objective 

is specified by the bit error rate. If the rain rate is exceeded a certain threshold, the bit error 

rate would increase at the nominal bit rate, or else the bit rate would have to decrease to 

maintain the required bit error rate within limit [48]. The acceptable availability defined by 

communication system design specifications, is 99.5% for a BER of 5E-7 or better for 

desirable quality signal with and without rain fade compensation.  

1.8 Organization of the Thesis 

The work carried out in this thesis is organized in the following manner.  

Chapter-1         INTRODUCTION 

The necessity of satellite communication using various frequency bands   is 

discussed, especially reference to the features of   Ka-band. The past success story of Ka-

band relevant areas of importance including fundamentals of   rain attenuation are 

analytically discussed.   

Chapter-2          SATELLITE COMMNICATION AND Ka-BA ND  
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Chapter 2 describes the satellite fundamentals, Ka-band channel characteristics and 

the attenuation caused by atmospheric gases. This chapter reviews the features of Ka-band 

and its use in satellite communications. The satellite transponders along with various types 

of modulation techniques and multiple access techniques used in satellite communication 

systems are discussed. This also represents the importance of higher frequency utilisation, 

especially Ka-band implemented within the scope of the satellite communication in India. 

Here we have introduced the proposed spot beam model and its features. 

Chapter-3         PREDICTION MODELS FOR RAIN ATTENUATION 

Chapter 3 reviews the global rain attenuation models for the prediction of rain 

effects on satellite link. The complete step-by-step procedures for three models (Crane 

model, ITU-R model, Moupfouma model) are presented. The collected data from different 

corners of India and world are used in these models. Finally, the rain attenuation level for 

different rain rates is calculated. 

Chapter 4         FADE COMPENSATION AND POWER CONTROL 

This chapter contains different types of power distribution methods and redirection 

of data to all spot beams. The power control procedures and compensation of fading due to 

rain in satellite communication networks are the vital issues in Ka-band communication are 

discussed. The spot beams can be obtained by the steerable antenna [14] to deliver the data 

collected from the on board processor (OBP) in a TDM process. Here the power is 

estimated in every step on the basis of channel condition and the number of users accessing 

in the foot print of corresponding spot beam. Here it is proposed for the regulation of the 

minimum threshold power and radiating power levels, based on channel conditions of 

revenue generating stations by static or dynamic mechanism. The channel data rate can be 

decided statistically keeping the total outcome of the system constant among the spot 

beams. The algorithm for power adjustment gives an idea for compensation. 

 
Chapter-5  CONCLUSION AND SUGGESTIONS FOR FUTURE WORK  
 
 This concludes the thesis. The conclusion is given based on the analysis of results 

from the previous chapter. Proposals and suggestions for future works are presented. 
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      Chapter 2 

Satellite Communication and Ka- Band 

2.1 Introduction  

Satellite communication system is basically an electronic communication package 

placed in earth orbit, whose prime objective is to assist transmission of information from one 

point to another through space. Satellites form an essential part of global telecommunication 

systems carrying large amounts of voice, video, and data traffic, and offering a number of 

features such as covering very large areas of the earth, with the ability to provide 

instantaneous infrastructure particularly in underserved areas, as well as frequency reuse 

technique through On Board Processor (OBP). 

The use of satellite systems becomes important in regions like India where areas are 

geographically diversified. With the advent of satellite technology in Asia pacific region, the 

services become widespread, lower frequency bands such as C and Ku become congested. It 

is becoming an inevitable alternative to adopt higher frequency band for satellite services. Ka-

band and above are attractive bands, because they offer wider bandwidth, higher data rate, and 

smaller component size, such as very small aperture terminals and ultra small aperture 

terminals [48].   

In parallel with these developments, rapid growth in Internet traffic around the globe 

is creating an exponential increase in the demand for transmission bandwidth appropriated for 

multimedia services. These services include high-speed data, high-resolution imaging, and 

desktop videoconferencing etc., all of which require large transmission bandwidths. 

2.1.1 Satellite Communication Fundamentals 

Satellite communication system is composed of the space segment and the ground 

segment. Satellite is capable of performing as a microwave repeater for Earth stations that are 

located within its coverage area, determined by the altitude of the satellite and the design of 

its antenna system. The arrangements of the basic orbit configurations are Geostationary Earth 

Orbit (GEO), Medium Earth Orbit (MEO), and Low Earth Orbit (LEO). The respective 

altitude ranges are 36000 km for GEO, 5000 km to 12000 km for MEO, and 500 km to 900 

km for LEO. A geostationary satellite is stationary in an apparent position relative to the 

earth. This position is typically about 35,784 km away from the earth. Its elevation angle is 

orthogonal to the equator, and its period of revolution is synchronized with that of the earth in 
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inertial space. The radio paths between ground terminals from a fixed position with a fixed 

elevation angle to satellite. The ground antennas pointing to these satellites may need only 

limited or no tracking capability. A geostationary satellite has also been called a 

geosynchronous or synchronous orbit or simply a geo-satellite [7][8].  

The coverage area is normally referred as a footprint. The size of the coverage area 

depends on the satellite aerial semi-beam width. The non- geostationary LEO and Medium 

Earth orbit (MEO) approaches require more movable satellites to achieve this level of 

coverage [31].  

2.1.2 Frequency Spectrum 

 Microwave frequencies used for transmission to and from the satellite propagate along 

a line-of-sight path. GEO provide fixed satellite service (FSS) in the C and Ku bands of the 

radio spectrum. Some GEO use the Ku band to provide certain commercial services 

nowadays. The lower is the band, the better the propagation characteristics and lower is the 

available bandwidth, but higher is the band, the more bandwidth that is available and worse is 

the propagation characteristic. Therefore, the competition is keen for this spectrum due to its 

propagation characteristics.  

Frequency              

Band 

 

L 

 

S 

 

C 

 

X 

 

Ku 

 

K 

 

Ka 

 

V 

Range (GHz) 1-2 2-4 4-8 8-12 12-18 18-27 27-40 40-60 

Table 2.1:  Microwave Frequency bands and bandwidth ranges for Communication 

International Telecommunication Union (ITU) oversees the orderly use of the 

electromagnetic frequency spectrum for satellite communication, as well as other 

telecommunications applications [31]. 

2.1.3 Satellite Communication Features 

At the present scenario, with the rapid increase of information revolution there has 

been constant demand in expanding the broadband integrated services to be included in 

satellite links. Considering India’s geographical features, it is reasonable to adopt a satellite 

platform which can meet day to day growing demands of internet services as well as the core. 

By using satellites one can obtain wide coverage, quick rollout of facilities compared to 

buried optic fibre cables unconstrained by natural conditions and distance. Compared to 

conventional terrestrial networks, satellite communications have the following attractive 

features: 
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● Ubiquitous access: services are available to whole regions within satellite 

footprints, including locations where terrestrial wired networks are not possible or 

economically viable. 

● Broadcast/multicast nature: multimedia services will be benefitted from this 

feature of satellite networks. 

●  High bandwidth: satellite channels can deliver gigabits per second. 

● Flexible bandwidth-on-demand capability: result in maximum resource 

utilization. On the other hand, the overall telecommunication market is growing rapidly. 

Exponential growth in the Internet, multimedia services using satellites are now in demand. 

Growth in international trade, reduced prices due to privatization of telecommunications 

services worldwide, access to the World Wide Web, therefore use of broadband satellite 

services viewed as a cost-effective solution for providing wide area coverage for developing 

countries. 

2.2. The Ka-band Satellite System and Current Status  

 As early as in 1970’s, researchers from the United States, Europe, and Japan started 

exploring the Ka-band (from 26.5GHz to 40GHz) spectrum.   Japan was the first country to 

provide Ka-band services and at that time transparent “bent-pipe” transponders technologies 

introduced only. For the last two decades, a number of experimental satellites have been 

launched to explore the use of Ka-band [48]. 

In 1984 NASA formed an Advanced Communications Technology Satellite (ACTS) 

program to develop Ka-band satellite technologies. Its goals were to alleviate orbit congestion 

in lower bands, and to promote effective utilization of the spectrum to increase 

communication capacities [7][54]. The first Ka-band ACTS satellite that was launched in 

September 1993 demonstrated commercial-off-the-shelf (COTS) earth station equipment 

incorporating two-way frequency conversion and multimedia system integration technologies. 

During last decade Ka-band satellite communication systems became so popular because they 

could provide:  

 Large bandwidth and Data-Handling Capacity: The large amount of bandwidth 

availability in Ka-bands is the primary motivation for developing Ka-band satellite systems 

since lower frequency bands have become congested. This covers from 27.5 -31.5 GHz for 
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uplink and uses K –band frequency 17.5-21.5 GHz for down link [52]. So nearly 8 GHz for 

the whole satellite system.  

• Small antenna size: Size of passive RF components is related to the wavelength 

used, leading to a reduction of size as higher frequencies are used [22]. On the other hand 

higher frequency introduces higher losses in the components, partly reducing this advantage. 

For a given gain and beamwidth, as the frequency goes up, the size of the antenna decreases. 

For a fixed antenna size, this will significantly reduce the interference from adjacent satellite 

systems. Obviously, the price of the smaller antenna will be lower, which makes broadband 

satellite service affordable to millions of commercial and residential end-users. On Ka- band a 

60 cm diameter antenna or even less will be sufficient for the receiver. 

• Larger system capacity and Smaller Satellite Footprints: Using an antenna of 

same size as at lower frequencies, satellite covers a smaller area while the effective isotropic 

radiated power (EIRP) in these areas is proportionally increased. This allows utilization of 

multiple beams making it possible to reuse assigned frequencies [49]. Ka-band satellites 

provide smaller foot prints using multi beam antenna[9] to increase the satellite power density 

and allow large frequency reuses, which leads to higher spectrum occupancy. Many user 

terminals can be served simultaneously.  

• Flexible bandwidth-on-demand: This feature maximizes the bandwidth and 

resource utilization, and minimizes the cost to end-users.  

On the other hand, Ka-band satellite links suffer degradation due to atmospheric 

propagation effects, compared to lower frequency bands. A main disadvantage of Ka-band 

frequency system is increase in tropospheric propagation impairments. These are, however, 

changing rapidly in time making it uneconomical to counter them by simply increasing 

transmitted power for extended periods of time. Therefore accurate predictions are required so 

that advanced fade mitigation techniques can be introduced. 

The primary propagation factors are rain attenuation, wet antenna losses, 

depolarization due to rain and ice, gaseous absorption, cloud attenuation, atmospheric noise, 

and tropospheric scintillation. Among these factors, rain attenuation is the most challenging 

obstacle to Ka-band systems.  

Many Ka-band satellites have demonstrated that signal strength drops drastically 

during heavy rain, but many strategies and techniques are available to mitigate fading. On the 

other hand very small hopping spot-beams are used to focus the satellites signal power on a 
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small area to over the effect and penetrate the rain. The satellite systems can also use coding 

to overcome transmission impairments. Another strategy is to lower bit rates during the period 

of rain. This approach would be unsuitable for many applications but might be satisfactory for 

some, such as Internet access. Uplink power control is another technique to mitigate the signal 

losses in heavy rain [54].  

In recent years, due to the delayed market growth, wear and tear, consolidation, and 

immature Ka-band satellite industries, many companies with satellite licenses, have either 

postponed or cancelled their proposed satellite systems in fast hand for few years. Hughes 

Network Systems (HNS) is the only company with an FCC filing who did not cancel its 

proposed Ka-band satellite system. Hughes contracted Boeing to build the first Ka-band 

satellite of the Spaceway systems providing broadband communication services for the North 

American region. Boeing ultimately bought Spaceway. The satellite was launched in early 

2004. Later few advanced countries added their name in this race in last decade. 

Indian Space Research Organisation had prepared the GSAT4 satellite as an 

experimental satellite to study the real time behaviour of ka-band in Indian region, but the 

failure of launching takes India back a step [2]. 

2.3. Satellite System Fundamentals  

 There are two basic types of satellites, 1) Bent pipe or the conventional frequency 

translation (FT) satellite, which comprises the vast majority of past and current satellite 

systems,  and 2) On-Board Processing (OBP) satellite, which utilizes on-board detection and 

re-modulation to provide two essentially independent cascaded (uplink and downlink) 

communications links.. The early satellite transponders were based on analog transmission, 

but most modern satellite systems deliver signals digitally to ensure reliability and accuracy in 

information transmission.  

2.3.1. Bent-pipe or frequency translation (FT) Satellite System [8]  

 This satellite receives the uplink signal at the uplink carrier frequency, fup, down-

converts the information bearing signal to an intermediate frequency, fIF, for amplification, 

up-converts to the downlink frequency, fdn, and, after final amplification, re-transmits the 

signal to the ground service area. Figure 2.1 shows a functional representation of the 

conventional frequency translation transponder. No processing is done on-board with the FT 

satellite, except amplification to overcome the large path losses and frequency conversion to 



Satellite communication and Ka band 

 20 

 

 
Figure 2.1: Overview of bent pipe transponder satellite link (G- Ground, S-Satellite) 

(All symbols have their usual meaning) 

separate the up and down links. Signal degradations and noise introduced on the uplink are 

translated to the downlink, and the total performance of the system is depends on both links. 

Generally, the transponder is transparent to the users since the transmitting signal from one 

earth station will “bounce” and arrive at another earth station with its characteristics 

unchanged. Usually, no change is made to the signal.  

The conventional way of characterizing the satellite link behaviour using bent-pipe 

transponders is to use carrier-to-noise ratio (C/N). The C/N ratio represents the dB difference 

between the desired carrier signal power and the undesired noise power at the receiver. It also 

indicates the received signal quality for both analog and digital transmissions. 

In satcom systems the C/N calculation is often called a link power budget. The C/N 

calculation in decibels is shown in (Eq.2.1) below.  

 
Where,  Pt= Transmitted Power (dB),  Gt=Gain of transmitting antenna 

 Gr = Receiving antenna gain of the satellite.  

 Lp= Path Loss=10 log(4πR/λ)2 [dB], A= Rain attenuation [dB] 

 R= Transmission distance [m], λ = Wave length of the signal [m] 

 k= Boltmann’s constant = 1.38x10-23 J/K= -228.6 dBW/Hz 

( ) ( ) [ ] ( )t t r p n
dB

C
= P +G +G -L -A - K+T +B -other losses dB     

N
                                2.1
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 Tn= Noise Tempreture [dBK] = 290K 

 B= Noise Bandwidth in which noise is measured [dBHz] 

Other Losses such as Antenna pointing Losses, Atmospheric gaseous Losses, Power 

Amplifier back-Off, Link margin etc are also there. But these losses can be ignored in 

comparison to losses mentioned above. 

Figure2.2: Functional block diagram of a bent pipe transponder 

Uplink: 

The uplink refers to the signals delivered from an earth station to a satellite in space, 

and the downlink refers to the signal delivered from the satellite for the earth stations. For the 

uplink, the transmitted power is the power transmitted from an earth station to the satellite.  

The received signal is always much weaker than the transmit signal since the signals 

passes through a long path in the sky. Path loss ‘L
p’  depends upon the distance between the 

transmitter and the receiver, and the operating frequency. The path loss for Ka-band GEO 

satellites about 200 dB, is large compared to those for satellites in lower orbits, and for those 

satellites operating in lower frequency bands.  

The link performance equations for the FT satellite uplink, including the contributions 

of path loss and path noise has been presented in this section. The sum of P
t 
and G

t 
in decibels 

is presented as Effective Isotropic Radiated Power (EIRP). The EIRP is commonly specified 

in satellite communications and regulations. ITU and FCC have indicated the power 

limitations of transmitters in term of EIRP. The maximum EIRP permitted for an earth 

terminal is fixed for designing the outdoor unit and indoor unit of it.  

