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ABSTRACT 

Conventional materials such as steel, aluminium etc. are used in industries because of their 

high strength and stiffness. But composite materials have taken their places because they are 

giving excellent strength and stiffness with low weight. Currently, many industries such as 

automobile, aerospace, trains, buildings are using sandwich materials to reduce noise level. 

These sandwich materials consist of sheets of conventional materials which are bonded by 

polymers, plastics to reduce vibration and noise. In this study, vibration and acoustic analysis of 

laminated composite plate are carried out experimentally. Carbon fibre reinforced polymer and 

glass fibre reinforced polymer plates are used to study low frequency vibration and their effect 

of surrounding air medium. Combined modes shapes are formed because of resonance of natural 

frequencies of the structure and acoustic cavity. These combined mode shapes generally occur in 

low frequency region and possesses both high-order displacement and high-order pressure 

amplitude. The effect of number of plies and ply angle are investigated on the natural frequency 

and the pressure amplitude. The finite element simulation model is developed to validate the 

results obtained from experiment.  

Keywords: Laminated composite plate, vibration analysis, acoustic analysis, sound waves,     

FEM, ANSYS.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Overview: 

 

Acoustics is the study of the sound waves including its generation, propagation, and 

effects. Acoustic or sound pressure is the difference between the average local pressure of 

medium and pressure within sound wave at same point and time. The sound is a travelling 

wave created by a vibrating object and propagated through a medium (gas, liquid, or solid) 

due to particle interactions. Thus, sound waves cannot travel through a vacuum.  

A sound wave propagates in the form of longitudinal waves comprising of successive 

compression and rarefaction of the elastic medium as shown in the Fig. 1.1 (courtesy: 

http://hyperphysics.phy-astr.gsu.edu). Sound pressure is nothing but pressure fluctuations 

about ambient atmospheric pressure. 

 

Fig. 1.1 Propagation of sound wave  
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The entire acoustic spectrum can be divided into three sections: audio, ultrasonic, and 

infrasonic. In general, the range of acoustic wave is audible to human is in between 20 Hz to 

20,000 Hz. The ultrasonic region consists high frequency waves i.e. greater than 20,000 Hz. 

Application of ultrasonic waves is in imaging technologies, sonography. Infrasonic has very 

frequency waves and they are used to geological study like earthquakes. 

Devices called electroacoustic transducers converts sound energy into electric energy or 

vice versa. Loudspeakers, headphones, microphones, hydrophones, sonar projectors etc. are 

electroacoustic transducers. Nowadays microphones are vastly used in sound measurement 

process in air medium while hydrophones are used in a water medium.   

The sound propagation can be classified into following categories 

 Free field: Sound is propagated in a free region from any form of obstructions. 

 Near field: Near field region is very close to a source where sound pressure may vary 

significantly for a small change in position. Generally it is less than a wavelength of a 

sound wave. 

 Far field: The far field begins where the near field ends and extends to infinity. It can 

be divided into a free field or reverberant field. 

 Reverberant field: This field is a result of direct waves as well as reflected waves 

from walls or other obstacles. 

Structural acoustic: 

Structural Acoustics is the study of the interaction of vibrating structures with adjacent 

fluid along with the accompanying radiated or scattered sound. Nowadays Structural 

acoustics became an important field in almost every industry. Any structure which consist 

relative motion tends to vibrate from low frequency to high frequency. These vibrations 
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produce pressure fluctuations in surrounding medium.  In some cases, pressure fluctuations 

cause vibration in adjacent structures. These fluctuations are nothing but acoustic waves. 

Structures typically plates, shells, membranes under transient or oscillatory loads are the 

common sound source. Vibration characteristics of structure can significantly change because 

of a presence of a fluid medium. These effects can adversely affect the dynamics of a system 

can be studied. Especially for coupled analysis of systems interaction between fluid and 

structure also called as FSI is of great concern.   

The acoustic wave is driven by velocity not by structural displacement. Acoustics 

assumes ideal non-viscous fluid without shear layer’s effect. An only normal component of 

structural surface velocity is important. Generally sound wave propagating through a solid 

medium is called structural-borne sound and if it is propagating through the air it is called air-

borne sound. Air-borne sound often originates from external sources and propagates into the 

structures like vehicles compartment panels, planes interior through the floor, wall panels etc. 

Whereas, a structure-borne sound is the result of mechanical vibrations propagating through 

the vehicle structure and eventually causing localized displacements in an air. 

