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Introduction: 

In the realm of organic chemistry, organic synthesis reigns supreme as the most fascinating area 

of activity. The dearomatization
[1]

 reactions are widely recognized as powerful methods for the 

synthesis of highly functionalized three dimensional structures from simple planar aromatic 

compounds. Recently, great efforts have been devoted to the development of oxidative  

dearomatization processes. Phenols are a readily available chemical feedstock and widely used 

as starting materials in organic synthesis. Dearomatization reactions of phenols are of wide 

interest because of their potential for the preparation of cyclohexadienones, which often serve as 

structural cores prevalent in various biologically active natural products and pharmaceuticals, or 

as valuable synthetic intermediates.The enantioselective oxidative dearomatization of phenols 

and their analogues is a key reaction for the synthesis of several natural products. Oxidative 

Dearomatization has been nucleophilic or, electrophilic in nature as shown in figure-1. The basic 

step has been expected to go through a simultaneous nucleophilic addition to a cyclohexadienone 

intermediate. The driving force of the reaction is depends on the activating reagents, structural 

feasibility and cascade reaction sequence as shown in figure-2. 
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Till today, synthetic protocols towards Dearomatization reaction have been carried out using – 

1. Enzymatic Catalysis 

2. Thermal or photochemical catalysed 

3. Transition metal catalysed 

4. Hypervalent Iodine catalysed 

5. Birch reduction or hydrogenation process as shown in figure 3. 
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Figure-3 

 

Recent years have seen great progress in the development of asymmetric hypervalent iodine 

reagents and catalysts for use in enantioselective oxidation dearomatization reactions.  Highly 

effective hypervalent organoiodine catalytic method for the highly enantioselective oxidative 

dearomatization of phenols have been developed which in the presence of an appropriate 

external or internal nucleophile (Nu) leading to the respective cyclohexadienones. The 

mechanism of this reaction most likely involves the initial formation of the phenoxyiodine(III) 

followed by elimination of PhI and the generation of cationic phenoxenium intermediates which 

finally combine with the nucleophile (figure 4 and 5)
1a-d

 . 

 

Figure-4 
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Figure-5 

 

Various nucleophiles, such as water, alcohols, fluoride ion, carboxylic acids, amides, oximes, 

allylsilanes and electron-rich aromatic rings, have been used successfully in this reaction in 

either an inter- or intra-molecular mode. 

Our synthetic strategy involves the idea of Wood’s
[8]

 work on intra-molecular cycloaddition 

prompted by oxidative dearomatization.  Phenol(1c) upon oxidation with 

phenyliodo(III)diacetate (PIDA), forms a phenoxonium that is intercepted by propargyl alcohol 

to form the intermediate diene(1b), which undergoes a subsequent intramolecular Diels-Alder 

reaction to afford (1c). 

1a 1b 1c
 

         Scheme:1  Wood’s oxidative dearomatization and intramolecular cycloaddition 

 

The  oxidative  dearomatization  step  may  also  proceed  intramolecularly,  as  demonstrated  by 

Danishefsky
[9]

 in studies towards the synthesis of the sesquiterpenoid. Treatment of phenol 2a 

with PIDA  in  toluene  presumably  affords  the  intermediate o-quinone  acetal 2b, which 

undergoes a transannular Diels-Alder reaction to give 2c as a single diastereomer (Scheme ).  

Interestingly, the benzylic stereocentre in 2a controls the diastereofacial selectivity of the 

oxidative dearomatization step thereby securingthe stereoselectivityof the cycloaddition. 
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      Scheme:2  Danishefsky’s oxidative dearomatization and transannular cycloaddition 

 

The oxidative dearomatization of symmetrical p-substituted phenols results in the formation of 

meso-cyclohexadienones.   Various two-step  methods  have  been  reported  to desymmetrize  

these compounds into  enantioenriched  products.   An impressive  one-pot,  catalytic  protocol  

was reported  by  Gaunt
[11]

  that  makes  use  of  a  pyrrolidine  catalysed  intramolecular  

desymmetrizing  1,4-addition to themeso-intermediate . Phenolic substrates of type 3a are treated 

with PIDA in the presence of pyrrolidine  catalyst 3b to  afford  the  dearomatized  dienone 3c 

(Scheme 3 ). Subsequent enamine formationand Michael addition affords annulated products of 

type 3d, many of which in high yield and stereoselectivity. 