The carrier power received at the satellite antenna terminals, point (B) on Figure 2.2, is 

( )T T R
SR

UP UP

P G G
C = dB

L A
                    [ ]                                              2.2

fUP fIF fD 

Down Converter Up Converter 
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Where, Lup is the uplink free space path loss, AUP is the other uplink path loss, and GT 

and GR are transmit and receive antenna gains, respectively. The noise power at the satellite 

antenna, point (B), is the sum of three components, i.e. nSR =Uplink Path Noise + Satellite 

Antenna Receive Noise + Satellite Receiver System Noise  the three components are 

Where,  k is Boltzmann’s constant, bUP is the uplink information bandwidth, tSA is the 

satellite receiver antenna temperature, nfSR is the satellite receiver noise figure, and tUP is the 

mean temperature of the uplink atmospheric path. Therefore, the uplink carrier-to-noise ratio, 

at point (B), is then given by 

 This result gives the uplink carrier-to-noise ratio expressed in a form where the uplink 

path losses and noise contributions are found. 

Downlink 

 The downlink carrier-to-noise ratio for the frequency translation satellite is found by 

following the same procedure that was used for the uplink, using the equivalent downlink 

parameters as defined in Figure 2.2. Thus, at point (D) 

 This result gives the downlink carrier-to-noise ratio expressed in a form where the 

downlink path losses and noise contributions are exclusively displayed. The combine effect of 

both uplink and down link carrier to noise ratio is now expressed as 

( )SR UP UP SA UP SR UP
UP

1
n =k t 1- b +k t b +k 290(nf -1)b                               2 3

A
.    

 
 

[ ]
( )SR T T SR

SRUP
UP UP UP SA SR UP

UP

c c P G G
= =                  2 4

n n 1
L A k t 1- t + 290(nf -1) b

A

.

 +  

 
 

  
 
 

( )ST ST G R
G R

D N D N

P G G
C =

L A
2 5.                                                                               

[ ]
( )GR ST ST GR

GRDN
DN DN DN GA GR DN

DN

c c P G G
= =                2 6

n n 1
L A k t 1- t + 290(nf -1) b

A

.

 +  

 
 

  
 
 

( )UP DN

C

UP DN

c c

n nc
= 2 7

n c c
1+ +

n n

.                                                              

   
   
    

 
    
   
   



Satellite communication and Ka band 

 23 

 

As the individual ratios are >> 1, by approximation 1 may be neglected and the equation 

reduces to and by rearranging in the form of carrier to noise density form the above equation 

can written as 

  

 A transponder is said to be uplink limited if its uplink CNR is more than downlink 

CNR and conversely, it is downlink limited if its downlink CNR is more than uplink CNR. It 

is possible that some transponders are uplink limited and others downlink limited, on the 

same satellite, depending on link parameters and the specific applications [41]. And the 

Energy to noise density ratio per Bit, (eb/no) can be found by this relation. And the combine 

effect of uplink and downlink is given as 

 

 The probability of error for the overall end-to-end digital link is determined from the 

composite energy-per-bit to noise density described above. The parameters and ratios 

presented here and in the previous sections are expressed as numerical values, not in dB. The 

composite link performance for the bent pipe transponder is difficult to predict because of the 

interactions of the link parameters, as evidenced in the uplink and downlink results given by 

noise figure and CNR equations. It is possible to draw some general conclusions about 

composite link behaviour from the composite carrier-to-noise ratio results, as given by 

Equation (2.11).  

i) The overall performance or CNR is slightly less than the weaker link. Thus a satellite 

with dominant link will perform no better than the weaker link. 
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ii)  When both uplink and downlink CNRs are same the overall system performs with a 

carrier-to-noise ratio of 1/2 either link or 3 dB below the dB value of either link. Thus, a 

satellite with equal uplink and downlink performance will operate with a composite 

value 3 dB below the value of each of the individual links. 

CNRUP CNRDN CNRC 

20 dB 10 dB 9.6 dB 

10 dB 10 dB 7 dB 

Table2.2: System performance comparison for bent pipe transponder 

 As mentioned in the previous section, as heavy rain significantly degrades the link 

performance, the C/N ratio falls due to it. The permissible rain attenuation for a link depends 

on many factors, such as the link availability in an average year, earth station geographical 

location, and link operating frequency. The estimation of the rain attenuation can be 

calculated using the ITU recommended rain model and other models, which is presented in 

Chapter 3. Other factors affecting the link performance include antenna pointing losses, 

atmospheric gaseous losses, power amplifier back-off power, link margins, and 

implementation margins which have also been described briefly Chapter 3.  

2.3.2. On-board Processing (OBP) Satellite System [7] 

 The OBP satellite system, consisting of regenerative transponders and on-board 

switching with multiple spot-beams, provides bandwidth on demand with low processing 

delay, flexible interconnectivities, and lowered ground station costs. A satellite that provides 

on-board demodulation and re-modulation of the information bearing signal is referred to as 

an on-board processing (OBP) satellite. The OBP satellite, also called a regenerative satellite 

or a smart satellite, provides two essentially independent cascaded communications links for 

the uplink and downlink. Figure 2.3 shows a schematic block diagram of the on-board 

processing satellite transponder. The information signal on the uplink at a carrier frequency, 

fUP, after passing through a low noise receiver, is demodulated, and the baseband signal, at fBB, 

is amplified and enhanced by one or more signal processing techniques. The processed 

baseband signal is then re-modulated on the downlink, at the carrier frequency, fDN, for 

transmission to the downlink ground terminals. Degradations on the uplink can be 

compensated by the on-board processor, and are not transferred to the downlink. 
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 Figure2.3:  On-board processing (OBP): transmitting and receiving equipment on board with satellite  

In an OPB satellite system, both the uplink and the downlink system are independent 

to each other, and enable the designer to apply signal enhancing techniques to either or both 

the links in the satellite. On board the satellite employ digital transmission techniques, and 

can use a wide range of waveform modulation formats or access scheme. BER used in digital 

signals to measure the probability of bit error that may occur in a given time in the system.  

OBP satellites offer several advantages over the conventional bent pipe satellite [54]. 

The performance of the uplink and downlink can be improved separately with forward error 

correction coding or other techniques. Noise induced on the uplink does not degrade the 

downlink because the waveform is reduced to baseband and regenerated for downlink 

transmission. The downlink can employ TDMA, so that the power amplifiers can operate at or 

near saturation to optimize power efficiency on the downlink. For example, a satellite can 

employ several FDMA carriers on the uplink to minimize ground station uplink complexity, 

demodulate on the satellite, add error correction coding, re-modulate, and combine into one 

TDMA downlink to provide optimum efficiency for downlink power [32]. 

(i) OBP Uplink and Downlink  

 The downlink CNR or energy-per-bit to noise density, (eb/no), for an onboard 

processing satellite system is essentially independent of the uplink CNR over the operating 

range of the transponder. The link equations for CNR previously given for bent pipe satellite 

are applicable to the on-board processing satellite uplink and downlink. Since on-board 



Satellite communication and Ka band 

 26 

 

processing satellites employ digital transmission, a more appropriate parameter is the energy-

per-bit to noise density ratio, expressed as 

Where, rUP and rDN are the uplink and downlink data rates, respectively. 

Each link can be evaluated directly from the above equations and the resulting end-to 

end performance will generally be driven by the weaker of the two links. Additional on board 

processing could improve either or both links, however, and should be included in final 

performance conclusions. 

(ii) Overall OBP performance: 

 The overall composite (or end-to-end) link performance for the OBP satellite is 

described by its bit error performance, or the probability of error, PE, for a specified digital 

transmission process. The overall error performance of the on-board processing transponder 

will depend on both the uplink and downlink error probabilities. 

 Let PUP is the probability of a bit error on the uplink (BERUP) and PDN is the 

probability of a bit error on the downlink (BERDN).A bit will be corrected in the end-to-end 

link if either the bit is correct on both the uplink and downlink, or if it is in error on both 

links. The overall probability that a bit is correct, PCOR, is  

Therefore, 

PCOR= Probability of Correct Reception End-to- End 

(1-PUP)  = Probability of Correct Bit on Uplink 

(1-PDN)    =Probability of Correct Bit on Downlink 

PUPPDN  = Probability of a Bit Error on Both Links 

Rearranging terms,  
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The probability of a bit error on the end-to-end link is 

 The composite link probability of error will be dependent on the uplink and downlink 

parameters and their impact on the (eb/no) for each link. A specific modulation must be 

specified to determine the relationship between the bit error probability and the (eb /no) for 

each link. The composite error performance can then be determined. Different modulation 

schemes used in digital communications provide different BER performances. The overall 

error budget of the digital satellite systems using OBP is defined in (Eqn. 2.11) shown as:  

Where, BERUP,  BERDOWN  are Probability of bit error for Uplink and Downlink respectively. 

  

Figure 2.4:  Functional blocks of an OBP satellite 

On-board Processing Switches  

 There are four types of on-board switches: circuit switch, cell switch, fast packet 

switch and hybrid switch. Each on-board processing switch has its own particular features and 

technologies. Among four switches, the packet switch is the most popular selection for 

satellite networks because it provides both packet-based traffic and circuit-based traffic in 

Internet Protocol (IP) based networking environments. The Ka-band satellite system may 

E COR

E UP DN UP DNOBP

P =(1-P )
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adopt packet-switch OBP in order to provide broadband internet services. Some advantages 

and disadvantages of packet switching are  

•  Self-routing/auto-configuration abilities,  

•  Flexible and efficient bandwidth utilization  

•  Can accommodate circuit-switched traffic  

•  Easy to implement autonomous private network 

•  But, for circuit switched traffic, higher overhead is required than circuit switching due 

to packet headers and Contention/congestion may occur.  

2.4 Spot beam model and proposed features  

 

Figure 2.5: Outline of proposed spot-beam locations and grouping of disjoint beams for frequency re-use. 
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 In general, communication satellites are transmitting with a very broader foot print. 

INSAT series Satellites that are not having "Spot Beams" and send out  signals over very 

large areas, transmitting across India. Two cities in different part of India under one satellite 

foot print receive the same signal. But Spot Beams are different.  It is similar to a spot light 

focused on one area of the country (figure 2.5). 

 A typical Spot Beam has a radius of only 200-500Kms.  Depending on presence of 

density of user in this geographical area of the country, one won't detect the beam unless in 

the focus. So frequency reuse is possible for different spot beams in TDM.  The Spot Beam 

technology has been applied on newer satellites using the Ka-Band (e.g.; GSAT-4 of ISRO, 

India) [2]. 

 Spot Beam technology is ideal for the transmission of video requiring ultra high bit 

rates such as HDTV. The advantage of Ka-band over other forms of internet via satellite is that 

it only requires a 60 cm antenna.  Additionally Ka-band uses spot beams for internet via 

satellite, which makes better use of the available bandwidth than a C or Ku-band satellite, i.e. 

more users can get higher level of services. 

    Here it proposes 16 spot-beam locations to cover Indian main land. Keeping view of the 

socio-economic status and population density, one metropolitan city will have a narrow 

beamwidth to cover limited area and high power gain footprint at every time slot.  Beams are 

divided into four groups. In each group, 4 non-overlapped locations are present as seen in the 

figure 2.5. The total bandwidth of the satellite will be utilized for one group for a moment and 

after an interval the antenna switches to other group locations and so on. After covering all 

groups again it will restart the process from group A. Accordingly the OBP switching will 

provide data for each group in TDM process.   

The on board processing (OBP) and switches are already employed in satellites providing 

mobile communications to handheld receivers in some western part of world. Here we are 

considering a ka band satellite system to provide cost-effective two-way voice, medium- and 

high-speed data, image, video (DVB-S) and video telephony communication services to both 

business and individual users in the Indian mainland. The proposed satellite broadband system 

provides higher capacity, intelligent routing, bandwidth on-demand, and value added services.  

  The uplink and downlink operating frequencies for proposed satellite system is same 

as proposed for GSAT4 by ISRO  i.e., 29.6-30.2 GHz and 20.6-21.2GHz [2]. Only part of the 

uplink and downlink spectra was selected for the system design in this work. Here we are 
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considering a satellite position 83oE on GSO the position which is being used by ISRO for an 

INSAT satellite, to calculate effective geographical parameters. The analysis of geographical 

data, Rain rate Parameters and calculation of rain attenuation is discussed in chapter 3 for this 

16 different locations, places taken as the geographical centre of the spot beams. 

The proposed system requires multibeam antenna systems onboard or active phased 

array antenna system. Phased Array Antenna based communications links are anticipated to 

deliver high data rates without the risk of single point failure-prone motors used in reflector-

based systems and are being used here for space-based communication applications due to 

their advantages in re-configurability [21] [4], faster scanning and switching [17], weight and 

power handling ability using digital signal processing (DSP). The phased array antenna can 

also electronically steer.  

2.5. Beam forming with OBP System  

On-Board Processing deals with the general topic of improving the received signal of 

the system in question before it is retransmitted to the desired user. Three forms of on-board 

processing take the form of regenerative repeaters, adaptive power control [46], and antenna 

beam forming. This is to investigate the area of digital beam forming method of on-board 

processing as applied to the geostationary satellite mobile communications environment at the 

Ka-band frequency. Digital Beam forming can cover the following advantages in a 

communications environment: 

− Power can be efficiently focused on a target area to improve the efficiency. 

− Adaptive beams may be dedicated to individual users using antenna arrays [4]. 

− The beamforming array can adapt to variations in the user traffic levels. [19] 

− The increased efficiency of power usage could translate into reduced hardware 

requirements and payload expense. 

− Frequency reuse may be increased as a result of narrower adaptive beams which 

reduce interference from adjacent channels. 

− Beamforming may provide robustness to the system in the event of component failure. 

There are two general methods of beamforming being actively investigated in the present 

literature. The following sections briefly introduce the basic principles of these methods, and 

relate their application to the satellite system under investigation [43].  
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2.5.1 Reference-Based Beam forming 

In reference based beamforming, a known signal which is highly correlated with the 

desired data and uncorrelated with interference signals is transmitted. This reference signal 

often takes the form of a known transmitted training sequence. Beamforming weights are 

calculated based on the reference signal using a variety of algorithms, the most common of 

which are Least Mean Square, and Direct Matrix Inversion. The major drawback of the 

reference-based beamforming method is the power and bandwidth resources that are taken up 

by the reference signal. In the satellite environment, this power cost is highly undesirable. 

2.5.2 Location-Based Beamforming 

 In our proposed system this type of beam forming is suitable, which is the Location-

based beamforming. This relies on knowledge of the direction of arrival of the desired signal 

and the interference signals. Using this information, optimum beam weights may be 

calculated to suppress the interference, and boost the desired signal. This technique is based 

on algorithms which reliably estimate the direction of both the desired and interference 

signals. This is often done on the basis of Eigen-vector analysis, such as the Multiple Signal 

Classification algorithm (MUSIC).  Most of these direction estimation algorithms require 

accurate knowledge of the type of interference, and the geometry of the array. In the portable 

satellite communications environment, weather patterns are constantly changing, and the 

ability to characterize the system once deployed is difficult. These disadvantages would make 

facts of the interference environment difficult, and the array geometry calibration less robust.  

2.6. Ka band Satellite Link Multiple Access Techniques  
 

Since large amount of bandwidth are available on GEO Ka-band satellites, an appropriate 

bandwidth management technique is necessary. One of the best ways is to use a multiple access 

technique. In satellite communications systems, multiple accesses allow many earth stations to 

share a transponder even though their carriers have different signal characteristics [8].  