The structural acoustic can be divided into two types: internal and external problems. In 

an internal acoustic analysis, an acoustic cavity is enclosed in structure and corresponding 

loading conditions like FSI layer, impedance etc. need to apply. But for external problems 

unbounded fluid domain needs to be considered otherwise due to reflections of propagating 

acoustic waves the frequency response of the system will differ significantly. 

Noise and vibration control: 

 Noise can be defined as disagreeable or undesired sound. Many industries like 

transportation, construction are involved in a continuous effort to optimize noise and 

vibration characteristics. The noise inside the vehicle compartment in mainly structural borne 
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and it is low frequency generally less than 400 Hz. Internal sound field of the compartment is 

affected by the acoustic behaviour of cavity, dynamics of surround structure and fluid-

structure coupling. Resonant frequencies and acoustic mode shape primarily depend on the 

design of enclosed cavity. 

Sound and vibration are generally controlled by active and passive methods. In the 

active vibration control method, piezoelectric materials are used as sensors and actuators in 

flexible structures. Whereas, in the passive control method different materials used such as 

barriers, absorption materials, damping materials and vibration isolation. Barriers and 

absorption materials are used to attenuate sound which is already propagating in medium 

while damping materials and vibration isolation used to reduce structural borne vibrations 

subsequently reducing noise. For effective noise control, we can use different combinations 

of above materials. 

Most of the vehicle companies use laminated steel to improve the acoustic 

characteristic of a system which consists of two layers of steel bonded by polymer core. 

 

1.2 Finite Element Method and ANSYS: 

 

With the advancement in technology, the design process is too close to precision, so the 

finite element method (FEM) is used widely and capable to draw complicated structure and 

this is very trusted tool for designing of any shape and structure. It plays an important role in 

predicting the responses of various products, parts, assemblies and subassemblies. Nowadays, 

FEM is extensively used by all advanced industries which save their huge time of prototyping 

with reducing the cost due to physical test and increases the innovation at a faster and more 
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accurate way. There are many optimized finite element analysis (FEA) tools are available in 

the market and ANSYS is one of them which is acceptable to many industries and analysts. 

Structural acoustic analysis both; coupled and uncoupled can be done in ANSYS using 

ANSYS/ Multiphysics and ANSYS/Mechanical programmes. The acoustic analysis in 

ANSYS is generally done by modelling structure domain, modelling fluid domain depending 

on external or internal problem with appropriate fluid elements. Then apply boundary 

conditions and loads, solve using a valid method and review the results. 

Acoustic model generally consists of structural domain fluid domain, FSI interfaces, 

and infinite acoustic domain. ANSYS uses elements FLUID129 for 2D and FLUID130 for 

3D which are the infinite acoustic elements while FLUID29 for 2D and FLUID30 for 3D are 

finite acoustic elements. Infinite acoustic element modelled as a circle in 2D and sphere in 

3D. It absorbs all pressure waves generated by a source without any reflections. The infinite 

element cannot be used with structural elements. 

Elements used for modelling of structure and acoustic domain are shown in Fig. 1.2 and 

Fig. 1.3. Shell elements are used for thin and moderately thick plate or shell structures. 

Shell181 element is used for structure modelling. It has 4 nodes with each node has 6 degrees 

of freedom; 3 translations and 3 rotations. FLUID29 is used to model fluid element. It is a 2D 

element which has 4 nodes. It can be used for both coupled and uncoupled fluid elements. 

Coupled element has three degrees of freedom UX, UY and pressure while an uncoupled 

element has only one i.e. pressure. 
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Fig 1.2 Shell181 element geometry 

 

Fig 1.3 FLUID29 element geometry 

 

Pressures, impedance, rigid wall, free surface, PML are some boundary conditions used 

for acoustic analysis can be applied to both fluid and solid entities. Acoustic domain ca be 

excited using normal velocity (or acceleration), wave sources, mass sources commands. The 

output from the acoustic analysis is generally pressure, Sound pressure limit, acoustic cavity 

modes shapes and frequencies. 

 

1.3 Motivation of the present work: 

 

The basic requirement of dynamically loaded structures was high material damping 

with low minimum weight and adequate stiffness. But for nowadays these lightweight 

structures will have to meet not only these dynamic demands but also improved acoustic 

standards. Materials like aluminium, magnesium, titanium etc. which are mainly used for 

excellent dynamic properties such as strength and stiffness, have relatively low damping 

which leads to intense acoustic radiation. 

Laminated composite materials are widely used in different industries like 

transportation, buildings, naval and space projects. They possess outstanding properties such 

as low coefficient of thermal expansion, high elastic properties, corrosion and chemical 
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resistance and they are very lightweight as compared to conventional materials such as metal, 

concrete and wood. By investigating different combinations for composite materials offers 

the possibility of fulfilling the requirements concerning strength, stiffness, damping and 

sound reduction.  

