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Abstract

Growth in social media has huge of amount of data which includes reviews

about products ,blogs which discuss on the peoples opinion .We can learn senti-

ment analysis in web mining, data mining ,it is an application of Natural Language

Processing. Due to growth in social media all the fortune companies are working

on Opinion mining. The basic goal of Sentiment analysis is to ensure the sentence

either as positive emotion or negative emotion. Sentiment analysis extracts the

sentiments in the form various discussions, forums, blogs. Importance of social

media leads in growth of sentiment analysis. For an organization, it wants to

know about the peoples opinions on products which it had been released and it

conducts surveys of products and opinion polls. Consumers also used to make

research on products and price of product by using sentiment analysis. Marketers

used to make research about company and products by effective utilization of

sentiment analysis.

This thesis contributes to classification of tweets in to either positive or negative

using Machine learning techniques such as Nave Bayes classifier, Multinomial Nave

Bayes algorithm, or Gaussian Nave Bayes, SVM Classifier, and Decision Tree

.Comparative tabulation of performance of above mentioned classifiers is created

to critically analyze the sentiment of tweets.

Key words: Opinion Mining, Sentiment Analysis, Natural Language Process-

ing.
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Chapter 1

Introduction

1.1 Natural language processing:

The branch of computer science that researches on the development of systems

that can communicate with humans in everyday language is called as Natural

Language Processing [7]. In theory, it deals with the range of techniques that

compute, analyze and represent naturally happening texts at multi-level analysis

of languages for the purpose to make the machine process like human language for

different disciplines and applications. NLP algorithms depend highly on machine

learning with the majority being statistical. Older implementation of language-

processing tasks normally required hard coding of big set of rules. By using

machine learning, we can use normal learning algorithms usually in statistical

inference, to learn rules by analyzing large corpora of real-world examples. A

corpus is a set of documents that were annotated by hand with the correct values

to be learned. Types of Natural Language Processing are:

1. Morphological processing:

In this state of language processing, strings are broken into sets of tokens

corresponding to the words, sub-words and punctuation forms. Normally, a

modification occurs not only by adding prefixes or postfixes but may be by

other changes.

2. Syntax and semantic analysis:

A processor that carries out different functions primarily based on syntax

and semantic analysis. There are two uses of syntax analysis. One is to check

1



1.1 Natural language processing: Introduction

if a sentence is well-formed and the other is to break it into a structure that

gives syntactic relation between them. The same can be achieved by a parser

using a dictionary of word definitions and a set of syntax rules. A simple

lexicon has the syntactic category of every word, the rules are described by

the grammar which signify how they can unite phrases of various types.

3. Pragmatic analysis:

Interpreting the results of semantic analysis considering from the point of

view of a specific situation is called pragmatic analysis.

Figure 1.1: Steps of Natural Language Processing

2



1.2 Sentimental Analysis: Introduction

1.2 Sentimental Analysis:

Sentimental Analysis [11] is a method of opinion mining to extract information

about peoples views, opinions, sentiments towards an everyday happening things.

And an each individual have a different opinions on same topic. The sentiment

analysis task is technically more challenging but practically more useful. For ex-

ample, Businessmen always want to know about the public opinion regarding that

products and feedback from different customers. The customers also wants to

know the rating of that product which has given by other customers who had pur-

chased earlier, and marketers also prefer sentiment analysis because they wanted

to know the targeted customers.

With the major development in social networking (i.e., Facebook, Twitter,

LinkedIn, Stumble upon etc.,) on the Web, individuals and large associations are

concentrating on publics opinion for their decision making. The task of min-

ing opinion information on web sites is not easy; one because of vast number

of websites currently present and still populating and second because of lack of

standardized methodology to do the same. Moreover, the text corpora present

on websites constitute both useless and useful data that will be required for our

analysis. There is always a thin line between these kinds of data which always

add unnecessary overhead in analysis. The normal human reader will experience

issues distinguishing relevant sites and also summarizing information and opinions

in them.