 

          Scheme:3  Gaunt’s oxidative dearomatization and in-situdesymmetrization 

 

Cyclization routes have been particularly attractive because of their inherent potential for 

achieving a rapid increase in skeletal complexity. A number of cyclization or cascade 

cyclization/cross-coupling reactions of 2-alkynyl-phenols have been developed. However, these 

elegant methods of cyclization only enable the synthesis of benzofurans with diverse 

substitutions on the five-membered ring. A direct conversion of 2-alkynyl-phenols to 3,4-
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difunctionalized benzofurans (Scheme 4). This protocol involved an oxidative dearomatization to 

break the aromaticity of 2-alkynylphenols, a palladium-catalyzed domino reaction to 

simultaneously install two functional groups at C3 and the C4 positions, and an aromatization to 

restore the aromatization. 

(Diacetoxyiodo)benzene facilitated oxidative dearomatization of 4-methyl-2-(2-

phenylethynyl)phenol
[13]

 4a in methanol. The Deleterious cyclization or oxidation of the 

sensitive alkynyl group was not observed. The crude dearomatization product was directly used 

to test the palladium-catalyzed domino reaction with p-toluidine and ethyl acrylate. When 0.1 

equivalents of PdCl2 were used together with 0.2 equivalents of Ph3P, 4-amino-substituted 3-

alkenylbenzofuran 4b was obtained with 7% yield. Various oxidants were added to promote the 

regeneration of catalytic Pd
II
 from Pd

0
 formed in Heck coupling. Addition of 2 eq. of 

benzoquinone (BQ) improved the yield to 31%. Various Optimization have been to increase the 

yield upto 76%. 

Ph

OH

Me

1)PhI(OAc)2 (1.1equiv)

   MeOH, rt, 5min

2)H2C     CHCOOEt (2 equiv)

4-CH3C6H4NH2 (1.5 equiv)

PdCl2 (0.1 equiv), Ph3P (0.2 equiv)

K2CO3 (2 equiv), BQ (2 equiv)

  ClCH2CH2Cl, reflux

            31%

Me

NH

O

Ph

COOEt
p-Tolyl

4a 4b

 

                                                                   Scheme 4 

 

Very recently, a new method for the nitrative spirocyclization of alkynes via alkyne insertion 

mechanism
[14] 

has been reported. This method involves the oxidative difunctionalization of 

alkynes initiated by a radical attack pathway using t-BuONO (tert-butyl nitrite) combined with 

water as the nitro source and TEMPO [(2,2,6,6-tetramethyl-piperidin-1-yl)oxyl] as the initiator, 

and it represents a new example of oxidative alkyne difunctionalization via the formation of C

N/C C bonds for the assembly of nitroalkene unit-containing spirocycles. 

R2 N O

R1

R3

t-BuONO
H2O, O2, TEMPO

      EtOAc

   100 0C, 16 h

N

O

O

R2

NO(O)
R1
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Scheme 5 
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Thus, we have put effort to cyclize 3-alkynylphenol system to form C-C bond formation via 

intra-molecular oxidative dearomatization in the presence of coupling partner (a nucleophile). 

The substrate having terminal alkyne was obtained by following Metal mediated Barbier 

Grignard reaction. The following  Barbier Grignard processes are: 

I) Mediated by Tin: 

 In 1983, Nokami et al. observed an acceleration of reaction rate during the allylation of carbonyl 

compounds with diallyltin dibromide in ether through the addition of water to the reaction 

mixture. In one case, by use of a 1:1 mixture of ether/water as solvent, benzaldehyde was 

alkylated in 75% yield in 1.5 h, while the same reaction only gives less than 50% yield in a 

variety of organic solvents, such as ether, benzene, or ethyl acetate, even after a reaction time of 

10 h. The reaction was equally successful with a combination of allyl bromide, tin metal, and a 

catalytic amount of hydrobromic acid (Scheme 6). In the latter case, the addition of metallic 

aluminum powder or foil to the reaction mixture dramatically improved the yield of the product. 