Three common types of multiple accesses deployed in satellite communications systems 

are frequency division multiple access (FDMA), time division multiple access (TDMA), and code 

division multiple access (CDMA). A common hybrid solution is used by combining techniques 

such as FDM/TDMA. This proposes the earth station to use FDM for uplink and TDMA for 

downlink to maximize the bandwidth efficiency. FDMA and TDMA will be presented in the next 

section. CDMA satellite systems were proposed in recent years but here not considered. 
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2.6.1 Frequency Division Multiple Access (FDMA)  

In general, FDMA separates the total system bandwidth into smaller 

segments/channels, and assigns each channel to a user. Each user transmits at a particular 

allocated frequency. Filters are used to separate the channels so that they do not interfere with 

each other. The disadvantage of a filter is that it cannot easily be tuned to change the 

bandwidth of channels or the channel frequency allocation. This makes inefficient use of 

transponder bandwidth and satellite capacity. Another drawback of FDMA is the non-linearity 

of the transponder power amplifier that generates intermodulation products between carriers. 

This degrades the link performance. In order to reduce such interference, the transmitting 

power of the satellite and earth station can be lowered. This is called back-off. Usually 2-3 dB 

back off power is needed when FDMA is used. On the other hand, FDMA becomes useful for 

uplink transmission when a hub network is used, since only one carrier occupying the total 

transponder bandwidth will be transmitted to the satellite. 

2.6.2 Time Division Multiple Access (TDMA)  

TDMA is a digital multiple access technique that allows signals to or from individual 

earth stations to be received or transmitted by the satellite in separate, non-overlapping time 

slots, called bursts. For uplinks, each earth station must determine the satellite system time 

and range so that the transmitted signal bursts are timed to arrive at the satellite in the proper 

time slots, even though it is very hard to synchronize many earth stations on earth with proper 

synchronization times. For downlinks, such precise timing is not required [8][7].  

Compared with FDMA, TDMA offers the following features  

− As only one signal is present at the receiver at any given time, there is no inter-

modulation caused by non-linearity of satellite transponders. The satellite transponder can 

be driven nearly at saturation in order to provide maximum satellite power.  

− The TDMA capacity does not decrease steeply with an increase in the number of 

accessing stations.  

− The introduction of new traffic requirements and changes is easily accommodated by 

altering the burst length and position.  

Each TDMA frame is formed by slots containing a preamble, guard time, and data 

information. The preamble contains synchronization and other essential data to operate the 

network. The guard time is used to prevent one station’s transmissions from overlapping with 
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another station’s following transmission time slot. For uplinks, the transmitted bursts/times of 

users are critical. They should arrive at the transponders in the required slots so that the 

required information can be extracted at the received earth stations without errors.  

A typical time length of a TDMA frame is 2 ms, which reduces the proportion of 

overhead to message transmission time. Sixteen 8-bit words are typically used in a digital 

terrestrial channel. Figure 2.6 shows two TDMA frames consisting of preamble and satellite 

channel at each frame. 

 Figure 2.6: A TDMA frame for satellite channels. 

At the receiver, higher data bit streams must be recovered using modulation 

techniques, which requires demodulation of RF signals, generation of a bit clock, sampling of 

the receive waveform, and recovery of bits. This process requires large storage of bits (at 

preamble and guard time slots), so that original signals can be reconstructed even though 

signal transmissions are delayed. In a GEO Ka-band satellite system, the delay time for one-

way transmission is around 240-250 ms at the distance of 35,786 km between an earth station 

and the satellite. The earth station would have to be on the equator at the sub-satellite point. 

2.7. Digital Modulation Techniques for Satellite Links  

For efficient use of transponders and resources higher level of modulation e.g., QAM, 

M-PSK instead of QPSK and BPSK, higher compression standards like MPEG-4 to MPEG-7 

for video, FECs can be used. A number of modulation techniques have been developed to 

optimize particular features of a digital transmission link. The desired bit error rate determines 

the minimum required C/N values for each modulation technique. 

 The types of digital modulations are divided into coherent and non-coherent types. At 

a given minimum C/N requirement, the BER performance of a coherent system is better than 

a non-coherent system. In addition, coherent modulation can incorporate both amplitude and 

phase information, although synchronization circuits and phase-locked loop circuits increase 
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the complexity of the system. On the other hand, non-coherent modulation is insensitive to the 

phase information, which degrades the BER performance. Since none of the satellite systems 

today uses non-coherent modulation, coherent modulation BPSK, QPSK, M-ary phase shift 

keying (M-PSK) modulations, and now Quadrature Amplitude Modulation (QAM) will be 

adopted for the link design of satellites. 

2.7.1. Phase Shift Keying (PSK)  

PSK modulation is the most commonly used digital modulation in digital satellite 

communications systems. The BER is often referred to the probability of bit error, P
e
. 

Probability of bit error is calculated from the characteristics of the type of modulation used 

and the energy per bit per noise density (E
b
/N

o
), which can also be obtained directly from the 

C/N values. To simplify the BER calculation, inter-symbol interference is assumed to be zero 

and that ideal root raised cosine filters are used at the transmitter and receiver. 

The greater is the E
b
/N

o   
value, the lower the probability of bit error. For an ideal 

system, the E
b
/N

o 
can be represented as:  

Where, E
s 
= Energy per symbol [J],   Eb= Energy per bit [J] 

 N
o 
= single sided noise power spectral density [W/ Hz]  

 C = carrier power [W],   N = noise power [W]  

 R
s 
= symbol rate [symbol per second (sps)] =1/T

s
, T

s 
= symbol duration [sec]  

 B
n 
= noise bandwidth [Hz]  

BPSK consists of one bit per symbol. BPSK is used in some satellite links although it 

is considered to have low bandwidth efficiency compared to QPSK. QPSK is widely used in 

satellite links, transmits two bits per symbol. Since two bits are sent per symbol, the symbols 

have four possible states. Since QPSK carries twice information per symbol than BPSK, it needs 

an extra 3 dB of C/N to achieve the same Pe of BPSK.  

Higher numbers of bits per symbol can also be sent using an Mth order modulation 

scheme, called M-ary Phase Shift Keying (M-ary PSK). M stands for the number of possible 

states. M has to be greater or equal to 4. This can generally be used for any multi-level 
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modulation scheme. Bandwidth efficiency is a critical consideration when a higher level of 

modulation schemes is adopted. The bandwidth efficiency for any modulation usually is 

defined as 

Where, η = bandwidth efficiency [bits/s/Hz]  

 B = bandwidth of transmitted signal [Hz] 

2.7.2. Quadrature Amplitude Modulation (QAM)   

QAM is combination of four phase states of QPSK with multiple carrier amplitudes. 

For instance, 16-QAM is a modulation in which each symbol represents 4 bits and has 16 

possible states. Taking M=16 as an example, 16-PSK needs an extra 4 dB of C/N to achieve 

an error probability of 10-6 compared to 16-QAM. Thus, the BER performance of 16-QAM is 

much better than 16-PSK, as shown in Figure 2.7. Therefore, many new generations of Ka-

band satellites designed for data services, Internet access will use 16-QAM between the 

satellite and hub, so that lower BER values can be maintained.  

Modulation Type Probability of Bit Error Rate Relative 
Symbol rate (Rs) 
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M-ary PSK (MPSK) 
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M-ary QAM (MQAM) 
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Table 2.3:  Coharent signal Modulation Methods and theoretical error equations [44] 

 Table 2.3 presents the above modulations’ probability error theoretical equations and 

symbol rate relationships that will be used for the system design. Table 2.4 provides the 

required C/N values for M-ary PSK and M-ary QAM at the given probability of errors equal 

to 10 -6. 
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M-ary PSK 
Modulation 

Symbol 

rate (Rs) 

Desired 
C/N(dB) at 
BER=10-6 

M-ary QAM 
Modulation 

Desired 
C/N(dB) at 
BER=10-6 

2-PSK(BPSK) R 10.76 - - 
4-PSK(QPSK) ½ R 13.53 4-QAM 13.77 

8-PSK Rb/3 19.12 8-QAM 17.53 

16-PSK Rb/4 24.97 16-QAM 20.02 

32-PSK Rb/5 30.95 32-QAM 24.36 

Table 2.4: Comparison of C/N for M-ary PSK and M-ary QAM 

   

Figure2.7: Comparison of BER performance for various digital modulation techniques. 

From Figure 2.7 above, it can be concluded that when a higher number of bits per 

symbol in a type of modulation is used, a higher C/N value is required to achieve the same 

probability of error compared to those in lower number of bit per symbol. The higher order 

modulations in Table2.4 require higher C/N values that may be more difficult to achieve in a 

satellite link. Thus, using forward error correction (FEC) or uplink control power to get better 

BER for a given C/N maybe a preferable method, as described in the next section.  

5 10 15 20 25
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Es/No, dB

S
ym

bo
l E

rr
or

 R
at

e

Symbol error probability curve for different  modulations

 

 

theory-16PSK
theory-16QAM
theory-QPSK
theory-BPSK



Satellite communication and Ka band 

 37 

 

2.8. Forward Error Correction (FEC)  

FEC not only used to optimize the link budget and maximize the power bandwidth 

efficiency, but also can provide a flexible tradeoff between the BER and the occupied 

bandwidth. With various selections of coding and code rates, FEC can be used to relax the 

link budget parameters or to improve the BER of a given link, especially at a small earth 

station with limited antenna size. FEC is an error correcting method for a transmission link. 

Using redundancy added to the information bits, the receiver can detect and correct 

transmission errors and corrupted signals. In addition, no feedback is required from the 

receiver. The common codes that are used in satellite modems include Viterbi codes, Reed 

Solomon codes, Turbo codes, convolution codes, etc. [44].  

2.9. Link Budget Calculation  

 The link budget is a calculation which shows the expected carrier to noise ratio (CNR) 

of the system under the specified conditions. This ratio is directly related to the Eb/No as 

discussed. From this calculation a prediction of the bit error rate and the reliability of service 

can be determined. The following sections outline the values chosen for the input parameters 

and the calculations [57]. 

i) Hardware Specifications & Frequency Parameters  

Hardware losses for both the uplink and the downlink are estimated at 2.0 dB for the 

receiver and 0.2 dB for each feed. The satellite gain is calculated using the designed parabolic 

antenna. The power for each downlink signal is limited to 1 Watt due to power constraints on 

the satellite. The earth antenna gain was set at 0 dB and the earth transmitter is given a power 

of 1 Watt. In this way the design of the satellite system alone can be evaluated and the 

necessary gain needed from the earth station to make the system feasible can be determined.  

 Frequencies in the Ka frequency band are chosen because this band communication is 

our main aim. There is a large amount of available bandwidth which can support high data 

rate services. Frequency has a direct effect on the power of the received signal due to rain 

attenuation and free space loss. Free space loss increases at a rate of inverse distance squared. 

The frequency scaling method presented is used for frequencies +/- 1 GHz for the up and 

downlink frequencies of 30 and 20 GHz.  
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ii) Target Latitude and Longitude  

 The target latitude and longitude are selected based on the coverage area of the feed 

with the worse gain as calculated in the antenna design i.e., the proposed geographical spot 

beam locations. The geographical coordinates of feed # 1 correspond to 10oN   Latitude and 

78oE Longitude. The satellite Latitude position must be situated on the equator 0o in order to 

maintain a geostationary position. The Longitude position of the satellite is chosen to be 83o 

E.  (This is the geographic centre of the coverage area.) 

iii) Height above Sea Level  

 A target's height above sea level affects the attenuation due to the free space loss, as 

well as the effect of rain on the slant path of the signal. A height of 0.2 km is selected for the 

elevation of the target.  

iv) Outage Percentage  

The outage percentage is a statistical calculation which is used to predict the 

percentage of time that atmospheric attenuation exceeds a certain threshold. This calculation 

is based on the CCIR attenuation model as presented in chapter 3. The model is dependent on 

the geographic parameters as well as the frequency of the signal. An outage percent 

probability of 0.01 % is used for this system. The 0.01% level is the value derived from 

measured systems by ITU DBSG5. Other percent outage levels must be calculated indirectly 

using a scaling method. The 0.01 % level gives a statistical prediction that the attenuation due 

to rain will exceed the calculated threshold only 0.01 % of the year [57].  

v) Antenna Gain Reductions  

 For an antenna design having a beam width of 0.2o and servicing a location having an 

elevation angle of 20o the antenna gain reduction is found to be 0.5 dB [31].  

vi) System Interference and Channel Guard Bands  

 In the FDMA system, no interference from other users was modelled. This is due to 

the fact that all users occupy a unique frequency and from the fact that channels are spaced 

with 1 MHz guard bands at the upper and lower edges of each channel.  Broadband front-end 

filtering would provide additional attenuation to interfering signals. The narrow beamwidth of 

the antenna and low side lobe levels tend make user   signals in other geographic areas very 

weak relative to the desired signal. For this reason, the FDMA system is seen to be noise-

limited.  
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vii) Temperature Parameters  

Summer temperatures are estimated for the system to give a worst-case scenario. 

Temperatures selected based on those found in literature and through personal communication 

with system operators and designers. The selected parameters are presented in chart form in 

the link analysis summary. The temperature values chosen significantly affect the amount of 

attenuation which results from the downlink degradation factor. 

viii)    Pulse Design and base band channel 

 A BPSK pulse is used to transmit data. This scheme simplifies the recovery of the 

message signal at the receiver. To minimize inter-symbol interference a 100 % raised cosine 

pulse is selected. This effectively doubles the bandwidth of the system. The increase in 

bandwidth is not seen as a problem due to the large amount of unallocated bandwidth in the 

Ka band. The basic information rate is selected for 2 Mbps. The 2 Mbps rate will allow for 

high data rate transfer as well as image transmission. 

Satellite receiver loss(dB) 2 Earth feed temp (oK) 300 
Satellite feed loss  (dB) 0.2 Sat Feed temp (oK) 200 
Satellite Gain (dB) 48 Earth Temp (oK) 300 
Satellite Power (dB) 0 Satellite Temp (oK) 200 
Earth Receiver Loss (dBW) 2 Sky Temp (oK) 2 
Earth feed loss (dB) 0.2 Medium temp(oK) 290 
Earth Gain (dB) 0 Ground Temp (oK) 300 
Earth Power (dBW) 0 Guard band (MHz) 1 
Target Latitude (deg)  Base band (MHz) 2 
Target Longitude (deg)  Outage (%) 0.01 
Satellite Longitude(deg) 83 Aperture Degradation (dB)  0.5 
TEC   ( /m2) 1017 Interference Noise (dB) 0.0 
Height above M.S.L (km) 0.2 H2O Vapour Density (g/m3) 7.0 

Table 2.5: Typical Link Budget Parameters FDMA Systems. 

ix) Ionospheric Effects  

 The major parameter controlling the effect of the ionosphere is the Total Electron 

Count (TEC/m3) and the frequency. The TEC value of 1017 is used. The ionospheric effects 

are not seen as significant with respect to signal distortion. The reason for the small influence 

of the ionosphere on the ka band signal is due to the inverse frequency dependence on the 

degradation parameters. The ionospheric effects are not considered further. 
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x)  Eb/No   Requirements 

 The Eb/No level is selected to give a Bit error rate (BER) of 10-5 for BPSK pulses. This 

level corresponds to an Eb /No of 10. Additional gain from beam forming and coding would be 

expected to increase this level to give data quality performance of 10-6 or better. 