Additionally, it is likewise realized that human analysis of content data is liable

to significant preferences, e.g., peoples regularly give more priority to opinions

that are reliable with their own preferences. There are other factors as well like

human mental capacity and physical limitation that make humans inept to analyze

large amount of data. Thus an automated opinion mining is required which will

eventually help humans in sentiment analysis.

3



1.3 Problem Statement Introduction

Figure 1.2: Classification of Sentiment Analysis

1.3 Problem Statement

Given a set of tweets containing multiple features and varied opinions, the objec-

tive is to extract expressions of opinion describing a target feature and classify it

as positive or negative.

1.4 Motivation

Sentiment analysis and opinion minion [14] is open research field with manifold

real life applications. Blogs, Forum, Twitter, Facebook and other resources on

internet are put to use by humans for expressing their opinions. The social media

has bought the people around the world closer; communication is one click away.

Before social media there was expensive short messaging service (SMS) provided

by telecommunication companies with domestic and international charges. Today

the short messaging has evolved from just sending messages to single person to

sending messages to multiple people at cheapest price. This service is provided

4



1.4 Motivation Introduction

by many websites but Twitter was the one which pioneered it. Today twitter has

hundreds of millions users who post nearly half a billions tweets every day i.e.

approximately thousands of tweets for every second. Tweets are not only posted

in English language but also in different local languages of the world. These data

are precious to business intelligence where the company wants to know ”why isnt

consumer buying our laptops? ”, ”why the competitors products are outselling

our products”. Thus a concrete system to process above mentioned queries is the

need of the hour.

The Consumers Perspective:

The feedback of sentiment analysis help consumer to make choices. Previously,

people would ask for the opinion of close friends, relatives to review a product.

But now with the presence of social media people expression internet [8]. This

information is useful for people who are seeking for reviews about a particular

product which will help them at taking at making a decision to buy a product.

These kind of decisions are generally binary in nature i.e., either the consumer

decide to buy it or he doesnt .User cannot make this decision by himself as he

would have to go through large volume of data. Hence, this process should be

automated with use of technology which will generate good and bad reviews, ul-

timately helping user in taking decision.

The Producers Perspective:

The decisions of consumers go hand in hand with the decisions of produc-

ers. While the consumers are busy sharing their opinions online the producers

are monitoring their behavior to take business decisions. This scenario create a

multi coupled system of consumers and producers where the nature of consumers

expenditure influence others consumers in making decision to buy products and

influence the producer to sell the product. The producer learns the trend in sales

5



1.5 Objective: Introduction

of products and services through opinion mining and reshapes its future business

plan. Products and services manifest their impression and usefulness through a

series of decisions by consumer and producer.

1.5 Objective:

Classify every tweet in either as positive sentiment or negative sentiment using

different Machine Learning techniques and check which classifier performs the

best.

1.6 Thesis Organization:

Chapter 1: In this chapter we talk about the jargon we are going to use and the

methods used in natural language processing after that we discuss about research

done on opinion mining.

Chapter 2: Sentiment analysis classification and preprocessing of twitter data.

Chapter 3: We use large number of training datasets of tweets to find polar-

ity by using machine learning techniques.

Chapter 4: In this chapter, we process the twitter dataset with feature of uni-

gram and bigram and test them with substantiated results that have been found

on twitter dataset. Finally we get results about which classifier is the best.

Chapter 5: We conclude the thesis and propose our future work based on this.

6



Chapter 2

Literature Survey

2.1 Sentiment Analysis classification:

1. Document-level of sentiment analysis:

Opinions are the expressions, sentiments or notions towards a component or

an event. Numerous data in net or gatherings permit individuals to express

their assessment as surveys and remarks. At the point when opinions are

communicated as surveys, rather than a straightforward Positive or Nega-

tive, recognizing the genuine opinions would require a subjective examination

of the words utilized as a part of the survey.

Opinions on a product will be not the same as one person to other person.

There are only two types of classes either Positive or negative .A legitimate

case: A thing review: ”I brought a new IPhone two days back. It is a good

phone. The touch screen is fast. The voice clarity is better. I essentially love

this phone”. The words which have been used to be utilized. The target

sentiments are measured utilizing the star or review framework, where 4 or

5 stars are sure and 1 or 2 stars are negative.