 

1.4 Objective and Scope of the Present Work: 

  

This study aims to develop a finite element formulation for structural acoustic analysis 

for laminated composite plates surrounded by air medium. Carbon fibre reinforced polymer 

(CFRP) and Glass fibre reinforced polymer (GFRP) plate with various fibre orientations are 

used for this study.  

 Mathematical model is developed based on first order deformation theory for 

laminated composite structures 

 Investigate vibration behaviour of CFRP and GFRP plates experimentally. 

 Study the various properties of sound waves generated by plate vibration. 

 Study the effect of various fibre orientations on vibration and acoustic parameters. 

 Validate these results with finite element software package ANSYS. 

 

1.5 Organization of the thesis: 

 

The overview and motivation of the present work followed by the objectives and scope 

of the present thesis are discussed in this chapter. This chapter is divided into five sections. 

The first section contains the background of acoustic waves, structural acoustics and methods 

to control noise and vibration. In section two, a brief introduction of finite element method 
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and finite element analysis software ANSYS used for structural acoustic analysis is 

presented. The motivation of the present work is discussed in fourth and in fifth objective and 

scope of present work is incorporated. The remaining part of the thesis are organised in the 

following fashion. 

In chapter two, a brief introduction of the previous publishes literature has been 

presented along with their theory and method adopted for the analysis by the authors. The 

chapter is subdivided in two parts consisting of structural acoustic analysis and structural 

acoustic analysis of laminated composites. 

In chapter three, general mathematical formulation for the acoustic wave is discussed. 

Finite element formulation for uncoupled and coupled acoustic analysis is investigated. First 

order shear deformation theory is used for analysis of laminated composite plate. 

Chapter four illustrates the vibration and acoustic responses of laminated composite 

plates for different fibre orientation. Effect of different laminate parameters on acoustic wave 

is investigated.  

Chapter five summarizes the whole work and it contains the concluding remarks based 

on the present study and the future scope of the work. 

Some important books and publications referred during the present study have been 

listed in the References section.  
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CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction: 

 Commonly sound sources are structures consisting of plates, membranes, shells which 

are generally surrounded by air or water and excited by oscillatory or transient loads. The 

vibration of structure causes compression and expansion of surrounding fluid which 

subsequently applies oscillatory pressure on the surface of a structure, modifying the 

response of a structure. The analysis of vibrating elastic structures and their interactions with 

surrounding acoustic fluid has developed for past few years. Historically, the main inspiration 

behind the analytical study of acoustics was a development of underwater sound sources 

required for echo-ranging submerged targets. 

 There are various literature presented on structural acoustics of different parts of an 

automobile, aircrafts, and underwater structures. Most of the literature concern about noise 

and vibration control. Nowadays laminated composites are being used in many fields because 

of their excellent properties. There is much literature available on the vibration of laminated 

composite structures using various classical and shear deformation theories such as classical 

plate theory, first-order shear deformation theory and higher order shear deformation 

theories.  

 In the following section of this chapter existing literature based on the vibro-acoustic 

analysis are discussed. The review of literature is carried out for different analytical methods 



10 

 

and finite element modelling for solving different fluid-structure interaction problems. Most 

of structural acoustic analysis is carried out to control noise and vibration.  

2.2 Structural acoustic analysis: 

There are several finite element formulations to solve structural acoustics and fluid 

structural interactions. The acoustic fluid can be modelled by finite element formulations 

based on fluid pressure, displacement, displacement potential and velocity potential, each of 

them has advantages in different situations. Everstine (1997) developed the finite element 

formulations for fluid domain based on pressure and displacement, radiation and scattering 

from elastic structures, fluid structure eigenvalue problem for added mass and interior fluid 

problems. Sandberg and Göransson (1988) proposed the symmetric finite element 

formulation for coupled acoustic vibration in which pressure and displacement potential used 

to define the fluid. Olson and Bathe (1985) proposed model for the symmetric finite element 

analysis of fluid-structure interaction problem using pressure and velocity potential as 

degrees of freedom in the fluid region and displacement in the solid region.  