Calculation 
frequency 

19 
GHz 

20 
GHz 

21 
GHz 

29 
GHz 

30 
GHz 

31  
GHz 

Satellite EIRP(dBW) 45.8 45.8 45.8 45.8 45.8 45.8 
Earth EIRP(dBW) 2.2 2.2 2.2 2.2 2.2 2.2 

Elevation Angle(deg) 22.59 22.59 22.59 22.59 22.59 22.59 
Free Space Loss (dB) 210.69 211.14 211.56 214.37 214.66 214.95 

O2  Attenuation 0.15 0.15 0.16 0.26 0.27 0.29 
H2O Attenuation (dB) 0.42 0.66 1.04 0.44 0.42 0.40 

Gaseous Loss(dB) 0.57 0.81 1.21 0.70 0.69 0.70 
Rain Attenuation(dB) 11.33 12.98 14.76 23.21 25.39 27.69 

System Temp (oK) 572.70 578.96 583.49 485.99 485.97 485.96 
DWN Degradation(dB) 2.15 2.03 1.84 0.00 0.00 0.00 

Noise Power(dB) 201.02 200.97 200.94 201.73 201.73 201.73 
Noise 

Bandwidth(MHz) 
8 8 8 8 8 8 

Total Loss(dB) 228.24 230.47 232.87 241.71 244.17 246.76 
Total Gain (dB) 43.6 43.6 43.6 43.6 43.6 43.6 
CNR, Eb/No (dB) 49.64 51.91 54.35 62.39 64.86 67.45 

Channel Bandwidth 
(MHz) 

10 10 10 10 10 10 

Number of Channels 200 200 200 200 200 200 
Bandwidth 

Available(GHz) 
2 2 2 2 2 2 

Required Eb /No (dB) 10 10 10 10 10 10 
Eb/No  Margin(dB) 59.64 61.91 64.35 72.39 74.86 77.45 

Max 
Dispersion(deg) 

0.027 0.027 0.027 0.027 0.027 0.027 

Max.Dispersion (psec) 0.008 0.008 0.008 0.008 0.008 0.008 
Phase delay(deg) 24.24 24.24 24.24 24.24 24.24 24.24 

Group delay (psec) 6.734 6.734 6.734 6.734 6.734 6.734 

Table2.6: Typical Link Budget Calculations at different frequencies of FDMA systems 

2.9.1 Comparison with L Band Voice System  

 There is significantly loss resulting in the broadband scenario proposed as compared to 

voice band systems which operate at lower frequencies. In order to illustrate the source of these 

differences, a comparison shown with the 9.6 kbps voice band. 
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Parameter Uplink  Downlink  

Frequency 1.6 GHz 30 GHz Difference 2.0 GHz 20 GHz  Difference 

Bit Rate 9.6 kbps 2 Mbps  9.6 kbps 2 Mbps  

Free Space Loss 188.38 214.66 26.38 190.11 211.14 21.03 

Noise Power(dB) 158.34 141.73 22.61 157.11 140.96 22.15 

Weather 
Attenuation(dB) 

0.1 26.08 25.98 0.1 13.79 13.69 

Total Major  attenu- 
ation  factor(dB) 

30.14 105.01 74.87 33.1 89.97 56.87 

Table 2.7: Uplink and downlink performance Comparison: Ka band system Vs L band system. 

 As this analysis shows that the major factors contributing to the system attenuation in 

compared to the lower frequency and data rate system are the free space loss, the noise power 

(which is a function of the data rate and noise power bandwidth) and the attenuation due to 

weather. The values affecting the magnitude of this attenuation are the result of the desired 

frequency band of the service required. Practical receiving antennas are limited to a gain of 

approximately 50 dB due to size constraints, construction and pointing errors. It is anticipated 

that beam forming will allow for an increase in the signal to noise ratio which would make 

this system less costly. 

2.10. Summary  

This chapter provided a literature review of satellite communications technology. It 

presented comparisons between the conventional bent-pipe transponder and on-board 

processing transponders. It discusses different types of multiple access techniques: FDMA, 

TDMA, and CDMA. Coherent modulations were compared, such as BPSK, QPSK, M-PSK, 

and QAM. Different modulation selections with link power budget design will be presented 

when the terrestrial-satellite integration network is determined in Chapter 3. FEC and UPC 

are alternative solutions in providing a desired BER performance to be discussed in chapter 4. 

A typical link budget is presented and a comparison is done with the old satellite systems L 

band. 
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Chapter 3 
 

Prediction Models for Rain Attenuation 
 

3.1 Introduction 
 

The rapid growth of satellite services using higher frequency bands such as the Ka-

band has highlighted a need for estimating the combined effect of different propagation 

impairments. It is necessary to identify and predict the overall impact of every significant 

attenuation effect along any given path. Accurate predictions of the propagation 

impairments that affect link quality are essential for the reliable design of satellite 

communications.  

Rain attenuation plays a more important role in satellite communication than other 

atmospheric losses when Ka-band is in use especially in tropical and sub tropical regions. 

Extensive rain characteristic prediction and modelling have been made all over the world. 

Most of these predictions and models are of statistical nature. Some popular models are 

Crane model (1980), ITU-R model (1982), Moupfouma model (1984), and modified ITU 

model as DAH model (1997) [3][8].  

 This chapter surveys a review of previous researches of rain attenuation on the 

communication system links and includes the discussion of latest developments in the 

modelling over terrestrial and slant path. Emphasis is placed on calculation of rain 

attenuation in 16 spot beam areas as proposed using above prediction models. The ITU-R 

worldwide model for rain attenuation and effective path length along horizontal reduction 

factor and vertical adjustment factor models are presented in detail and analysed. 

3.1.1 Rainfall Impact on Satellite Link 

 Satellite signal propagation above 10 GHz over an atmosphere is a subject of   

impairment and phenomena such as, gaseous attenuation, cloud and fog attenuation, in 

addition to rain attenuation. These are degrading the intensity  of satellite signal on the path, 

since the influence of the impairment on the microwave propagation increases with the 

frequency, the concern of this thesis is to understand of this influence, which allow these 

bands channels to use to provide  high quality satellite services. 

 According to Olsen R.L. (1978), hydrometeors in the form of rainfall dominate the 

influence of the atmosphere on the satellite transmission [55]. The problems become more 



Prediction models for Rain attenuation 

 43 

 

acute for systems operating in tropical regions, where rainfall rate can adversely affect the 

satellite link.  Rain can cause uncontrolled variations in signal amplitude, phase, 

polarization and angle of arrival, which result in a reduction in the quality of analog 

transmissions and an increase in the bit error rate of digital transmissions [7]. Figure 3.1 

shows hydrometeor absorption is the dominant phenomenon causing power loss in the 

lower spectral part. This constitutes the main disadvantage of satcom operating at the Ku, 

Ka, or V frequency bands. 

Figure 3.1:  Hydrometeors affecting the satellite path. 

The prediction of rain attenuation for the radio systems operating over 10 GHz can be 

improved through a better knowledge of the spatial-temporal structure of rain. The rain 

structure depends on the other factors such as rain cell diameter and rain height. A different 

type of rain shows different spatial structure and thus different impact on the radio systems. 

Rain rates studies have been conducted by number of researchers throughout the world. In 

most of the prediction models the actual knowledge of rain structure characteristics is not 

used directly but absorbed into some parameters of empirical formulas. 

3.1.2   Rainfall   Structure and Types  

 India has a great diversity in geographical parameters. A variety of climatic conditions, 

deserts, heavy rain regions and affected by oceanic winds. Rainfall is a natural, time varying 

phenomenon having complex structure due to its variability in space, duration and 

frequency of occurrence. In general, rain can be classified into four types (ITU-R, 1994), 

Stratiform, Convective, Monsoon, and Tropical rainfalls. Each type has its special 

characteristics which are varying, such as rain intensity and rainfall time duration as 

discussed below.  

 Stratiform rain is characterized by medium and low intensity with long duration in the 

mid-latitude regions, extending homogeneous to several hundreds of kilometers 

Satellite path 

Ground station 

Downlink 
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horizontally, with vertical heights values follow from the 0°C isotherm heights (ITU-R, 

2002). Stratiform rain results from the formation of small ice particles in the upper 

troposphere layers. As they fall, these particles join together to form bigger nuclei. The 

growing nuclei become unstable and as they pass through the melting layer turn into 

raindrops that fall down to earth surface [34]. 

 Convective rain with high rain rates for short durations and extending over much 

smaller horizontal extent, usually few kilometers, but can extend much greater vertical 

heights because of convective upwelling up to 9-10 km. Convective rain is associated with 

clouds that are formed, in general, below the 0°C isotherm and are stirred up by strong 

winds. Differences in the troposphere pressure, water drops are created arid as they grow in 

size, until gravity precipitates them, with intermittently strong vertical velocities [23].  

  Monsoon precipitation is a sequence of bands of intense convection followed by 

intervals of stratiform precipitation. Convective rain displays considerable horizontal 

variability with cells and regions of higher intensity. Widespread stratiform rain may 

contain weak convective elements, relatively uniform regions of lower reflectivity with a 

melting layer and surround by convective showers. Tropical rainfall is predominantly 

convective and characterized by high intensity rain rates, which occur over limited 

extensions and with short duration where precipitation is surrounding the centre and in 

several outer spiral bands. These bands show a mixture of convective and stratiform 

structure. During precipitation, a stratiform structure develops, which extends over wider 

areas with light intensities [28]. 

3.1.3 Principal Sources of Rainfall Data 

 Principal sources of data for studying rainfall are represented by rain gauges or and 

their networks, meteorological ground based radars of Indian meteorological department 

(IMD), and space born sensors flying on satellites mainly from ISRO sites. Rain gauge data 

represent the most common source of information about the rainfall in a site, available for 

long time periods for proposed locations. The models for description of rain structure and 

the prediction of propagation impairments based on rain gauge data hourly recorded by 

IMD weather stations across the countries with 36 subdivisions. Besides this the long time 

statistical stored data of ITU databank, previous rain attenuation papers, have the key role 

for analysis and validation. 

 



Prediction models for Rain attenuation 

 45 

 

3.2 Indian Climate and Rainfall Distribution 

In global position India is placed north of equator ranging from 8-42o North 

latitude and 70-97o East longitude. The tropic of cancer crosses horizontally in the middle 

(231/2N ), with mean sea level temperature. It characterized by non-uniform temperature, 

high humidity and plentiful rainfall which arise mainly from the Southwest monsoon and 

North east monsoon over the country. Although the winds are light, heavy and variable, 

some uniform periodic changes in the wind flow patterns exist. Based on these changes, the 

seasons can be distinguished such as the south-west monsoon, north-east monsoon and two 

shorter inter-monsoon seasons. As a result of season’s variation for the same location the 

significant change of rainfall rate intensity is varied in time and space which represented the 

random variables in spatial and temporal characteristics which can be described using 

cumulative distribution function. 

One-minute rain rate cumulative distribution (R0.01) is the probability P (R ≥ ro) 

that one minute rainfall intensity R (mm/hr) exceeds a threshold value ro (mm/hr) for a time 

period T. It is expressed as  

     Where No is the number of rain rate data more than ro and NT the total number of 

minute in time period T. [8] 

3.3   Rain Attenuation Modelling 

 The evaluation of prediction models for satellite and microwave systems requires a 

detailed knowledge of the attenuation statistics for each ground terminal location at the 

specific frequency (20/30 GHz) of interest. Due to non availability of Ka- band satellite 

signal in these footprints and failure of GSAT-4 mission, it would obviously be an 

impossible task to collect experimental data for all the frequencies, locations, and elevation 

angles under consideration for operational satellite systems. Therefore, a more reasonable 

approach is to use the predictive models based on and in agreement with data from various 

national and international organisations. The possibility of predicting rain attenuation 

statistics on the path from rainfall intensity data has been a subject of considerable interest 

during the past researches, and has stimulated an extensive series of theoretical and 

experimental studies. The purpose of this chapter is to perform a systematic assessment of 

these methods on the basis of attenuation modelling which are discussed in the following 

sections [27][18][60]. 

o o TP(R  r ) = N  / N                                                       (3.1)≥
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3.3.1 Effect of elevation angle 

 The elevation angle from the earth station to the satellite, ϕ is determined from 

Where, 
   re =Equatorial radius  =  6378.14 km; 

   hGSO =Geostationary altitude = 35, 786 km;  

   d = Range, in km;  

   B = Differential longitude, in degrees;  

and       LE =Earth station latitude, in degrees. 

The elevation angle is important because it determines the slant path through the 

earth’s atmosphere, and will be the major parameter in evaluating atmospheric degradations 

such as rain attenuation, gaseous attenuation, and scintillation on the path. Generally, the 

lower the elevation angle, the more serious the atmospheric degradations will be, because 

more of the atmospheric airmass is present to interact with the radiowave on the path to the 

satellite [15]. The airmass is more as the angle is less seen in figure 3.2. It approximates the 

atmosphere by a single layer of oxygen and a single layer of water vapour.  

Figure 3.2: Relative Airmass of atmosphere as a function of elevation angle. 
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Total attenuation is calculated by multiplying path length with the specific 

absorption of each of the layers.  Main advantage of this method is that only surface 

meteorological data are needed, disadvantage is lower accuracy, especially at low elevation 

angles. So ITU-R did not recommend using it for elevation angles lower than 5° [7]. 

In addition to the frequency dependence shown in figure 3.3  attenuation by 

atmospheric gases as well as other attenuation mechanisms described later is highly 

dependent on elevation angle. Lower elevation angle results in much longer path length 

through the atmosphere, thus increasing the attenuation [14]. Figure 3.3 shows dependence 

on different elevation angles for Ka-band frequencies calculated utilizing the reference 

standard atmosphere and high latitudes (>45°) from ITU-R Recommendation. P.835-4. 

Effect of the water vapour content change through the year is also shown in the figure. The 

difference between summer and winter values is more prominent at downlink frequencies as 

these are closer to the water vapour resonance frequency.  

Figure 3.3:  Total attenuation by atmospheric gasses with changing lower elevation angles and 

different frequencies, using summer and winter reference atmospheres [ACTS experiment][54]. 

 

The specific attenuation at three different elevation angles are seen in the figures 

3.4-3.6 and found that it increases as the angle decreases  using ITU database, details 

discussed later. 
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Figure3.4: Specific attenuation due to rain at an elevation angle of 30o 

Figure 3.5: Specific attenuation due to rain at an elevation angle of 60o. 
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Figure 3.6: Specific attenuation due to rain at an elevation angle of 45o. 

3.3.2.   Statistical basis of link performance study 

In general, the basic radio wave propagation mechanisms are not deterministic, and 

can only be described on a statistical basis. It is often necessary, and advantageous, to 

specify certain communications link system parameters on a statistical basis. This is 

particularly useful when considering parameters affected by transmission impairments in 

the atmosphere. Statistically based performance parameters are usually specified on a 

percent of time basis, i.e., the percent of time in a year, or a month, that the parameter is 

equal to or exceeds a specific value. Rain attenuation and some other atmospheric effects 

parameters are often specified on a percent of time basis [50][59]. The two most often used 

time periods for rain related parameter specifications are yearly (annual) and worst month. 

Most propagation effects prediction models are specified on an annual (8769-hour) basis. 

Broadcasting services, including the broadcasting satellite service (BSS), often specify on a 

worst month (730-hour) basis. The worst month denotes the calendar month where the 

transmission impairments, primarily rain attenuation, produce the severest degradation on 

the system performance. Parameters affected by rain attenuation, for example, carrier-to-

noise ratio or signal-to-noise ratio, would have worst month values in July or August for 

most regions of India, in monsoon months when heavy rain occurrence is most probable. 

The parameter is presented on the linear scale of a semi-logarithmic plot, with the percent of 

time variable placed on the logarithmic scale.[7] 
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Several terms are used in specifying the percent of time variable, including outage, 

exceedance, availability, or reliability. If the percent of time variable is the percent of time 

the parameter is equalled or exceeded, P, then (100 – P) display represents the availability 

or reliability of the parameter. 