The use of allyl chloride for such a reaction, however, was not successful. 

Br
R H

O
Sn/Al/HBr

H2O/Et2O

OH

H
R

 

Scheme 6 

The reaction of propargyl bromide with aldehydes mediated by tin in water generated a mixture 

of propargylation and allenylation products (Scheme 7). The selectivity in product formation is 

rather low. 

 

R H

O
Br Sn/H2O/Benzene

reflux R

OH

R

OH

Minor Major  

Scheme 7 

II) Mediated by Indium: 

When the allylation was mediated by indium in water, the reaction went smoothly at room 

temperature without any promoter, whereas the use of zinc and tin usually requires acid catalysis, 

heat, or sonication. An organic co-solvent is not necessary either. The mildness of the reaction 

conditions make it possible to use the indium method to allylate a methyl ketone 3 6 in the 
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presence of an acid sensitive acetal functional group (Scheme 8). Attempts to achieve such 

transformations with zinc and tin have not been successful. 

H3CO

OCH3 O

Br
In

H2O
H3CO

OCH3OH

 

Scheme 8 

 

M(Metal)            Yield, %  

                                                          Zn                      0 and destruction of starting materials  

                                                          Sn                       10 (under sonication) 

                                                          In                        70 

 

Using indium-copper or indium-silver as radical initiator, Barbier-Grignard-type alkylation 

reaction of aldehydes with unactivated alkyl halides proceeded efficiently in water to give the 

desired products in moderate to good yields. Among the several metals tested, indium proved to 

be the best metal for this transformation than zinc, aluminum, tin etc. Without CuI or AgI, the 

reactions proceeded sluggishly to give the desired products in poor yields. 

 

 

 

 

 

 

 

 

 

 

 



 

12 
 

Results and Discussion: 

In the present work, we have synthesized the substrate 3-(1-hydroxybut-3-ynyl)phenol(1d) as a 

precursor compound. The following procedure is followed for the synthesis of 3-(1-hydroxybut-

3-ynyl)phenol(1d). 
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                                                                                            Scheme 1 
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In the above reaction scheme, m- Hydroxy Benzaldehyde (1 eq.) 1a was dissolved in DMF 

followed by the addition of triethyl amine(1.5 eq) in an inert atmosphere . The reaction mixture 

was allowed to stir for some time at room temperature, then tert-Butyldimethylsilyl 

chloride(TBDMS-Cl)(1.5 eq.) was added to the reaction mixture for protecting the phenolic –OH 

group to obtain 1b with the yield of 80%. The protection process was completed in around 18 

hours. 

Then the silyl protected system 1b was reacted with propargylic bromide via Indium-mediated 

Barbier Grignard mechanism. In this reaction, Indium metal(1.2eq) was taken in dry THF 

followed by the addition of  propargylic bromide(1.2 eq.) in an inert atmosphere. The reaction 

mixture was then left to stir for 1-2 hours at room temperature, grey colour precipitate indicates 

the formation of grignard. Then compound 1b was added to the reaction mixture. Here catalytic 

amount of KI was added to increase the reactivity of In-metal. The completion of reaction was  

confirmed by TLC (thin layer chromatography) that took approximately 18 Hrs.. The yield of the 

product obtained was 65% (1c). 

Then deprotection of 1c was done using TBAF (tert-butylammonium fluoride). For this substrate 

1c was dissolved in THF and allowed to stir for some time, then TBAF was added to the 

solution. The reaction mixture then was left to stir for 10-12 hours at room temperature. The 

product 1d obtained was confirmed by TLC and the yield was 70%. 