For external problems, it is must take into account unbounded fluid domain, otherwise 

due to a reflection of propagating acoustic waves frequency response of the system will differ 

considerably. In the analysis done by Vogel and Grandhi (2012) when the thickness of 

structure was changed from 1mm to 10mm, pressure was reduced by nearly 20dB. This 

thickness change also affects the frequency at which maximum pressure is observed. Ding 

and Chen (2001) carried out coupled acoustic analysis of elastic thin-walled cavity excited by 

both exterior structural loading and interior acoustic sources using the symmetric finite 

element formulation. Foin, Nicolas et al. (1999) proposed a new tool that describes the vibro-

acoustics of baffled, simply supported, multi-layered plate in both light and heavy fluids. 2D 

extension of the Ungar’s model was used for evaluating equation of motion of the plate. 
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Which found considerably accurate when compared to simplified discrete layer theory used 

for multi-layered plated. This method reduces the size of mass and stiffness matrix resulting 

in less computing time without decreasing in the precision of results. 

Modal analysis of these systems shows vibration modes which involve both structural 

and fluid domain. Kruntcheva (2007) called these combined mode shapes as acoustic 

structural resonances and they possess both high order displacement and high order pressure 

amplitude. Lim (2000) proposed the spectral formulation to evaluate radiated noise 

contributions of automotive body panels to interior sound pressure levels. He introduced a 

function called acoustic sensitivity which was the base of model. Ding and Chen (2002) put 

theoretical algorithm to compute interior noise contributed from a local structural panel of an 

elastic thin-walled cavity. This approach can be used to identify noise source in the vehicle 

compartment. It is suitable for low-frequency range but it is not suitable for investigation 

where the maximal dimension of a local panel is larger than the minimal acoustical 

wavelength of a frequency range. Nefske, Wolf et al. (1982) done finite element formulation 

to compute acoustic modes and resonant frequencies of vehicle compartment. Identification 

of critical panels around the compartment and its noise level was done by forced vibration 

analysis. Kim, Lee et al. (1999) used the practical method to reduce noise in the vehicle 

passenger compartment. This method uses interior pressure in terms of modal parameters and 

structural acoustic modal coupling coefficients of vehicle body and compartment. Assaf and 

Guerich (2008) proposed the numerical prediction of noise transmission loss through 

sandwiched plate. Sandwiched plate made up of viscoelastic core sandwiched between two 

elastic faces and subjected to acoustic plane wave or diffuse sound field excitation. 

Narayanan and Shanbhag (1981) studied the sound transmission loss through viscoelastic 

sandwich panels into the rectangular enclosure. Song, Hwang et al. (2003) investigated 

structural vibration control for coupled acoustic system using modal testing, finite element 
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method, piezoelectric material and robust LQG controller. The paper used structural vibration 

control instead of fully structural acoustic coupling control. The robust LQG controller can 

reduce interior noise as well as structural vibrations. Li and Zhao (2004) proposed the finite 

element formulation for modelling of the dynamic behaviour of laminated plate incorporated 

with piezoelectric layers and viscoelastic layer based on FSDT.  

 In the upcoming section the literature survey on noise and vibration control of various 

structures mainly vehicle compartments, transmission loss through body panels presented. 

 

2.3 Structural acoustic analysis for laminated composite structures: 

Thai and Choi (2013) investigated laminated composite plates using simple first order 

shear deformation theory which had only four unknown and had strong resemblance with 

classical plate theory. Yin, Gu et al. (2007) investigated acoustic radiation from laminated 

composite plate reinforced by doubly periodic parallel stiffeners. Anders, Rogers et al. (1992) 

proposed analytical modelling technique to find out modal and structural acoustic behaviour 

of locally activated SMA hybrid composite panel using Ritz method, classical laminated plate 

theory, and finite panel acoustic radiation theory. Chandra, Raja et al. (2014) presented 

analytical solutions for determining transmission loss and vibro-acoustic response of FGM 

plate using simple FSDT. Nilsson (1990) determined the loss factors at different frequency 

ranges for a sandwich plate. Hufenbach, Kroll et al. (2001) studied vibro-acoustic 

characteristics of laminates composites by performing numerical solution using FEM and 

BEM. Assaf, Guerich et al. (2010) proposed finite element modelling to analyse vibro-

acoustic response of sandwich plate under constrained layer damping treatment. 
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CHAPTER 3 

MATHEMATICAL FORMULATION 

 

 

3.1 Introduction:  

 The solution of a real life problem involving an arbitrary plate geometry and 

complicated loading and boundary conditions cannot be easily realized using analytical 

methods. A numerical analysis technique, especially finite element analysis method, is suited 

most to solve such problems. This chapter includes basics of acoustic waves, fundamental 

wave equation. Finite element formulation for uncoupled, coupled acoustic analysis 

investigated. Also simple first order shear deformation theory is studied for analysis of 

laminated composite plates.  