Exceedance or 
Outage P (%) 

 

Availability or 
Reliability (100-P) 

(%) 

Outage time 

Annual Basis 
(hour or minutes per year) 

Monthly  
(hour or minutes per year) 

0 100 0 hr 0 
10 90 876 hr 73 hr 
1 99 87.6 hr 7.3hr 

0.1 99.9 8.76 hr 44 min 
0.05 99.95 4.38hr 22 min 
0.01 99.99 53 min 4 min 
0.005 99.995 26 min 2min 
0.001 99.999   5 min  0.4 min 

Table 3.1:    Annual and monthly outage for specified percentage of time and availability. 

Here a link availability of 99.99 % corresponds to a link with an expected outage 

of 0.01 %, or 53 minutes, on an annual basis. The BSS generally specifies link parameters 

in terms of an outage of ‘1% of the worst month’, corresponding to 7.3 hours outage or 99% 

link availability during the worst month. Most propagation prediction models and 

measurements are developed on an annual statistics basis. It is often necessary to determine 

worst month statistics for some specific applications, such as the BSS, from annual 

statistics, because annual statistics may be the only source of prediction models or measured 

data available. 

The ITU-R has developed a procedure in Recommendation ITU-R P.841-4 for the 

conversion of annual statistics to worst-month statistics for the design of radio 

communications systems. The recommendation procedure leads to the following 

relationship: 

Where, P is the average annual time percentage exceedance, in percent, and Pw is the 

average annual worst month time percentage exceedance, also in percent.  

3.3.3 Development of Rain Attenuation Studies 

 The classical development for rain attenuation began with studies by early 

researches immediately after World War II till present [7]. Basically, most of rain 

attenuation studies are based on three assumptions which are: 

( )1 15
wP 0 30 P 3 3.. .=                                                                 
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−  As the wave propagates through the volume of rain, its intensity decays exponentially. 

−  The raindrops are assumed to be spherical water drops which cause attenuation. This 

attenuation is due to both energy absorption losses in the raindrops and to scattered 

energy by water droplets from the incident radiowave. 

−  Each drop’s contributions are independent of the other drops, and the contributions of 

the drops are additive. 

 The prediction techniques based on the use of rain gauge cumulative distribution of 

rain rate are measured at a point. The problem of spatial in-homogeneity of rainfall intensity 

is taken into account by using an effective path length, where the path is divided into small 

volumes of spherical and uniformly distributed water drops of rain as radio wave propagate 

through it, the reduction and the dispersion occurs on the signal amplitude caused by each 

rain drops, which is known as rain attenuation, as shown in Figure 3.7. 

 

 

 

 

 

 

Figure 3.7: Volume of spherical uniformly distributed raindrops,  
dispersion and scattering of RF energy on collision with water particles. 

 According to Ippolito (1986), the total attenuation (A) in the direction of wave 

propagation in (dB) can be expressed as in equation (3.4). Where γ is the specific 

attenuation (dB/km) along the rain volume (km), and the total rain attenuation is integrating 

the specific attenuation over the path. On the other hand, the path is divided into small 

incremental volumes, where the rainfall is approximately uniform. The rainfall rate in each 

small volume is associated with a corresponding attenuation called specific attenuation [29]. 

The problem of predicting attenuation by rain is quite difficult, because of non-

uniform distribution of rainfall rate along the entire path length. Extensive efforts have been 

undertaken to develop reliable techniques by researchers, which is explored in effective 
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path length approach (Crane, 1980). According to ITU-R (1994), the effective path length is 

the length of a hypothetical path obtained from radio data dividing the total attenuation by 

the specific attenuation exceeded for the same percentage of time as in equation (3.5). 

 The details of Leff are discussed in the next section. The attenuation of the wave, 

usually expressed in decibel (dB) value as, 

Where, Pt is the transmitted power and Pr is the received power and value is negative 

as Pt is greater than Pr. 

According to ITU-R, the microwave engineers should design a desired availability of 

microwave link at 99.99% of the time that determines the required amount of link margin to 

counter the extreme rain attenuation condition. Therefore, the link is allowed to experience 

outage of 0.01% of the time throughout the year. Specific attenuation and effective path 

length are the main elements for all the prediction models, the discussions for these 

elements are provided in the following sub-sections. 

3.3.4 The Effective Path Length (Leff) 

 The major problem in the estimation of rain attenuation studies relates with 

determining the effective path length. A large portion of the significant research 

accomplished on the effects of rain on the microwave and the satellite communication links 

have been involved with the determination of techniques and models to characterize the 

slant path from measurable quantities [20]. 

  The effective path length is used to account for in-homogeneity of rain along the 

propagation path, According to Ponte (1985), and Lin (1979), the effective path length Leff 

depends on the actual path length L and the reduction factor , r(p) and its expressed as 

  An effort has been developed to give a better understanding of the effective path 

length concept and its dependence on meteorological factors and link parameters. Almost 

all of these reduction factors were derived in purely empirical method at a number of 

geographical locations (Crane,1993). According Dissanayake (1989), based on radiometric 

rain attenuation measurements in Peru, the most probable cause for the overestimation of 

attenuation is the path reduction factor, which is not applicable to climates dominated by 

tropical rainfall climate. Several models were proposed to define the effective path as 

discussed in the following subsection. Here we have tried to analyse the geographical data 

t
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of different locations of India taking account that our satellite may be placed at 83oE in the 

GSO. Accordingly the elevation angle is varies almost from 47o to 80o. 

3.3.5 The Effective Rain Height    

 At a certain height above ground level snow and ice precipitation are converted into 

rain precipitation is called the effective rain height [34]. The region around this height is 

called the melting layer. During periods of light rain and for low elevation angles, the 

melting layer contributes significantly to the total slant path attenuation as verified by the 

relevant prediction model.  

     Figure 3.8:    Rain height and different rain layers. 

 For Indian region the elevation angle are ranges from 47o to 80o to the proposed 

satellite position at 83o E and the horizontal projection of the slant path can be calculated 

using the path geometry theories proposed by ITU-R. The rain height is the only factor that 

can affect the slant path length. The effective rain height is the rain height for the slant rainy 

path that affects the satellite link. 

Spot beam Madurai Chennai Hyderabad Mumbai  Pune Ahmed 
abad 

Jaipur Delhi 

Elevation angle 
( degree) 79.8 74.3 72.23 70.65 71.28 60.7 57.5 56 

Height above 
MSL (metre) 100.58 6.7 525 10.15 560 52 431 233 
Latitude N, 
Longitude E 

9o.72’ 
78o.10’ 

13o.11’ 
80o.23’ 

17o.28’ 
78o.36’ 

18o.70’ 
72o.65’ 

18o.35’ 
73o.75’ 

23o.0’ 
72o.55’ 

27o.0’ 
75o.70’ 

28o.50’ 
77o.22’ 

Spot beam Chandigarh Srinagar Lucknow Gawhati Kolkata Patna Bhopal Bhuba 
neswar 

Elevation(deg) 53.4 49.3 58.6 58 62.8 60 62 66 
Height above 
MSL (metre) 350 1730 123 55 6.5 54 50 45 
Latitude N, 

Longitude E 
30o.60’ 
76o.63’ 

35o.05’ 
74o.65’ 

26o.65’ 
81o.0’ 

26o.12’ 
91o.61’ 

22o.45’ 
88o.32’ 

25o.44’ 
85o.18’ 

23o.26’ 
77o.40’ 

20o.20’ 
85o.65’ 

Table 3.2: Approximated geographical parameters of 16 spot beam locations 
 and elevation angle (degree)  to satellite placed at 83o E (ISRO) of GSO   

Earth station 
Antenna 

Satellite 

Rain 
height 
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  The effective rain height can be calculated using the total measured attenuation along 

the path divided by the attenuation per one kilometre. The vertical variation of rain specific 

attenuation can be taken into account to improve the prediction of rain attenuation along 

slant paths. 

3.4   Effective Terrestrial path length 

  For the microwave link path which is known as terrestrial path and low elevation 

slant path angle, the horizontal reduction factor is taken into account for inhomogeneous 

distribution of rainfall horizontally [39]. Which cause the effective path length is shorter 

than the actual path length. The following section represents the most published horizontal 

reduction models in tropical region. 

3.4.1. Moupfouma Reduction Factor Model [60] 

 According to Moupfouma (1984) an empirical model for predicting rain induced 

attenuation on terrestrial paths using effective path length is proposed based on studies in 

Congo, Japan, U.S and Europe for various path parameters and length. The mathematical 

expression for horizontal reduction factor r(p) expressed as follows 

 The β coefficient is given as a result of a best fit by 

     β = 0.45       0.001 < P < 0.01,         

       and   β = 0.6          0.01 < P < 0.1 

  Where,      f    is the frequency in GHz. 

              Ls   is the path length in km. 

           P (%)   is percentage in time of the year. 

3.4. 2 CETUC Reduction Factor Model  [20]   

  Pontes (1993), has proposed based on use of point rainfall cumulative distribution as 

function for the prediction of rain attenuation. Basically the model built based on data 

collected at Brazil sites and then adapted for application on a global basis considering 

experimental data from 281 measurement sites, available in the ITU-R data bank. The 

model is more practicable by taking the equivalent rain cell diameter into account concept 

to deal with the effective path length.  The mathematical formula for the model [37] is 

represented as 

1
( ) (3.9)

(1 0.03 (( / 0.01) ) ( ))s

r p
P L−β                                                        =     

+ × ×

1
( ) (3.10)

(1 pathlength(km)) / )o
r p

L
=                                                 +
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Here Lo is the rain cell diameter proposed using the measured attenuation and the ITU-R 

specific attenuation as  

Where the coefficients values are given as  u = 200, v = 0.425, w = 0.089. 

 The length L of the equivalent rain cell is modelled as the function of the 

probability level P % and the point rain rate exceeded at this probability level. Based on 

measurements conducted at Malaysian site, Kareem (2000) has proposed new values for the 

confections as u =1500, v = 0.4856, w = 0.1530. 

3.4.3 Garcia Reduction Factor Model [20] 

     According to Garcia (2004), the database used to derive the prediction method is an 

extension of the ITU-R database of rain attenuation in terrestrial links, to which results of 

measurements carried out in the South-eastern region of Brazil have been added. The 

following empirical expression for r(p), against these parameters, was obtained using a 

nonlinear regression algorithm  

Where,   RP is the rain rate exceedance measured using point rain fall rain gauges, 

               Ls, is the path length in km. 

 According to Kareem (2003), the effective path length for long path (more than 1km) 

addresses the horizontal inhomogeneity of rainfall distribution along the whole path. For 

practical assumption by study the effective path which expresses the actual path interacted 

with the rainy cell diameter concept. But, almost the previous researchers used the specific 

attenuation for one km. [29]  

 In Malaysia previous researchers have experimented taking a terrestrial microwave 

path of length  11.87 km, at 7 GHz and found the effective path length to be around 2.2 -2.9 

km as average of all the measurements for all the paths as maximum length of the effective 

rain cell diameter. The next section will discuss the comparison of this predicted attenuation 

with other models based on horizontal reduction factor concept against measurements at 

several locations in tropical regions. The collected measured rain attenuation data obtained 

along different length microwave links operating at approximately 7 and 15 GHz are 

compared with predicted rain attenuation obtained using different models. 

( log( ))
oL [1 ] 1 (3.11)v w pu Rainrate −=  + −                                              

 ( )  3.445 (  - 0.164 ) (  (-0.369 0.115 /   ))                             (3.12)Pr p L R Ls= × × +
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Figure 3.9: Comparison of different reduction factor models 

    Figure 3.9a: Comparison of the effective path length for different models  
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The figure 3.9-3.9a shows the comparison of the effective path models. The CETUC, 

modified CETUC and Moupfouma prediction models show overestimate of the effective 

path for low rainfall rate intensity (less than100 mm/hr). Whereas, Garcia model shows 

underestimate along all the intensity of rainfall rate. In case of Garcia model, the 

assumption of use of the measured rain rate with the ITU-R specific attenuation was biased 

the model to has linear increase as the rainfall rate increase, which causes cell diameter to 

have slowly increase in length, and is practically not compatible with the measurements of 

rain cell size distribution. But the rain cell diameter in tropical was supposed to increases as 

rain fall rate increases.  

3.5 Slant Path Prediction Models            

 The attenuation can be measured quite accurately by means of satellite beacon 

signals and radiometers. The propagation experiments are carried out only in a few places in 

the world and for a limited number of frequencies and link geometry, their results cannot be 

directly applied to all sites. For this reason, several attenuation models based on physical 

facts and using available meteorological data have been developed to provide adequate 

calculations in all regions of the world.  

 When designing a link budget for a satellite system, the atmospheric condition 

between the ground station and a space station is critical. A good (a clear sky day) or bad (a 

rainy or cloudy day) atmospheric environment would determine how the signals propagate 

between ground and space stations. The amounts of rain attenuation depending on the rain’s 

characteristics, including raindrop sizes, raindrop temperatures, raindrop intensities, 

raindrop distributions, rain fall rates, and rain locations. The ITU provides a rain model [29] 

that is used to predict the attenuation due to precipitation and clouds along a slant 

propagation path for a percentage ranges from 0.001% to 5% of an average year. Here we 

have applied all 16 beam location data to predict the attenuation in Indian region, which is 

discussed below. On the basis of this model world is classified into 14 different rain zones. 

A,B,C,D,E,F,G,H,J,K,L,M, and N. India is comes under K and N. The south India is having 

more rain fall then north India. The rain fall rates and Percentage of time in a year is given 

in table 3.3a and 3.3b.  Figure 3.10 shows the different rain zones defined by ITU-R in Asia 

pacific region. 
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        Figure 3.10: Different rain zones defined by ITU-R in Asia pacific region [from ITU-R]. 

Percentage of 
time in year 

10 0.3 0.1 0.03 0.01 0.003 0.001 

Rainrate exceeded 
(mm/hr) 
Region K 
Region N 

 
 
1.5 
5 

 
 
4.2 
15 

 
 
12 
35 

 
 
23 
65 

 
 
42 
95 

 
 
70 
140 

 
 
100 
180 

Table 3.3a:  Cumulative distributions of annual rain rates for regions K and N, (Source ITU-R). 

Name of the 
spot beam 

Mumbai 
 

Patna Jaipur Srinagar Kolkata Hyderabad Lucknow Ahmeda
bad 

Rainrate exceeded 
0.01% of time in 
year (mm/hr) 

99.7 77.7 56.8 37.9 99.6 60.0 75.3 51.2 

Name of the 
spot beam 

Delhi Bhopal Madurai Gawhati Chennai Pune Bhuban-
eswar 

Chandi 
Garh 

Rainrate exceeded 
0.01% of time in 
year (mm/hr) 

69.1 64.8 91.6 86.6 81.1 79.9 82.8 69.8 

Table 3.3b:  Cumulative distributions of annual rain rate for different spot beam locations, (Source ITU-R). 
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In particular, the prediction of rain induced attenuation starting from the 

cumulative distribution of rainfall intensity has been the subject of a major effort carried out 

by many researchers [6]. Several methods have been developed and tested against available 

data to relate the site climatic parameters to the signal attenuation statistics.  

Figure 3.11a: 25 years average rain fall in Bangalore (1981-2005), Source IMD, Pune. 

Figure 3.11b: The rain fall rate in Bangalore during 2000-2005. 
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Above figure 3.11a shows a 25 years average variation of rain fall data in different 

months in a south Indian city Bangalore. It shows in the end of monsoon season the rain fall 

exceeds 180 mm. In fact the rain rate exceeds 150mm/hr for the time less than 0.001% time 

in a year and more than 100 mm/hr for a period 0.01% of time in a year. Figure 3.11b shows 

rain fall rate for duration of four years. But according to ITU data base experts a continuous 

monitoring of six year database is required as the climatic condition is not uniform for 

years. 

According to ITU-R the following rain prediction model which is among the best 

performing, are briefly described below. Here we have collected some rain fall data from 

IMD data bank for Bangalore and compared with the ITU data.  