2. Sentence-level of sentiment analysis:

This method use to give useful data when we search because the polarity of

sentence will made perfect. In this level of sentiment analysis go through

those sentences which contain opinions and gives reviews as though it is

negative or positive.

7



2.1 Sentiment Analysis classification: Literature Survey

3. Aspect based sentiment analysis:

Document level and sentence level sentiment analysis functions admirably

when they allude to a single element. Then again, a great part of the time

people talk about components that have various points of view or qualities.

They will similarly have unmistakable sentiments about distinctive items

[16]. It frequently happens in thing review and dialog social affairs. A valid

example: ”I am a Nokia phone huge other. I like the look of the phone. The

screen is huge and clear. The camera is extraordinary. Nevertheless, there

is couple of downsides also; the battery life is not up-to the engraving and

access to Whatsapp is troublesome. ”Requesting the positive and negatives

of this review hides the vital information about the thing. In this way,

the Aspect based sentiment analysis focuses on the acknowledgement of all

reports within a given record and points to which the feelings.

4. Comparative sentiment analysis:

The users utilization to express diverse emotions on items or brands. Either

it may be same item or brand. The objective of comparative sentiment is to

discover supposition of relative sort sentence.

5. Sentiment lexicon acquisition: Sentimental analysis is a process which

utilizes data to find opinions and expressions of that data. In Sentiment

analysis, we will see two kinds of classes positive and negative [12]. Given a

statement: ”Auto X is superior to anything auto Y”. This statement doesnt

show which class is that statement falls in. Likewise, these sorts of sen-

tences/documents are analyzed using three systems: Manual methodology,

dictionary based approach and corpus-based approach.

� Manual Methodology: Its totally time taking process because we

cant retrieval the data is in positive or negative.

� Dictionary based approach: This approach utilizes sentiwordnet to

find the polarity of that sentence by POS tagging.

� Corpus-based approach: This process is a domain-specific senti-

8



2.2 POS Tagging Literature Survey

ment lexicon it is used to carry out the analysis. These are the diverse

approaches to investigate customer’s opinions and also to predict the

market value of a particular organization.

2.2 POS Tagging

POS Tagging is extremely valuable in Opinion Mining procedure [5]. When we

have to examine an document or a sentence first we need to concentrate the

subjective data from the record or that specific sentence. POS Tagging helps us

to find parts of speech of that word. Subsequent to extricating these words we can

perform different activities on these and we can reach a conclusion.POS Tagging

is done by utilizing the HMM model which used to tokenize and Tag the words

furthermore for naming elements.

The word in the content (or the sentence) is tagged utilizing a POS-tagger

with the goal that it appoints a name to every word, permitting the machine to

do something with it. It looks something like this:

Figure 2.1: POS Tagging

We take sentiment orientation (SO) of the examples are extracted. For instance

we may have taken: Amazing + Phone which is:

9



2.3 Twitter Dataset: Literature Survey

[JJ] + [NN] (or descriptive word took after by thing in human)

The inverse may be ”Repulsive” for instance. In this stage, the machines try

to arrange the words on an emotive scale (in a manner of speaking).

The normal Sentiment introduction of the considerable number of expressions

we assembled is processed. This permits the machine to say something like: ”By

and large individuals like the new iPhone” They prescribe it or ”For the most part

individuals hate the new iPhone” They don’t suggest it.

2.3 Twitter Dataset:

Micro blogging stages are utilized by distinctive individuals to express their opin-

ions about diverse themes, accordingly it is an important wellspring of individuals’

opinions.

� Twitter contains a gigantic number of content posts and it develops consis-

tently. The gathered corpus can be self-assertively huge.

� Twitter’s crowd fluctuates from normal clients to superstars, organization

delegates, lawmakers, and even nation presidents. Along these lines, it is

conceivable to gather content posts of clients from diverse social and intrigues

bunch.

� Twitter’s crowd is spoken to by clients from numerous nations. Despite the

fact that clients from U.S. are winning, it is conceivable to gather information

in diverse languages.