 

3.2 Assumptions: 

 In acoustic fluid-structure interaction problems, both acoustic wave equation and the 

structural equation need to be coupled to each other. In deriving the discretized acoustic wave 

equation, there are some necessary assumptions (Hosseini-Toudeshky, Karimi et al. 2011) are 

made. 

1. The fluid is compressible except only relative small pressure changes with respect to 

mean pressure are allowed. 

2. The fluid is inviscid. 

3. There is no mean flow of the flow. 

4. The mean density and mean ambient pressure are uniform throughout the fluid. 
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5. The analysis is linear. 

6. The damping has not been considered in this study. 

 

3.3 Basics of acoustic: 

The equation of a sound wave can be described in pressure or displacement. Generally 

acoustic equation is in the form of pressure instead of velocity. The main reason is pressure is 

scalar quantity so practically easier to work than velocity. Also, pressure is nothing but the 

sound we hear and can be easily measure using a microphone.  

The fundamental wave equation of acoustic (Cook 2007) is given as: 

2
2

2 2

1 p
p

C t


 

       (3.1) 

The equation of a wave is in a form of pressure which described with both space and time. 

Simple one-dimensional equation of sound wave is, 

2 2

2 2 2

1p p

x C t

 


 
     (3.2) 

where, C is the acoustic wave speed given as, 

K
C




      (3.3) 

 is the fluid density, and K is the fluid bulk modulus. 

For harmonic loading, we can write, 

j tp Pe         (3.4) 
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where, ω is the radian frequency, the wave equation becomes the Helmholtz equation which 

is denoted as:  

2 2 0P k P                    (3.5) 

Note that t has disappeared, reducing the order of the equation by one.  

The wavenumber k = ω/c 

Spherical waves more closely approximate true source waves but approximate to plane waves 

at large distances from a source. It may be shown that the wave equation in spherical 

coordinates (Jacobsen and Polack 2007) is given as: 

   2 2

2

2 2

rp rp
c

t r

 


        (3.6) 

To describe the amplitude of a sound we usually use RMS pressure. Sound pressure level is 

given by, 

1020log
ref

p
SPL

p


       (3.7) 

The reference pressure is 20 Pa and unit of SPL is dB.   

Some cases we need quantities like velocity, intensity. 

Acoustic velocity V,  

0

P
V

C


       (3.8) 

Acoustic mean intensity I,   
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2p
I

C


      (3.9) 

3.4 Uncoupled acoustic analysis: 

The acoustic wave equation is given by equation (3.1), 

2
2

2 2

1 p
p

C t


 

        

The finite element formulation for acoustic wave is given by (Cook 2007), 

[ ]{ } [ ]{ } [ ]{ } { }f f f fM p C p K p F         (3.11) 

where,  

2

1
[ ] [ ] [ ]T

f f f
vol

M N N dV
C

 
 

[ ] [ ] [ ]T

f f f
surface

C N N dS
c


   

, , , , , ,[ ] ([ ] [ ] [ ] [ ] [ ] [ ])T T T

f f x f x f y f y f z f z
vol

K N N N N N N dV    

{ } [ ]
T

f f n
vol

F N u ds   

where, n is an outward normal direction and nu
 is the acceleration of the boundary in 

direction n. 

The essential boundary conditions are: 

On the free surface of cavity, 

P = 0      (3.12) 
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On solid boundary of the cavity, 

n

p
u

n



 

      (3.13) 

For rigid boundary, 

0nu        (3.14) 

Acoustic modes: 

 Let the walls of cavity be rigid and stationary, so that 0nu   and the pressure for 

harmonic loading is taken as, 

sinp p t
      (3.15) 

Putting these values into equation we get (Cook 2007), 

2([ ] [ ]){ } 0f fK M p 
     (3.16) 

The solution of this eigenvalue problem yields natural frequencies of a cavity and 

corresponding pressure modes. 

 

3.5 Coupled acoustic analysis: 

Load acting on surface of fluid cavity by motion of structure is given by (Cook 2007), 

[ ] [ ]{ }fF R u      (3.17) 

where, [R] is the coupling matrix denoted as, 

[ ] [ ] [ ]T

f s
surface

R N N dS   
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where, &f sN N  are shape functions for fluid and a structural surface of coupled interface. 