3.5.1   ITU-R Slant Path Prediction rain attenuation Model 
 

 The ITU-R rain attenuation model is the most widely accepted international method 

for the prediction of rain effects on communication systems [31]. The model was first 

approved by the ITU in 1982 and is continuously updated, as rain attenuation modelling is 

better understood and additional information becomes available from global sources. The 

ITU-R model has, since 1999, been based on the DAH rain attenuation model, named for its 

authors (Dissanayake, Allnutt, and Haidara) [50]. The DAH model has been shown to be 

the best in overall performance when compared with other models in validation studies. 

This section describes the ITU-R model as presented in the version of   ITU-R P.618-7, 

2003 recommendation [26]. The rain attenuation depends on many parameters, including 

the given earth station elevation angle, latitude, and height above sea level, operating 

frequency, and effective earth’s radius. The ITU rain model can be used for operating 

frequencies up to 55 GHz.  

Figure 3.12: Schematic Presentation of an Earth-to-Space Path showing the Parameters  
are the Input into the ITU-R Rain Attenuation Prediction Procedures. 

A: Frozen precipitation height 
B: Rain height 
C: Liquid precipitation 
D: Earth space path 

Free Space 

EarthStation 
Antenna 
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 Figure above shows an earth-to-space path giving the parameters that are used at 

the ITU-R rain attenuation prediction procedures. The ITU model procedure consists of 10 

steps. Each step defines certain parameters before the rain attenuation is calculated.  

Step 1: The rain height (hR) has to be determined. The values of hR can be calculated from 

the earth station latitude.  

   

 Where, ϕ  is the earth station latitude. 

Step2:, The slant-path length (Ls) is defined in equation (3.14) below as long as the 

elevation angle (θ) is greater or equal to 5° .If the elevation angle (θ) is less than 5°, 

equation 3.15 should then be adopted. 

Where,   

  hR = rain height [km] (typical value = 4 km)  

  hs = height above mean sea level of the earth station [km]  

  θ = elevation angle [degrees]  

  Re = effective radius of the earth [8500 km]. 

 If (hR – hs) is less than or equal to zero, the predicted rain attenuation for any time 

percentage is zero. Thus, the rests of the steps in this section are not required. Otherwise, 

step three described below should be followed. 

Step 3: The relationship between the horizontal projection, LG, and Ls can be derived from 

the model Figure 3.4 and defined as the following equation.  

LS can result in negative values when the rain height is smaller than the altitude of the 

ground receiver site. If a negative value occurs, Ls is set to be zero. 

Step 4: The rainfall rate (R0.01) exceeded for 0.01% of an average year (with an integration 

time of 1 min) is defined from a long-term statistical data collection and measurements. 

Figure (3.13 ) below presents the overall rain climate zone all round the world ITU [28].  
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  The climate zone map is used for both propagation predictions and interference 

calculations. The international Telecommunication Union (ITU) has divided the globe into 

14 rainfall climatic zones and categorized India as Region N and K, partially with very high 

rain precipitation. According to ITU-R version, rain intensity that will cause the interruption 

of a communication link for 0.01% per year is 145 mm/hour.  

Figure 3.13: ITU Rain zones. India comes under the area 3, Source ITU [7]. 

Figure 3.14:   Rain intensity exceeded for 0.01% of an average year [ITU]. 

(Source: ITU-R P.837-4 for area 3) 
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Step 5:   The rainfall intensities can also be found to correspond to particular time zones at 

the given percentage of time that is required for a satellite system link. Table 3.4 shows the 

rainfall rate intensities correspond to particular rain climatic zones in Figure (3.14) of step 

4. For instance, the climatic zone code for South India is N and the rainfall rate intensity for 

0.01% of the total amount of hours for an average year is 95 mm/hr. For comparison table 

3.4b shows measured values in Indian city Amritsar by previous researchers. 

% of time 
in a year 

A B C D E F G H J K L M N P Q 

0.001 22 32 42 42 70 78 65 83 55 100 150 120 180 250 170 

0.003 14 21 26 29 41 54 45 55 45 70 105 95 140 200 142 

0.01 8 12 15 19 22 28 30 32 35 42 60 63 95 145 115 

0.03 5 6 9 13 12 15 20 18 28 23 33 40 65 105 96 

0.1 2 3 5 8 6 8 12 10 20 12 15 22 35 65 72 

0.3 0.8 2 2.8 4.5 2.4 4.5 7 4 13 4.2 7 11 15 34 49 

10 0.1 0.5 0.7 2.1 0.6 1.7 3 2 8 1.5 2 4 5 12 24 

Table3.4a: Rainfall rate exceeded in mm/hr corresponding to different ITU-R climate zones. 
% time rain rate 

exceeded 
 

0.001 
 

0.003 
 

0.01 
 

0.03 
 

0.05 
 

0.08 
 

0.1 
 

0.3 
 

0.5 
Measured Rain rate 

(mm/Hr) 2001 
110.5 88.5 62 39.7 29.5 16.3 12.6 2 0.75 

ITU-R  150 105 60 33 24 15 15 7 4 
Table3.4b: Rain rate measured at Amritsar during year 2001 which belongs to L region [24].  

Step 6: After the rainfall intensity is defined for a particular location and satellite system 

link availability for an average year, a specific attenuation (γR) can be determined using 

equation (3.17) below  

Where,    R0.01 = point rainfall rate for the location for 0.01% of an average year [mm/hr]  

   α , k = regression coefficient for estimating specific attenuation  

and α and k are variable of frequency, elevation angle, and polarisation tilt angle. The 

overall k and α can be calculated from equation (3.18) and (3.19) below from the vertical 

(V) and horizontal (H) polarization values of k and α, given in Table 3.5. In addition, k and 

α can also be calculated for other frequencies by an interpolation technique.[7] k and α are 

calculated using regression coefficients kH, kV, αH, and αV at the frequency of interest from 

the following equations:  

( ) [ ] ( )α

R 0.01γ =k R            dB/km                                         3.17



Prediction models for Rain attenuation 

 64 

 

Frequency (GHz) kH kV αH αV 
1 0.0000259 0.0000308 0.9691 0.8592 

2 0.0000847 0.0000998 1.0664 0.9490 

4 0.0001071 0.0002461 1.6009 1.2476 

8 0.004115 0.003450 1.3905 1.3797 

10 0.01217 0.01129 1.2571 1.2156 

12 0.2386 0.02455 1.1825 1.1216 

15 0.04481 0.05008 1.1233 1.0440 

20 0.09164 0.06911 1.0586 0.9491 

25 0.1571 0.1533 0.9991 0.9491 

30 0.2403 0.2291 0.9485 0.9129 

35 0.3374 0.3224 0.9047 0.8761 

40 0.4431 0.4274 0.8673 0.8421 

Table 3.5: Regression Coefficients for Estimating Specific Attenuation, γR  [ ITU P-838-3]. 

  Where, θ is the path elevation angle and τ is the polarization tilt angle with respect to 

the horizontal, for linear polarized transmissions. τ = 45◦ for circular polarization 

transmissions. Table 3.5, provides values of the regression coefficients for representative 

frequencies from 1 to 40 GHz. Regression coefficients for other frequencies, from 1 to 1000 

GHz, can also be estimated. According to DHA model data, the values of k and α used for 

Ka-band analysis are  

    k= 0.0534   and    α=1.0976     for   f = 18.45 GHz 

    k= 0.1517   and    α=1.0217                       for   f = 28.25 GHz 

After all the necessary parameters have been defined and introduced previously, the 

horizontal reduction factor, r0.01, for 0.01% time of an average year is 

Where,  f = Operating centre frequency [GHz] 

             LG= horizontal projection calculated earlier.   

 This is to point out that a number of regional models have been developed by taking a 

short ( 300 meters,1 km etc. ) microwave link as path length  to calculate the specific 

attenuation but all have taken the same power law equation for final calculation. They are 

basically different in their k and α value. These values are presented in figure 3.15a, 3.15b. 
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Figure 3.15a:  Comparison of coefficient ‘α’ for Specific attenuation models with ITU. 

Figure 3.15b:  Comparison of coefficient ‘k’ for Specific attenuation models with ITU. 
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Step 7: The vertical adjustment factor, v0.01, for 0.01% of the time, can be calculated by a 

couple of sub-steps below. The values for ζ, LR, ϕ and χ are found as follows: 

If,  ζ > θ, equation (3.22) should be used to find LR, otherwise  equation (3.23) is used  

 

 Step 8:  The latitude of the earth station (φ) is then used to determine the χ value.  If | φ | < 

36°, eqn. (3.24) should be used to obtain the χ value; otherwise, the χ value equals to zero. 

This now shows the vertical adjustment factor (v0.01) that can be presented as the following 

equation, when the ζ, LR, ϕ and χ values are determined. 

Step 9: The effective path length (LE), which will be used to calculate the rain attenuation 

prediction, can be obtained from following equation when LR was given previously. 

Step 10: The predicted attenuation exceeded for 0.01% of an average year, A0.01, is 

determined from 

The estimated attenuation to be exceeded for other percentages of an average year, in the 

range 0.001% to 5%, may then be estimated from the rain attenuation to be exceeded for 

other than 0.01% of an average year can be calculated by (Eq. 3.28). 
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P is the desired percentage of an average year other than 0.01%, and β can be calculated 

based on the desired p value, and the given φ and θ values, shown in Table 3.5. 

If p≥ 1% or |φ| ≥ 36°  β= 0  

If p < 1% and |φ|< 36° and θ ≥ 25°  β=-0.005(|φ| - 36)  

Otherwise  β=-0.005(|φ| - 36)+1.8-4.25sin(θ)  

 Table 3.6: Parameter Status of p, φ, and θ to find ‘β’ Value 

 This method provides an estimate of long-term statistics due to rain. Large year-to-

year variability in rainfall statistics can be expected when comparing the predicted results 

with measured statistics [ITU-R P.678-1]. Obviously, the uplink rain attenuation is much 

higher compared to that on the downlinks. Therefore, the uplink must be designed carefully. 

In addition, other interference (adjacent satellite interference, antenna pointing losses, 

needed implementation margin and link margin, etc.) will also degrade both uplink and 

downlink performance. 

3.5.2 Crane Global Model:   Rainfall Rate vs. Attenuation 

  Robert.K.Crane (1980) rainfall rate model divided the world into eight regions 

based on total rain accumulation and the number of thunderstorm. Satellite and precipitation 

data were used to extend the climate over the ocean, and India is come under G, H, and D3 

region [37]. 

The modified Crane global prediction model will be discussed in detail in this 

section because of its accuracy, the ease with which it can be used with a calculator, and 

global application. This model is based on the geophysical observations of rain rate, rain 

structure, and the vertical variation of atmospheric temperature. Therefore, the total path 

attenuation that may be exceeded for P percent of the year is a function of the point rain rate 

distribution, the vertical extent of the rain, and rain rate distribution along the path. 

Figure 3.16 shows the global map of the rain rate for Asian climate regions, 

including the ocean areas. The rain climate regions are divided into four types of polar, 

temperate, subtropical and tropical region. India is pointed as a sub-tropical region. The 

point rain rate distributions for the rain climate regions of the Crane model are given in 

Table 3.7.  
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Rain rate 
exceeded. 

Percent of year 

Rain rate distribution values per rain climate region ( mm╱╱╱╱hr ) Rp 

(P%) A B B1 B2 C D1 D2 D3 E F G H 

0.001 28.1 52.1 42.6 63.8 71.6 86.6 114.1133.2 176 70.7 197 542.6 

0.002 20.9 41.7 32.7 50.9 58.9 69 88.3 106.6 145.4 50.4 159.6 413.9 

0.005 13.8 29.2 22.3 35.7 41.4 49.2 62.1 78.7 112 31.9 118 283.4 
0.01 9.9 21.1 16.1 25.8    29.5 36.2 46.8 61.6 91.5 22.2 90.2 209.3 
0.02 6.9 14.6 11.3 17.6 19.9 25.4 34.7 47 72.2 15 66.8 152.4 
0.03 5.5 11.6 9 13.9 15.6 20.3 28.6 39.9 62.4 11.8 55.8 125.9 
0.05 4 8.6 6.8 10.3 11.5 15.3 22.2 31.6 50.4 8.5 43.8 97.2 
0.1 2.5 5.7 4.5 6.8 7.7 10.3 15.1 22.4 36.2 5.3 31.3 66.5 
0.2 1.5 3.8 2.9 4.4 5.2 6.8 9.9 15.2 24.1 3.1 22 43.5 
0.3 1.1 2.9 2.2 3.4 4.1 5.3 7.6 11.8 18.4 2.2 17.7 33.1 
0.5 0.5 2 1.5 2.4 2.9 3.8 5.3 8.2 12.6 1.4 13.2 22.6 
1 0.2 1.2 0.8 1.4 1.8 2.2 3 4.6 7 0.6 8.4 12.4 
2 0.1 0.5 0.4 0.7 1.1 1.2 1.5 2 3.3 0.2 5 5.8 
3 0 0.3 0.2 0.4 0.6 0.6 0.9 0.8 1.8 0.1 3.4 3.3 
5 0 0.2 0.1 0.2 0.3 0.2 0.3 0 0.2 0.1 1.8 1.1 

Table 3.7: Rain rate exceeded in Percent of time in a year, Indian region highlighted. 

 

 
 

Figure 3.16: Different rain climatic zones of Global Crane model for Asia [37]. 
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 Figure 3.17:  Rain rate exceeded in Percent of time in a year (P%), Indian regions  D3, G,H. [7] 

 
The rain attenuation over an average year for the Crane global model is calculated as the 

following steps.  

Step1：：：：    Obtain the annual rain rate distribution Rp . 

  (a) Determine from the climate regions given by the maps of Figure 3.16.  

  (b) Look up the appropriate rain rate distribution values listed in Table 3.7.  

Step 2:  The rain height H, used for the global model is a location dependent parameter 

based on the 0◦ isotherm (melting layer) height. The rain height is a function of station 

latitude ϕ and percent of time in an average year p. Figure 3.18 gives the rain height, H, for 

probabilities of 0.001, 0.01,0.1, and 1 %, for station latitudes from 0 to 70◦. Table 3.8 shows 

the rain height for probability values of 0.001 and 1.0%. Rain height values for other 

probability values can be determined by logarithmic interpolation between the given 

probability values. 
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Figure3.18: Rain height for the global rain attenuation model. 

 It shows that India is within the latitude of 8-38o N, and the rain height ranges from 3 

to 4.6 km for 0.001% of time in a average year. The detail is given in the following table.  

Ground station 
latitude ϕϕϕϕ(degree) 

≤ 2 6 8 10 14 18 20 24 26 30 34 36 

Rain 

height 

H (km)  

At 
0.001% in 
a year 

5.30 5.32 5.34 5.37 5.44 5.49 5.50 5.50 5.46 5.35 5.19 5.10 

At 1.0% 
in a year 

 4.60 4.60 4.59 4.58 4.53 4.47 4.42 4.37 4.20 3.94 3.55 3.31 

Table 3.8: Rain heights for Global rain model, for 0.001% and 1.0% of time [59][7]. 

Step 3: Determine the surface projected path length. The horizontal (surface) path 

projection of the slant path, D, is found from the following. Determine the 0oC isotherm 

height H, then calculate the projected surface path length D. and Determine the 0o C 

isotherm heights for p = 0.001%, 0.01%, 1%. 
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Where, 
   H0： the height of ground station above mean sea level.   

   θ： the elevation angle to the satellite.  

   re：the effective radius of the earth = 8500km.  

For Indian region, the elevation angle is greater than 45o and   H0  = 5 to 1700 m. 