The product 1d acted as a precursor compound which in the presence of heptavalent iodine 

catalyst (I
3+ 

or I
5+

)  were thought to go for cyclization process. The cyclization process involved 

alkyne insertion for C-C bond formation in the presence of a nucleophile (MeOH). For 

Cyclization process, hypervalent iodine complexes were prepared. 

HYPERVALENT IODINE COMPLEXES: 

IBX Preparation: 

0.89gm of KBrO3 was added over 0.5 hour to a vigorously stired mix of 2-iodobenzoic (1 gm) 

and17 ml of 0.73 M H2SO4 in 55 °C bath. The mix was stirred for 4 hours at 68 °C and then 

coled with an ice bath. The solid obtained was filtered and washed with 16.44 ml of H20 and 5 

ml of ethanol and yield was 93%. 

I

COOH

KBrO3

H2SO4

68 0C, 4 Hr

I

O

O

OHO

IBX (mp 232-2330C)  

Scheme 2 
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PIDA Preparation: 

 

 

Scheme 3 

 

The apparatus consists of a 200-ml. beaker equipped with a magnetic stirrer or any other type 

suitable for stirring a small volume of liquid. The flask is charged with 0.10 mole of iodobenzene   

and is immersed in a water bath maintained at 30°C. 0.24 mole of commercial 40% peracetic 

acid is added dropwise to the well-stirred iodobenzene over a period of 30–40 minutes. Stirring 

is continued for another 20 minutes at a bath temperature of 30°C, during which time a 

homogeneous yellow solution is formed. Crystallization of iodosobenzene diacetate may begin 

during this period. 

The beaker is chilled in an ice bath for 1 hour. The crystalline diacetate that separates is collected 

on a Büchner funnel and washed with three 20-ml. portions of cold water. After drying for 30 

minutes on the funnel with suction, the diacetate is dried overnight in a vacuum desiccator 

containing calcium chloride. The dried diacetate weighs (83–91%) and melts at 158–159° with 

decomposition.  

 

 

 

 

Here, in the last step alkyne insertion for cyclization process was tried in different conditions. 

Reacting 1d with PIDA(phenyl iododiacetate )  in THF and DCM, we did not get any result, but 

when 1d was tried with IBX complex in THF, crude NMR roughly indicates 1e as we could not 

isolate it and get the satisfactory results. The compound seems quite unstable in nature.  
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OH

OH
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OH

O

 

   1,2-dihydronaphthalene-1,5-diol 

   

 Experimental section: 

Analytical thin layer chromatography (TLC) was carried out using silica gel 60 F254 pre-coated 

plates. Visualization was accomplished with UV lamp or I2 stain. Silica gel 230-400 mesh size 

was used for flash column chromatography using the combination of ethyl acetate and petroleum 

ether as eluent. Unless noted, all reactions were carried out in oven-dried glassware under an 

atmosphere of nitrogen/argon using anhydrous solvents. Where appropriate, all reagents were 

purified prior to use following the guidelines of Perrin and Armerego.
14

 All commercial reagents 

were used as received. Proton nuclear magnetic resonance (
1
H NMR) spectra were recorded at 

400 MHz/500 MHz. Chemical shifts were recorded in parts per million (ppm, δ) relative to 

tetramethyl silane (δ 0.00). 
1
H NMR splitting patterns are designated as singlet (s), doublet (d), 

doublet of doublet (dd), triplet (t), quartet (q), multiplet (m). Carbon nuclear magnetic resonance 

(
13

C NMR) spectra were recorded at 125 MHz. Mass spectra (MS) were obtained using ESI mass 

spectrometers. IR spectra were recorded as neat for liquid and in KBr for solids. Melting points 

were determined using a hot stage apparatus and are uncorrected. 
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Selected NMR Spectra: 
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Conclusion:  

Synthesis of 1,2-dihydronaphthalene-1,5-diol have been tried using I
3+ 

and I
5+ 

complexes taking 

3-(1-hydroxybut-3-ynyl)phenol as a precursor compound employing intramolecular oxidative 

dearomatization via alkyne insertion. All the synthesized products are monitored using TLC and 

Column Chromatography and confirmed by NMR data.   
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