Thus, coupled acoustic equation becomes, 

[ ]{ } [ ]{ } [ ]{ } [ ]{ }f f fM p C p K p R u        (3.18) 

Similarly, load applied to structural surface by fluid pressure is given as, 

[ ] [ ] { }T

sF R p      (3.19) 

Dynamic equation of structure becomes, 

[ ]{ } [ ]{ } [ ]{ } { } [ ] { }T

s s s sM u C u K u R R p       (3.20) 

Thus coupled equation is (Cook 2007), 

 

 

     0 0

00 0

T

s s s s

f f f

M C K Ru u u F

p p pR M C K

            
             

                         

  (3.21) 

Due to the presence of [R] matrix equation is a non-symmetric matrix. To solve this 

equation we convert it to symmetric form using displacement potential function (Everstine 

1981). To do so first integrate pressure equation with time and put, 

p q        (3.22) 

Rearranging the terms we will get, 

      

     

 

 0
0

1 1
0 00

T

s s
s s

f ff

M C R Ku u u F

M q q qKR C
 

                                                  

          (3.23) 
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The coupling matrix [R] transferred from mass and stiffness parts to the damping part when 

the equation is switched to velocity potential as unknown.  

For low-frequency eigenvalue calculations, the fluid is frequently assumed to be 

incompressible and also neglecting damping effect,, 

0fM   & 0fC       (3.24) 

Giving simpler eigenvalue problem (Cook 2007), 

( )s a s sM M u K u F       (3.25) 

Where Ma is added mass of fluid loading , 

1 T

a fM RK R       (3.26) 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

 

4.1 Introduction: 

In the present investigation, natural frequencies of rectangular laminated composite 

plates for various ply angles are studied by means of experiments. These vibrations generate 

acoustic waves in surrounding medium. To study the acoustic behaviour of plates, pressure 

variations are measured at specified location. The results obtained by the experiments are 

compared with the finite element package (ANSYS). 

Glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP) 

plates are used for present study and their properties are given in the following table. 

Table 4.1 Material properties of CFRP and GFRP plates. 

 Properties CRFP GFRP 

Young’s modulus (E1), GPa 85.45 12.73 

Young’s modulus (E2), GPa 6.49 6.476 

Shear modulus (G12) , GPa 2.26 1.73 

Poisson’s ratio ( 12 ) 0.32 0.17 

Density (  ), Kg/m3 1500 1900 

Ply angles, o 

0/90 00/900 

00/900/900/00 00/900/900/00 

450/-450 450/-450 

450/-450/-450/450 450/-450/-450/450 
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Experimental Setup: 

The experimental setup is shown in Fig. 4.1 consists of the plate clamped in one end of 

the frame forming cantilever position. The accelerometer is attached at the free end to 

measure acceleration. The Microphone is held at a distance of approximately 1cm above the 

plate. It will give pressure variation at that point in Pascal. Experimental data was collected 

by tapping the centre of the plate with an impact hammer. Dimensions of plates were 

180mm×150mm and thicknesses of the plate were 1.5mm or 3mm depending on number of 

plies. NI cDAQ-9178 instrument is shown in Fig. 4.2 was used to collect data from 

microphone, accelerometer and impact hammer. This data was processed for further study 

using LabVIEW software. 

 

 

Fig. 4.1 Experimental setup 
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Fig. 4.2 NI cDAQ-9178 instrument 

 

Finite element simulation model: 

 Vibration and acoustic analysis of laminated composite plate was carried out in finite 

element simulation. Simulation model consist of structure domain, fluid domain and fluid-

structure interface. Structure domain was modelled using SHELL181 element while fluid 

domain is modelled using FLUID29. Fluid-structure interface was specified on common 

nodes fo structure and fluid domain. Fig. 4.3 shows simulation model in which Cantilever 

plate is surrounded by fluid domain. Figure shows pressure distribution due to plate vibration. 
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Fig. 4.3 Simulation model 

 

 

4.2 Governing equations: 

Coupled acoustic equation is given by equation (3.21) is 

 

 

     0 0

00 0

T

s s s s

f f f

M C K Ru u u F

p p pR M C K

            
             

                         

 

This equation is used to find the displacement of nodes of structure and pressure variation at 

nodes of the fluid domain.  
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4.3 Results and discussions:  

4.3.1 Convergence study for natural frequency parameter: 

The convergence of presently developed model is carried out for various laminated 

plates. Structural and acoustic domains are modelled in finite element simulation ANSYS. 

Fig. 4.3 and Fig. 4.4 shows convergence study of CFRP and GFRP plates with first natural 

frequency taken as variable. Following graphs shows results obtained for different mesh 

divisions. As convergence started approximately at mesh division of 12×12, further results 

are computed for mesh division of 12×12. 