Step 4: Determine the specific attenuation coefficients. The specific attenuation is based on 

the relationship  

 Where,  γR is the specific attenuation in (dB/km) and a and b are frequency dependent 

specific attenuation coefficients. The a and b coefficients are calculated using the ITU-R 

regression coefficients kH, kV, αH, and αV, previously provided in Table 3.5, and Figures 

3.15a and 3.15b. The a and b coefficients are found from the regression coefficients from 

equations 3.18 and 3.19 respectively.  

  The specific attenuation coefficients ‘a’ and ‘b’ at different operating frequencies 

can also be considered as follows 

 
 
 
 
 
 
  (b)  Determine following four empirical constants from Rp. 
 

 
 
 
 
 
 
 
 
 
 

Step 5:    Calculate the mean slant path attenuation value A, at each probability of rain Rp 

and D. 

dB/km]b
R a R  γ  = −                             [                                     (3.31)
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Step 5: The Crane global model provides for an estimate of the upper and lower bounds of 

the mean slant path attenuation. The bounds are determined as the standard deviation of the 

measurement about the average and are estimated from the following table: 

Percent of time in  
year 

1.0 0.1 0.01 0.001 

Standard 
deviation 

±39 ±32 ±32 ±39 

Table 3.9:   Standard deviations of the measurements about the average.  [7]. 

For example, a mean prediction of 20 dB at 0.01% yields upper/lower bounds of 

±32% or ± 6.4 dB. This results in a prediction range for the path attenuation, from the 

global model, of 26.4 to 13.6 dB, with a mean value of 20 dB. 

The figures 3.19a -3.19d shows the predicted rain attenuation using ITU and Crane 

models for 16 beam locations as specified. The rain attenuation increases as the percentage 

of time decreases from 0.1% to 0.001% in a year. The ITU curves shows that the 

attenuation exceeds 20 dB towards 60 dB for duration less than 0.01%. But Crane model 

overestimates to 100dB for a less time. For a comparison we have collected the data in 

various tropical sites like Malaysia, Singapore and shown the predicted attenuation for 

different frequencies in figures 3.20-3.21, the attenuation for Ka band is ranges from 20-50 

dB. Figure 3.22 shows data collected by DBSG3 of ITU in different tropical sites like 

Brazil, Peru, and Indonesia at Ku band. This shows the rain attenuation ranges from 5-20 

dB for a duration 0.01% of time and up to 30 dB for 0.001% of time. 
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Figure 3.19a : Rain attenuation in group-A Spot-beam locations. 

 
             Figure 3.19b: Rain attenuation in group-B Spot-beam locations. 
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            Figure 3.19c:  Rain attenuation in group-C Spot-beam locations. 

            Figure 3.19d: Rain attenuation in group-D Spot-beam locations. 
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  Figure 3.20: The measured rain attenuation in Singapore, used for a short path 1.1 (Km) microwave link. 

Figure 3.21: The measured rain attenuation at Malaysian site,  
for a  short path 300meters microwave link with horizontal polarisation. 
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Figure 3.22: The rain attenuation using ITU-R study group three (DBSG3) Ku band data at 
Various tropical sites using satellite signal. 

 
3.5.3.   Moupfouma Rainfall Rate Model  
 

According to Fidele Moupfouma, above a certain threshold of frequency, the excess 

attenuation due to rain fall becomes one of the most important limits of the performance of 

line-of-sight (LOS) microwave links [60]. In temperate climates this frequency threshold is 

about 10 GHz. In  tropical climates in general and in equatorial climate particularly, since 

raindrops are larger than in temperate climates, the incidence of rainfall on radio links 

becomes important for frequencies as low as about 7 GHz. Estimate of rain attenuation are 

usually derived from the available information on rain rates observed in the geographical 

areas considered. Most of the many methods proposed for predicting rain induced 

attenuation make use of the rainfall cumulative distribution measured at a point. Certain 

authors have used the concept of equivalent path-averaged rain rate which is obtained by 

multiplying the point rain rate for the time percentage of interest by a reduction factor, 

while other authors use an effective path length the value of which is obtained in 

multiplying the actual path length by a reduction coefficient. This effective path length is 
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the hypothetical length of a path along which the attenuation for a given time percentage 

results from a point rainfall rate that occurs for the same time percentage. Rain intensity 

over this effective path length is assumed to be constant.  

 He had proposed a prediction method using effective path length and compared with 

the prediction method adopted earlier by the International Radio Consultative Committee 

(CCIR) during its XVth Plenary Assembly held in 1982.  

The rain induced attenuation on a line of sight (Los) path can be expressed as  

Where l(km) is the actual path length, Leff  is the effective path length, and r a reduction 

coefficient having the well-known form. 

Where, C and m coefficients defined later. 

 The attenuation A(dB) and the one minute rain rate R(mm/h) are calculated for the 

same time percentage. k and α are the regression coefficients depending on frequency and 

polarization and allowing the calculation of the estimate specific attenuations through 

The values of k and a used in the present work are those given by Fedi. To derive C and m, 

they used experimental data obtained in 30 terrestrial radio links in the 7-38 GHz band 

range with path lengths up to 58 km, located in the Congo, Japan, U.S., and Europe, with 

well-known fitting procedures. He found that C depends on probability level P(percent) of 

interest for which data are available, and m depends on the radio link path length on the one 

hand, and on its frequency on the other hand. Finally, the resultant formula for the path 

length reduction factor is given by 
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The effective path length reflects the spatial in-homogeneity. Its frequency dependence 

which appeared here in the reduction coefficient r,  results from both the non uniformity of 

the rain along the radio link path, and the nonlinear dependence of the specific attenuation 

rain rate.  

3.5.4   Rain Attenuation Prediction Comparisons over Indian sub-continent 

  In this section, ITU-R model and Moupfouma models as discussed were used to 

predict the rain attenuation in Indian sub-continent region and compared. Substituting the 

above-mentioned R0.01 and P% and all other required parameters into these prediction 

models in the uplink (29.75GHz) and downlink (19.75 GHz) direction, the variations of 

elevation angle vs. rain attenuation are obtained.  

The knowledge of the mean rainfall distribution and the climate will provide a broad 

view on the expected rain attenuation. In order to calculate the rain attenuation prediction 

from the recommended measurements of local one-minute integration time of rain rate 

statistics are required.  Here we have presented the attenuation and related results for 

reference. All results for Indian cities calculated. Figure 3.23 shows a comparison of rain 

rate as provided in ITU for North and South India and calculated in Moupfouma method for 

sub tropical region. Figure 3.24 shows the rain rate in group ‘A’ cities as mentioned in the 

spot beam model by the Moupfouma method. It is found that the Moupfouma calculation 

rain rates are also comparable with the rain rate data collected from IMD. 
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Figure3.23: Comparison of average one year cumulative distributions of 

rain rate R (mm/hr) in India( Southern and Northern part). 

Figure 3.24 : Comparison of average one year cumulative distributions 

of rain rate R(mm/hr) in group A cities. 
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Figure 3.25: Intermediate parameters and attenuation of Moupfouma model for Mumbai as an example. 
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The figure 3.25 presented Intermediate parameters for a particular city Mumbai. Likewise we have 

got figures for a all the cities in 16 spot beam location by putting respective location data. The figure  

3.26 represents the attenuation for percentage of time rain rate(mm) for group-I cities on basis of 

Moupfouma model. 

Figure 3.26: The rain attenuation in group ‘A’ cities by Moupfouma model. 
 

 

3.6 Summary 

  In this chapter possible signal fade during rain specifically in Indian cities, at 16 

spot-beam locations is focused. This analyses the terrestrial and slant path  variation of rain 

heights and calculates different rain attenuations using mumbai (as a case) geographical and 

ITU parameters.We can also analyse this for all cities separately. It is found from the result 

that there is about 10 dB for the duration less than 0.1 (about 8.7 hrs) time and 30-55 dB 

rain attenuation occurs for less than 0.01% (about 53 minutes)   over an average year. So 10 

dB can be taken as the standard ateenuation level and it can be varied upto 30 dB 

statistically taking different attenuation level and demand of users in 16 spot-beams. The 

Moupfouma model calculation and ITU model attenuation are having close approximation 

with ITU model  but, the Crane model shows a large variation.   
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     Chapter 4 

Fade compensation and power control 
 

4.1   Introduction 
 

Satellite communication systems operating above 10 GHz undergo weather 

dependent path attenuation, primarily due to rain. This is severe for a significant period of 

time mainly in tropical regions. So systems can be designed to operate at an acceptable 

performance level by providing adequate power margins on the uplink and the downlink 

segments. This can be accomplished directly by increasing antenna size, the RF 

transmitting power, or both. Typically, power margins of 5 to 10 dB at C-band and 10 to 

15 dB at Ku-band can easily be achieved with reasonable sized antennas and with RF 

power within acceptable limits [7]. RF power levels are most likely to be constrained by 

prime power limitations on the satellite, and by radiated power limitations on the ground 

fixed by international agreement. Here the path attenuation exceeds the available power 

margin that is 20-35 dB in the Ka- bands for many regions of India and earth. Additional 

methods must be considered to overcome the severe attenuation conditions and restore 

acceptable performance on the links. 

Fixed line-of-site satellite restoration techniques can be divided into two types or 

classes. The first type, power restoration, does not alter the basic signal format in the 

process of restoring the link. The second type, signal modification restoral, is implemented 

by modifying the basic characteristics of the signal. Signal characteristics include carrier 

frequency, bandwidth, data rate, and coding scheme.  

 Compensation for rain fades in a satellite communications network is obtained by 

uplink power control mechanism incorporated in a master station or network operation 

Centre (NOC), which maintains a constant output power level of the satellite transponder 

without incorporating excessive static margins into the link power budget. A variable 

attenuator, which controls the output power of the master station's high power amplifier, is 

initially set at a prescribed level which will produce the EIRP for a “clear sky” condition 

[27]. The NOC monitors the output of the satellite amplifier and derives a measure of the 

SNR of down linked signals. Knowing the variable attenuator setting and the SNR of the 

downlink signal, the magnitude of attenuation of uplink signal to the satellite is 
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determined. In the event of a rain fade, the setting of the variable attenuator is adjusted by 

an amount that compensates for the fade and thereby causes downlink carrier frequency 

signal conveyed by the satellite amplifier device to remain effectively constant. An 

estimation of the error in the attenuator setting is preferably derived. 

 This chapter discussions hereby made on different methods of power control and 

fade mitigation techniques. This suggests the idea of power flow and enhancement to 

different spot beams in the proposed model by algorithm. It discusses the data rate 

adaptation to increase the service availability. 

4.2.   Power distribution and data flow to spot beam 

 The spot beams will be attended by the steerable antenna [43] to deliver the data 

taking accounts from the on board processor (OBP) in a TDM process. Here the power is 

estimated in every step on the basis of channel condition and the number of users 

accessing under the corresponding spot beam. We can regulate the power of antenna feeds, 

preferring revenue generating stations to get higher level of service (four metro cities). The 

data rate for individual channels can be decided statistically and keeping total outcome 

capacity of the system and spot beams constant. At any instant of time four distributed spot 

beams are focussed to deliver the data through four main lobes of the array antenna [4]. In 

the next time slot another four spot beams will be focussed and the process will go on 

rotation among four groups.  

4.2.1   Concept of Data Flow to Spot-beams 

 We assume that each delivery session is identified by a unique data flow, and 

packets of several spots   are queued at the NOC (fig. 4.1), which forwards them to the 

satellite at a rate limited by the uplink capacity of the system. An on-board processor 

switch forward the packets to one or multiple spot beam queues, duplicating the packets in 

the later case. A packet (may be regional) belonging to a single spot-beam queue, is 

forwarded to corresponding spot-beam location. In case of a multi-flow, i.e., the packets 

for multiple spot-beams are need to be duplicated and forwarded to multiple spot-beam 

queues at the satellite on-board. At every spot-beam queue, several flows share the total 

service rate of the queue. The rate-share of a flow that belongs to a particular queue 

depends on several factors, such as the number of flows currently active in that queue, the 
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type of the flows, and the rate allocation policy between different type of flows, i.e. audio, 

video, data etc. We call this rate-share as the supportable session rate of the flow at that 

particular queue [19]. 

Figure 4.1: Concept of on-board satellite and spot beam queue. 

 In order to avoid over-flowing of any of the on-board queues, the input rate of a 

flow at the NOC queue have to be determined by the minimum rate the flow can be served 

at the spot-beam queues. We may refer to this rate as the maximum sustainable session 

rate of the flow. The service rate of each spot-beam queue varies as a function of the 

allocated power and the channel state, for a given modulation scheme and BER target. 

Therefore, not all queues can be served at the same effective rate. 

Here the satellite spot beams are divided into four groups and radiate at four time 

slots. All antenna beams can be represented with an array. The four antennas are to attend 

all spot beams in 4 slots as in the following equations.  So in the satellite, 4 steerable 

beams, total of 16 beams in TDM, multiplexed, interlinked through the on board processor. 
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4.3    Operation and Power control of satellite systems 

 A satellite communication network operates with an uplink earth station from 

which uplink signals destined for a satellite are transmitted over an uplink communication 

channel. In the satellite, amplifier device (HPA), amplifies the signal and conveyed over a 

downlink channel to the ground station.  

 Controlling is carried out in the uplink station transmitter at carrier frequency, so 

as to cause the strength of the same conveyed from the output of satellite amplifier on 

board, to be effectively constant even in presence of rain fade between uplink earth station 

and satellite. The possible steps are  

(i)  Setting the operation of uplink transmitter such that the strength of uplink signal 

conveyed from transponder amplifier device is at predefined signal strength. 
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(ii)   Monitoring, in the receiver provided at uplink earth station, uplink carrier frequency 

signals down linked from satellite to uplink earth station and deriving therefrom a 

measure of the signal-to-noise ratio (SNR) of the down linked signals.  

(iii)  Determining a measure of attenuation of uplink signal transmitted from uplink 

station to the satellite in accordance with the measurement of the SNR derived.  

(iv) Compensate the strength of uplink signal transmitted by uplink transmitter by an 

amount that compensates for the measure of attenuation determined to effect uplink 

signal conveyed by satellite transponder to remain effectively constant. 

   So, the strength of uplink signals received at receiving ground station and, in 

response to the strength of monitored signals undergoing a reduction from the clear sky 

condition, an adjustment of power is provided to increase the strength of return link signals 

transmitted from satellite. The details are explained in the following sections. 

4.3.1   Power control procedures 

Power control refers to the process of varying transmitting power on a satellite 

link in the presence of path attenuation to maintain a desired power level at the receiver. 

Power control technique attempts to restore the link by increasing the transmit power 

during a rain fade event and then reducing power after the event back to its non-fade value 

during clear sky condition. The objective of power control is to vary the transmitted power 

in direct proportion to the attenuation on the link, so that the received power stays constant 

through severe fades. Power control can be employed on either the uplink or downlink, or 

both [53][46]. 

The maximum path attenuation that can be compensated by active power control 

is equal to the difference between the maximum output of the ground station or satellite 

power amplifier and the output required under non-fade conditions. The effect of power 

control on availability, assuming that control is perfect, is the same as having this power 

margin at all times. A perfect power control system varies the power exactly in proportion 

to the rain attenuation. Errors in power control result in added outages, effectively 

decreasing this margin [7]. 