Writings containing positive opinions, for example, satisfaction, beguilement or

delight. Target messages that just express a certainty or don’t express any feelings

we perform an linguistic analysis of our corpus and we demonstrate to construct

a sentiment classifier that uses the gathered corpus as training data [6].

Given a message, order whether the message is of positive, negative, or impar-

tial sentiment. For messages passing on both a positive and negative sentiment,

whichever is the more grounded opinion ought to be chosen.

10



2.3 Twitter Dataset: Literature Survey

2.3.1 Sentence Weightage:

1. If a tweet consists of more than one sentence, we give more weightage to

sentences coming afterwards.

2. This is due to the tendency of most tweets to be conclusive in nature.

3. When testing it on small set of tweets, it improved accuracy by around 2.5%.

2.3.2 Hashtag

1. We plan to use the hash tags to get idea about the tweets

2. The hashtags are like this: #IndiabeatAus #FinallySuccessful and so on

3. These hashtags would be structured though not complete sentences

4. So, we would need to parse these tweets before processing

5. Hashtags like #happy, #good, #unhappy, etc give sufficient information

about the polarity of the tweets.

2.3.3 Abbreviations and Redundant/Repeated letters

1. Due to the easygoing way of Twitter dialect, a few words (as a rule conclu-

sion words) are incorrectly spelled or frequently over underscored because of

which the classifier may not quality polarity of this word (eg. loooooooove)

to the genuine word (eg.love) during training.

2. In words containing more than 3 occurrences of the same letter together,

these occurrences are supplanted with 2 occasions of the letter. eg. haaaaaaaappy

would be changed as haappy , goooooooood would be changed as great.

3. Created a rundown of regular and most prominent shortenings of most gen-

erally utilized.

11



2.4 Methodology Literature Survey

2.4 Methodology

1. Extract all the features from the given review In the absence of any prior

information about the domain of the review (in the form of untagged or

tagged data belonging to that domain), this will give a list of potential

features in that review which needs to be pruned to obtain the exact features.

Consider the review, I wonder how can any people like Max, given its pathetic

battery life, even though its multimedia features are not that bad. Here,

multimedia features and battery life are the exact features pertaining to the

mobile domain. But without any prior domain information, we can use an

approximate method to obtain a list of potential features that may include

other noisy features as well, example people. So this list needs to be pruned

to remove the noise and obtain the exact set of features.

2. Extract opinion words referring to the target feature The opinion words are

not only Adjectives like hate, love but also consist of other POS categories

like Nouns (terrorism), Verbs (terrify) and Adverbs (gratefully). A nave

method, like extracting the opinion words closest to the target feature, does

not work so well when the sentence has multiple features and distributed

emotions (as we will see later). In the example above, pathetic and not bad

are the opinion expressions referring to battery life and multimedia features

respectively.

3. Classify the extracted opinion words as positive or negative.

12



2.4 Methodology Literature Survey

Figure 2.2: Steps to extract polarity of tweets
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2.5 Sentiwordnet Literature Survey

2.5 Sentiwordnet

Sentiwordnet is a lexical asset of opinion mining .Sentiwordnet allots a synset of

word net in three scores: positive, negative, neutral. It extracts the parts of speech

of that words that going hand in hand with we see the separated words using POS

Tagging from substance documents containing customer reviews. In the following

figure the outline between number of reviews and number of words removed for

diverse number of reviews.

.

Figure 2.3: Sentiment of a word

14



Chapter 3

Proposed Work

3.1 Nave Bayes classifier

The basic dependency of Nave Bayes classifier [1] is that predictors are indepen-

dent. In case of very big data sets it is very easy to create a Nave Bayes model

without any iterative estimation of Parameters, which also performs very well

when compare to other advanced classification methods.

Bayes theorem can be computed by doing posterior probability, P(c—x), from

P(c), P(x), and P(x—c). Nave Bayes classifier assumes that the effect of the value

of a predictor (x) on a given class (c) does not depend on the values of remaining

predictors. This is also known as conditional independence.