From the figure, it is shown that as number of plies increases the natural frequency of 

both materials increases because of increase in bending stiffness. 
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Fig. 4.4 Convergence for CFRP 
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Fig. 4.5 Convergence for GFRP 

 

4.3.2 Comparison study of natural frequency obtained from experiments and finite element 

simulation: 

Natural frequencies of CFRP and GFRP plates obtained from the experiment are 

compared with frequencies computed from finite element simulation, ANSYS. Table 4.2 and 

4.3 shows matching frequency responses for experimental and ANSYS analyses.  As shown 

in the table the frequencies are consistent with both experimental and ANSYS results with 

negligible variations. Thus, the present analysis yields accurate results. 
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Table 4.2 Comparison study for natural frequency of cantilever CFRP plates 

 
Natural frequency 

Mode 

no. 

450/-450 00/900 

Experimental Simulation model Experimental Simulation model 

1 23 22.073 50 50.2 

2 70 67.551 100 98.7 

3 162 161.14 310 309 

4 260 257.27 515 514 

5 325 320.87 567 567 

 

 

Table 4.3 Comparison study for natural frequency of cantilever GFRP plates 

 

Natural frequency 

Mode 

no. 

450/-450 00/900 

Experimental Simulation model Experimental Simulation model 

1 12 11.179 15 15.109 

2 34 32.149 31 33.411 

3 100 98.297 120 120.55 

4 120 136.01 161 158.35 

5 155 156.79 175 175.38 
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4.3.3 Comparison of pressure wave obtained from experiment and finite element 

simulation: 

 The acoustic pressure was measured at a specially located point in air medium 

surrounding vibrating plate. The point was located around 1cm above the plate. Time interval 

set for analysis was 2 seconds. Coupled analysis was performed in ANSYS for same 

laminated composites and boundary conditions. Fig. 4.5 shows pressure variation for CFRP 

00/900 obtained by experiment and simulation respectively. 

 

Fig. 4.6 Pressure variations for CFRP 00/900  in ANSYS 

Fig. 4.6 shows pressure variation for GFRP 00/900 obtained by experiment and simulation 

respectively. 

 

Fig. 4.7 Pressure variations for GFRP 00/900 in ANSYS  
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Figures show pressure variations for a 0.1-second interval for CFRP and GFRP plates 

for ply angle 00/900. Both experimental and ANSYS results show same amplitude and 

frequency of an acoustic wave. Pressure responses obtained from experiments of other plates 

are also in good agreement with ANSYS simulation. These graphs show that pressure 

amplitude of GFRP plate is much higher than CFRP plate. So CFRP material is more 

effective for noise reduction than GFRP. 

 

4.3.4 Comparison of structural and acoustic frequencies of CFRP (±45 ) at low-frequency 

region: 

Vibration and acoustic output data obtained from the experiment were further processed 

for finding FFT curves for displacement and pressure. Fig. 4.7 shows FFT curves for CFRP 

plate with ply angle 450/-450.  

 

 

Fig. 4.8(a) FFT curves for CFRP (±45) of displacement
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Fig. 4.8(b) FFT curves for CFRP (±45) of pressure 

 

The graph shows that three types of modes coupled structural modes, coupled cavity 

modes and coupled combined resonances. In the low-frequency region, structural natural 

frequencies are sufficiently close forming coupled combined resonances. This phenomenon 

generally occurs for the frequency range of 0-250 Hz. Due to these resonances amplitude of 

displacement of structure and pressure are at maximum limit causing intense vibration and 

noise.  

 

4.3.5 Effect of fiber orientation on the frequency and the pressure for laminated plate: 

Vibration and acoustic analysis of laminated composite plate were done to study the 

effect of different ply angles and number of plies on the natural frequency of plate and 

pressure variations. Fig. 4.8 and 4.9 shows the variation of natural frequency and pressure 

amplitude for CFRP 00/900/900/00. 
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Fig. 4.9 Effect of ply angle on first natural frequency for CFRP plate 
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Fig. 4.10 Effect of ply angle on pressure amplitude for CFRP plate 

 

The graph shows by increasing ply angle from 00 to 900, natural frequency decreases. 

This is explained as when ply angle changes from 00 to 900, transverse elasticity modulus 

accounts more for stiffness of the beam, and elasticity modulus of transverse direction is 

much smaller than elasticity modulus of longitudinal direction, and stiffness of the material is 
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directly proportional to elasticity modulus. So when stiffness decreases with the same weight 

and geometry, correspondingly it decreases the natural frequency of the material. 

Whereas an increase in ply angle pressure amplitude increases. As sound waves are 

longitudinal wave amplitude increases as frequency decreases. Thus, laminated composites 

with higher ply angle can be used to reduce noise. 