The adaptive Power Control for Fade mitigation takes advantage of unused         

in-excess resource of the system [4]. Techniques sharing unused resource aim to 

compensate fading occurring on a given link in order to maintain or to improve the link 
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performance (required C/No). The following types of Power Control FMT can be 

considered:  

1. Up-Link Power Control (ULPC),  

2. Down-Link Power Control (DLPC)  

3. On-Board Beam Shaping (OBBS). 

 
Figure 4.2 Block diagram of uplink power control system 

The features of the block diagram for power adjustments are based on either a 

satellite beacon signal or a pilot carrier transmitted from the earth station. The transmit 

power adjustment levels compensate for differences  between the beacon/return pilot 

carrier and the uplink carrier. Integrated carrier monitor   verifies and refines the power 

adjustments for ‘loopback’ carriers i.e., the downlink carriers that are visible at the uplink 

earth station.  
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Open loop power control 

In an open loop power control system, the transmit power level is adjusted by 

operation on a RF pilot control signal that itself undergoes path attenuation, and is used to 

overcome the attenuation experienced on the uplink. The radio frequency control signal 

can be one of the following: 

i.  the downlink signal 

ii.   a beacon signal at or near the uplink frequency 

iii.   a ground based radiometer or radar. 

 

 

 

 

 

 
 

 

Figure 4.3: Flow chart of open loop power control. 

 In the downlink control signal system, the downlink signal level is continuously 

monitored and used to develop the controlling error signal for the high power transmitter. 

The control signal level is determined in the processor from rain attenuation prediction 

models, which compute the expected uplink attenuation at 30 GHz from the measured 

downlink attenuation at 20 GHz. The downlink control signal method is the most prevalent 

type of uplink power control, because of the availability of the downlink at the ground 

station and the relative ease of implementation [53][40]. 

 In the beacon control signal system, a satellite beacon signal, preferably in the 

same frequency band as the uplink, is used to monitor the rain attenuation in the link [13]. 

The detected beacon signal level is then used to develop the control signal. Since the 

measured signal attenuation is at (or very close to) the frequency to be controlled, no 

Receive the reference 
signals 

Compared to pre-determined 
 reference 

Develop an error signal  
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estimation is required in the processor. This method provides the most precise power 

control of the three techniques. 

Close loop power control 

A satellite communication system includes at least one satellite communication 

signal repeater, at least one ground station for transmitting a feeder link comprised of more 

than one signals to the satellite signal repeater. A number of user terminals each receiving  

Typical flow chart 

 

 

 

 

 

 

 

 

 

 

     

 

 

      

 

 

 

Figure 4.4: Flow chart of close loop power control for uplink. 

one of the communication signals over a user link from the satellite transponder. The 

method includes steps of measuring the quality of at least one reference signal received by 

the user terminal, via the satellite transponder. Comparing the measured quality with a 

predetermined reference signal, the transmit power of the ground station is adjusted so that 

a flux density of the beam is substantially constant at the user terminal independent of the 

location of the user terminal of the beam. 
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On-Board Beam Shaping (OBBS) 

 OBBS technique is based on active antennas, which allows spot beam gains to be 

adapted to propagation conditions [7]. Actually, the objective is to radiate extra-power, and 

to compensate rain attenuation only on spot beams where rain is likely to occur. In case the 

signal is to focus on a small area with a large spectral density and high date rate as given in 

figure 2.5 required OBBS is used. 

4.4 Algorithm for power distribution 

 The power distribution method is considered on the basis of following algorithm. 

Previously it has been defined that the variation in power is depends on two parameters 

1. Channel condition  

2. Number of users. 

The steps are follows: 

(i)  For a clear-sky condition, adjust the attenuator to a first setting at minimum power 

(Pmin.) which causes uplink signals to be conveyed from the output of the 

transponder at prescribed clear-sky signal strength. 

(ii)   By deriving a measure of the signal-to-noise ratio of down linked signals in 

accordance with the ratio of the square of the sum of signal plus noise to the square 

of the noise in down linked signals and the downlink power measure can be  

estimated by the ratio   

 
The   expression for the output power EIRP of the satellite may be given by:   

 

Where, 

EIRP NOC, is the NOC or uplink earth station   power out for satellite, 

L fs ,up is uplink free space loss,  

F up is uplink rain fade attenuation, G sat is the satellite gain and   

L upc is the attenuation to be imparted by the uplink power correction mechanism 

using attenuator. On the downlink side, the received signal-to-noise ratio C/N may be 

expressed by:   

( ) 2 2 2C/N  =  ((S+N)  - (N)  )   /  (N)  4 7.                                                

( )NOC fs ,up up sat upcEIRP=EIRP  - L  -F  +G  -L    [dB] 4 8.                               
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Where,  
 EIRP sat   corresponds to the desired satellite output power,  

 L fs ,dn corresponds to the downlink free space loss,  

 F dn is the downlink rain fade,  

 (G/T) NOC  is the gain/temperature figure of merit of the NOC antenna  

and  Bk  is Boltzmann’s constant for thermal noise. 

 (iii) Determine the measure of attenuation of uplink carrier frequency signals 

transmitted from uplink earth station to satellite in accordance with the current setting of 

attenuator and first setting of the attenuator. 

 (iv)  Adjust the attenuator in accordance with the corrected measure of SNR and the 

first setting of the attenuator.  

4.4.1   Power Distribution Strategy 

Power can be distributed among the spot beams in two ways. One is static power 

allocation and other is dynamic power allocation. Static power allocation implies that the 

input power to the beams is the same at any time of the satellite network operation, and 

clearly applies to clear sky and long-term precipitation models of the satellite links. All the 

users are receiving signal with adequate power, under clear sky conditions 

 The level of attenuation and corresponding compensation on the basis of two 

driving parameters as follows 

1. Channel condition (As seen in chapter 3). 

2. Number of users in the spot beam area (demand). 

Equal antenna share (EAS): 

 
   The total power of HPA is directed to four beams and all antenna beams are to 

radiate with equal power. 

Balance Antenna share (BAS): 

The antennas are to radiate with different powers maintaining a minimum threshold of  

Pmin. 

( )sat fs ,dn dn NOC kC/N = EIRP  - L  -  F  +(G/T)  -B     [dB]                  4.9           

( )4 1 2 3 4 4 10A B C D Totk k k k
P P P P P / . for k , , , . .= = = =         =                           

( )TOT Min sP - 4P =P                                                             4.11
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Where,  
 PTOT is the total HPA power capacity to deliver to four antennas. 

Ps is the extra power which can be shared unequally among all or some of the 

beams. 

 
Assumptions for static power allocation: 

i) Number of users is fixed. 

ii)  Channel condition is absolute. 

Let, ζ =loss in dB 
Channel condition in 
absolute and rainfade 

Loss (ζ) Fuzzy channel 
condition 

0 dB = ζ1 ζ2 <ζ <ζ1 Excellent 
-5 dB= ζ2 ζ3<ζ <ζ2 Very good 
-10 dB= ζ3 ζ4<ζ <ζ3 Average 
-15 dB= ζ4 ζ5<ζ <ζ4 Good 
-20 dB= ζ5 ζ5<ζ <ζ6 Bad 
-25 dB= ζ6 ζ6<ζ <ζ5 Worst 

Table 4.1:  Fuzzy classification of channel condition due to fading 

Figure 4.5:  Power degradation levels due to impairment/fading. 

Let Ptotal is the total capacity of the satellite to distribute power among four antenna 

beams and   Pmin   is the minimum threshold power must be provided to each and every 

beam to get a desired flux density at the receiver terminal without any power 

  
 

 

Fuzzy channel levels 

Fuzzy channel conditions 
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compensation during the clear sky condition.  After this the extra power from the source 

will fulfil the requirement to compensate fading. Considering the maximum power 

capacity at the output of power amplifiers is 100 watts, this distributes to four antennas as 

follows. 

Each sector or the spot beam antenna   has an ideal acceptance power = 25 watts, 

From net power of four sectors (Ptot) = 25x4 =100 watts. Let Pmin is 18 watts for this case. 

So during fading the power to an antenna beam is 18 W< P ≤ 25W. 

 The polling mechanism between the antennas and power supply loop will serve in a 

time division multiplexing (TDM) process. The polling procedure will look after the 

channel condition statistically in every 100ms and command the power reforms system to 

process the power level.  

4.4.2 Compensation by static power allocation 

The processor is to check the Channel condition in a sequence as following, 

Sequence 
Set1:     A1,B2,C3,D4 
Set2:      A2,B3,C4,D1 
Set 3:     A3,B4,C1,D2 
Set4:      A4,B1,C2,D3 

 
Set1:     A1,B2,C3,D4 

And so on…. 
 

Let’s define the absolute power to provide the corresponding rain fading logic. 

0%     power of Ps = p 

8%     power of Ps = q 

16%   power of Ps = r 

24%   power of Ps = s 

32%   power of Ps = t 

40%   power of Ps = u 

  So, Ps =    [   0,    0.05Ps,   0.09Ps,   0.16Ps,   0.30Ps,   0.40Ps]    referenced to 

       [   p         q              r          s            t               u        ] respectively. 

The extra power can be statistically distributed among all the 4 antennas with 6 

different power levels in 360 different combinations. The statistical distribution will 

depends on following and using a look up table.  
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There are three possible combinations of conditions as follows. 

1. Number of users fixed  

Channel condition is variable 

2. Channel condition is fixed  

Number of users is variable 

3. Both Channel condition and number of users are  variable 

Figure 4.6: Static power allocation to spot beams. 
Example of static power distribution 

 Let the total power of the satellite reserved for the four antennas to be delivered for 

16 spot beams in TDM is 100 watt.  And the minimum threshold power for each antenna 

in best channel condition is 18 watt. 

  So,  Ptotal =100 W 

 Pmin=18 W 

And extra power Ps = Ptotal -  4Pmin = 100-72= 28W 

Finding the compensation levels 

P =  0% of Ps = 0 W 

q =  5% of Ps= 0.05*28= 1.4 W 

r =  9% of Ps = 0.09*28=2.52 W 

s = 16% of Ps= 0.16*28=4.48W 

t = 30% of Ps=0.30*28=8.4 W 

u = 40% of Ps=0.40 *28=11.20 W 

 

1     2       3     4               5      6     7      8              9     10    11    12          13    14   15    16 
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Minimum 
Power 
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Check slot 1 of antenna and 1st group of antenna beams. 

 Let   A1 = q; B2 = p;      C3=  u ; D4= s    are the channel condition feedback. 

So,  A1 will compensate with 1.4 watt, and will take 1.4+18= 19.40 watts. 

 B2 will compensate with 0 watt and will take 18 watts. 

 C3 will compensate with 11.20 watt and will take 11.20 + 18 =29.20 watt 

 D4 will compensate with 4.48 watt and will take 4.48 + 18 =22.48 watt 

 So, the minimum level of power is 18 watt and the maximum compensated power 

level of beam is 29.20 watt and there is a considerable increase in power level in C3 spot 

beam during fading. 

 Figure 4.7: Static Power allocation to spot beams of one group based on example above. 

4.4.3   Dynamic power allocation to 16 spot beams system 

Simulation results of the proposed dynamic power allocation algorithm are 

presented here. Here we are presenting some results for hypothetical satellite network with 

multi-beam antenna having 16 beams. For simulation purpose the rainfall data from ITU-R 

rain model has been taken. The corresponding power threshold for every satellite terminal 

is set to -110 dBm. Three situations are assumed namely as allocation for clear sky 

condition, static and dynamic power allocation for rainy situation. For simulation purpose 

some beams are chosen rainy and other beams are chosen as non-rainy.  In this simulation 

beam no. 1, 3, 5, 6, 7, 9, 13, and 15 are assumed as rainy beams i.e, beams undergoing 

attenuation due to rain. We can see here that dynamic power allocation is obviously 

different than static power allocation due to the fact that power is adapted to the current 

satellite channel conditions and rain attenuation predictions. Some beams have equal 

power distribution as for clear sky case, as it is expected for non-rainy beams.  The basic 



Fade compensation and power control 

 96 
 

concept of the algorithm is that since rain attenuation changes significantly over time and 

space, the available satellite power must be distributed dynamically based on the rain 

attenuation instant value of each link [1].   

Figure 4.8: Typical clear sky, static and dynamic power allocation during rain fading  

 However, as real time reconfiguration is practically impossible, the objective is to 

allocate dynamically the power at specific time instants multi-beam antenna 

reconfiguration times and remain constant between two reconfiguration time instants [1]. 

More specifically, the rain attenuation at the next slot of beam reconfiguration is predicted 

for each link using either information from receiving ground terminals or meteorological 

data. This leads to significant reduction of the number of non served users of the system, 

especially when some of the region covered by the satellite suffers from heavy rain 

attenuation phenomena. 

4.5 Summary 

 In this chapter we have introduced an outline for balancing the spot beam power 

level and data rate such that the sum of all power constant. User can get at least a 

minimum level of service during worst weather condition. The distribution of available 

system power among spot beams taking into account the load on the queues is the main 

factor. The balance antenna share does not impose any bound on the minimum power level 

for each spot beam in case of dynamic power design. For data rate and coding allocation a 

quality of service must be prefixed to determine the modulation and coding. So it is 

possible to manage the available power on board to provide a satisfactory service to all 

beams for almost all time in the year. 



 

 

           Chapter 5 

Conclusion and future Work 

5.1  Conclusion  

 In this report a brief description of the major phenomena affecting radiowave 

propagation at earth satellite links in Indian region is given. Global models for long-term 

modelling of rain effect presented. This summarizes the thesis’s contributions and overall 

integrated system design of Ka-band satellite system. Future work and suggestions are 

given here for further development in propagation study and fade mitigation.  

This study provides terrestrial and slant path variation of rain heights and calculates 

rain attenuations using geographical parameters in various Indian locations. It is found from 

the result that there is about 10 dB attenuation for the duration less than 0.1%  of time 

(about 8.7 hrs) and 20-30 dB rain attenuation occurs for less than 0.01% of time  (about 

53mints )   over an average year.  So this 10 dB can be taken as the standard attenuation 

level and it can be varied up to 30 dB statistically taking different attenuation levels and 

demand of users in 16 spot-beams. By adopting composite technique of mitigation the 

power level is maintained at a satisfactory level to the end user. The Moupfouma model 

calculations are having close approximations with ITU model, but the Crane model shows a 

large variation.  In this paper possible rain attenuation and corresponding power allocation 

to provide uninterrupted service during rain specifically in Indian cities, over 16 spot-beam 

locations are focused. 

We have presented a flexible beam allocation algorithm that combines the 

requirements to provide a minimum satellite gain with the need to provide a statistically 

balanced beam configuration for all users. Static power enhancement method can be used to 

maintain the power level constant for long duration depending upon predicted data. 

Adaptive power allocation to different spot beams has been shown to enhance the efficiency 

of satellite, by effective utilization of power and resource enabling user a higher data rate 

without degrading the average user throughput.  

 Here we have tried to analyse the effect of rain to Ka band broadcasting in Indian 

main land. But adequate data could have been collected from a ka band experimental 

satellite like ACTS or as planned in GSAT4. It would be a great achievement for all Indians 

if the system could work efficiently to cater needs of multitudes as envisaged.  
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5.2   Future work & Suggestions  

  Digital signal processing can be used to allocate power and data rate transmission to 

all beams for an effective output. The rain measurement seems to suggest possible 

shortcomings of the ITU-R theoretical model. So a long term measurement of rain 

attenuation should be performed in future with terrestrial and satellite path. In relation to 

this, it is proposed to attach a local meteorological station to the receiver providing on-site 

meteorological data. Data from two or more stations can also be compared to identify 

different rain events. The future possible works can be carried out with following problems 

1. The design and development of electronically steerable phased array antenna will lead 

to steer among the spot beams to deliver the signal at desired power level. 

2. The power allocation procedures would be simulated to get implemented. A more 

realistic scenario would be investigated taking into account the amount of power for a 

session using the dynamic power allocation.  

3. Using DSP, the prediction of channel condition and power allocation to spot beams 

would be achieved. 

4. The analysis of IP based user category and allocating variable bandwidth to individual 

user using DSP can be performed.  
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