P (c|x) =
P (x|c)P (c)

P (x)

P (c|x) = P (x1|c) ∗ P (x2|c) ∗ ....... ∗ P (xn|c) ∗ P (c)

1. P (c|x) is the posterior probability .

2. P(c) is the prior probability.

3. P (x|c) is the likelihood.

4. P(x) is the prior probability of predictor.

15



3.2 Multinomial Nave Bayes algorithm Proposed Work

Confusion Matrix:

Positive Negative

Positive 1577 423

Negative 329 1671

.

Accuracy : 81.21%

3.2 Multinomial Nave Bayes algorithm

Multinomial Nave Bayes [1] theorem is similar to nave Bayes algorithm except

for the part that it is implemented for multinomial distributed data, and is a

classic nave Bayes which is mainly used for text classification. While the simple

one models a document if some particular words are present or not, multinomial

one models based on the word counts and adjusts the underlying calculations to

deal with it. In this model, the attributes are positions of the text and words are

considered as values. Before doing this, we assume that the classification does not

depend on the position of the words and the similar parameters are used for each

position.

If in the training data, the feature and class value does not occur together, then

the probability estimate based on frequency will be zero. This results in problem

of wiping out information in remaining probabilities when they are multiples. So,

a new term called pseudo count is introduced which is a small-sample correction

in estimates so that, none of the probabilities is set to zero. This method to reg-

ularize Bayes is called as Laplace smoothing if pseudo count is one and lid stone

16



3.3 Decision Tree Proposed Work

smoothing otherwise. Normal assumptions while we deal with continue values that

are with each class are distributed according to a Gaussian distribution.

The probability distribution of some value given a class p(x = v|c) , can be

calculated by using v in the equation for a Normal distribution where µc and σ2
c

are parameters.. That is,

p(x = v|c) =
1√

2πσ2
c

e
− (v−µc)2

2σ2c

Confusion Matrix:

Positive Negative

Positive 1814 186

Negative 215 1785

.

Accuracy : 89.75%

3.3 Decision Tree

The main theme of decision tree [3] is used to characterization technique that pro-

duces tree structure where every node signifies a test on a trait worth and every

branch speaks to a result of the test. The tree leaves speak to the classes. The

figure demonstrates the choice tree assessed from our Training dataset utilized as

a part of the project. It shows the connections found in the Training dataset.

This method is quick unless the preparation information is substantial. It doesn’t

give any suspicions about the probability distribution of that particular data. The

17



3.3 Decision Tree Proposed Work

procedure of building the tree is called induction.

Building a Decision Tree:

The decision tree algorithm is a top-down greedy algorithm which means to man-

ufacture a tree that has leaves as homogenous as could reasonably be expected.

The real step in the algorithm is to keep isolating leaves that are not homogeneous

into leaves that are as homogeneous as could be expected under the circumstances

until no further division is conceivable. The algorithm is:

1. In the event that a percentage of the traits are ceaseless esteemed, they

ought to be discretized into classifications.

2. If the training dataset occurs in same class, then the event will stop.

3. Part the following node by selecting an attribute from the independent at-

tributes that best partitions the articles in the node into subsets and make

decision tree.

4. Part the node as indicated by the selected attribute chosen in the step 3.

Stop if any of the accompanying conditions meets, generally proceed with

step 3:

Confusion Matrix:

Positive Negative

Positive 1654 346

Negative 305 1695

18



3.4 SVM Classifier Proposed Work

.

Accuracy : 80.08%

3.4 SVM Classifier

SVM [2]classifies the information into two different classes which is separated by

hyper plane and the classes are either may be positive or negative. Classifying

the information is a machine learning task. If a given data is in one of the two

classes then we need to decide which class will be fitted by new data point. SVM

with largest margin is better one . The points which are closest to hyper plane is

support vector.

This figure shows linear classification, with + indicating data points of type 1,

Figure 3.1: SVM Hyperplane

and indicating data points of type 0. The datasets that we have used cannot be

classified using linear classifier. Nonlinear classifier with Gaussian kernel is used.

Confusion Matrix:

19



3.4 SVM Classifier Proposed Work

Positive Negative

Positive 1893 107

Negative 205 1885

.