 

4.3.6 Free vibration analysis of vehicle compartment: 

Natural frequencies of vehicle compartment are computed using finite element 

simulation and it compared with published literature (Utsuno, Tanaka et al. 1989). Table 4.4 

shows the comparison of natural frequency taken from literature and computed from the 

simulation. 

 

Table 4.4 Comparison of natural frequency of vehicle compartment 

Mode 

number 

Natural frequency 

ANSYS Utsuno and Tanaka (1989) 

1 76.342 76 

2 123.99 122 

3 133.31 126 

4 147.97 147 

5 162.16 175 

6 172.6 178 

7 203.2 202 
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Results obtained from finite element simulation and literature is in excellent agreement 

and the maximum difference is 8%. Fig. 4.10 shows modes shapes for an acoustic cavity of 

the vehicle compartment. 

 

 

 

 

  

 

 

 

 

 

 

 

Fig. 4.11 Mode shapes of vehicle compartment 
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4.4 Conclusions: 

Vibration and acoustic analysis of CFRP and GFRP plates were carried out 

experimentally. The effect of ply orientation and number of layers on coupled vibro-acoustic 

behaviour of plates has been analysed for various combinations. Results obtain from 

experiments were validated with ANSYS results and found to be in excellent agreement.  

1.  In the present work, it is found that combined modes shapes are formed because of 

resonance of natural frequencies of the structure and acoustic cavity. These combined 

mode shapes generally occur in the low-frequency region and possesses both high-

order displacement and high-order pressure amplitude. 

2. A fundamental frequency decreases when ply angle increases and increases when 

number of ply increases in the considered interval (0-90). Whereas pressure 

amplitude increases with increase in ply angle. 

3. Laminated composite materials can be used in many applications instead of 

conventional materials where noise reduction is one of the essential parameters. 
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CHAPTER 5 

CLOSURES 

 

 

5.1 Concluding Remarks: 

In this present work, the vibration and acoustic behaviour of the laminated composite 

plate are examined through experimentally and finite element simulation. A suitable finite 

element model is proposed and developed using ANSYS for the analysis of vibration and 

acoustic. A parametric study has been carried out for the frequency and the pressure 

amplitude variations of the laminated composite plates. The most specific conclusions as a 

result of the present investigation are stated below: 

 A linear finite element model is proposed and implemented for the discretisation of the 

plate model by using a four noded SHELL181 element having six degrees of freedom 

per node. Discretisation of a fluid domain is done with the FLUID29 element having 

four nodes and three degrees of freedom per node.   

 Convergence study is performed by refining the mesh density. The comparison study 

for different cases indicates the necessity and requirement of the present mathematical 

model for an accurate prediction of the structural behaviour.  

 The carbon fibre reinforced polymer plates has been examined by taking the different 

ply orientation and number of layers. Effects of the ply angle, number of ply on the 

frequency of vibration and pressure amplitude are studied in detail.  

 A fundamental frequency decreases when the ply angle increases and with an increase 

in the number of ply the frequency increases whereas, the pressure amplitude 

increases with an increase in ply angle. 
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5.2 Significant Contribution of the Thesis: 

The contributions of the present research work are as follows: 

 The vibro-acoustic behaviour of a laminated composite plate is investigated 

experimentally as well as using finite element simulation model. 

 The experimental analysis is carried out on carbon fibre reinforced polymer and glass 

fibre reinforced polymer plates in cantilever position. 

 The panel model has been developed in the commercial FE software ANSYS by using 

APDL code. Four noded shell element (SHELL181) is employed to discretise the 

simulation model. 

 The convergence and comparison study for the vibro-acoustic behaviour of a laminated 

composite plate is presented. The results obtained shows that the good efficiency of the 

experimental model and developed simulation model.  

 The effects of various ply orientation and number of ply on frequency and pressure 

responses are studied.  

Finally, it is understood from the previous discussions that the developed experimental 

model for vibro-acoustic analysis would be useful for analysis of laminated composite 

structures under different boundary and loading conditions. It is observed that the present 

developed FE model in ANSYS environment is also capable to solve any fluid-structure 

interaction problem easily and with less computational time. And hence, the present analysis 

would be useful for the practical design of the structure. 
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5.3 Future Scope of the Research: 

 An analytical study on vibration and acoustic analysis of laminated composite plates 

will give better understanding about the present developed experimental and finite 

element simulation model. 

 The present study has been done by using the linear vibration which can be extended 

for the nonlinear analysis of laminated composite plate. 

 The present study can be extended for the analysis of laminated composite panels also.  

 The present study can be extended to investigate the vibration and acoustic analysis of 

laminated composite curved and/or flat panel under thermal and/or hygro-thermal 

environmental conditions. 
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