Accuracy : 94.45%

20



Chapter 4

Results

Naive Bayes Classifier

Unigram Unigram + POS Bigram Bigram + POS

Positive Negative Positive Negative Positive Negative Positive Negative

Positive 1577 423 1528 472 1464 536 1408 592

Negative 329 1671 390 1610 477 1523 507 1493

Accuracy 81.21 78.45 74.67 72.25

Confusion Matrix constructed by Naive Bayes Classifier

The trained data set which have been classified by Naive bayes classifier and the

test corpora with features of unigram and bigram by performing POS tagging it

shows a better result at unigram model with Naive Bayes classifier .Naive Bayes

Classifier is basic approach of Machine Learning Techniques.

21



Results

Multinomial Naive Bayes Classifier

Unigram Unigram + POS Bigram Bigram + POS

Positive Negative Positive Negative Positive Negative Positive Negative

Positive 1867 123 1814 186 1606 394 1586 414

Negative 197 1803 305 1695 477 1523 522 1478

Accuracy 91.75 89.97 78.22 76.6

Table 4.1: Confusion Matrix constructed by Multinomial Naive Bayes Classifier

Multinomial Nave Bayes theorem is similar to nave Bayes algorithm except for

the part that it is implemented for multinomial distributed Naive Bayes Classifier

is classified by a trained data set .The features used here is uni-gram and bi-gram.

By performing classification it Shows better result than Naive Bayes classifier and

uni-gram feature shows a better result in it.
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Results

Decision Tree Classifier

Unigram Unigram + POS Bigram Bigram + POS

Positive Negative Positive Negative Positive Negative Positive Negative

Positive 1654 346 1474 526 1424 576 1378 622

Negative 305 1695 417 1583 502 1498 547 1453

Accuracy 80.08 76.42 73.05 70.75

Table 4.2: Confusion Matrix constructed by Decision Tree Classifier

Decision Tree is used in characterization technique that produces tree structure

where every node signifies a test on a trait worth and every branch speaks to a

result of the test.Decision tree classifier produces the intermediate results when

compared to Naive Bayes , Multinomial Naive Bayes algorithm.

23



Results

Support Vector Machine Classifier

Unigram Unigram + POS Bigram Bigram + POS

Positive Negative Positive Negative Positive Negative Positive Negative

Positive 1893 107 1767 233 1628 372 1543 457

Negative 205 1885 237 1763 292 1708 382 1618

Accuracy 94.45 88.25 83.42 79.05

Table 4.3: Confusion Matrix constructed by SVM Classifier

SVM classifier which classifies the classes in two either positive or negative.When

a training dataset is Trained by SVM Classifier.The features used here is Uni-

gram,Bigram in which SVM classifier outperforms the rest of classifiers.
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Chapter 5

Conclusion and Future Work

Opinion mining is an area in which an enormous volume of data which is generated

by person to person communication. Sentiment analysis has different applications

such as customer feedback and marketing. With the assistance of opinion mining,

organizations can evaluate their market in public and also they learn what are

the necessary changes required to make for next product up gradation. And also

techniques to make strategies on their item. People can likewise utilize opinion

mining for purchasing the product which they haven’t used as they will prefer

reviews and sentiments of that product before they purchase. In this thesis, we

have utilized managed machine learning techniques such as Naive Bayes classifier,

multinomial naive Bayes classifier, decision tree, SVM classifier to know the sen-

timent of that sentence. Unigram and bigram with substantiated results has been

found on twitter dataset, 4000 tweets have been used. By using these classification

techniques its been concluded that SVM will outperforms other classifiers till date

and it is best used classifier.

It is exceptionally hard to recognize objective and subjective data, a large

opinionated words likewise happen in target sentences, so it is extremely difficult

to handle these challenges. Ordinarily we see peoples posting the surveys in the

blogs or forums with tons of spelling mistakes which our word reference can’t

discover them and bringing about less exactness of sought yield. Along these

lines, part of work must be done in this field for recognizing spam online, word

sense disambiguation.
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