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ABSTRACT 
 

 

FRP composites are the most promising and reliable materials in today’s world. Their 

outstanding properties make them unique and distinct. Apart from many advantages, during 

application, they start degrading when exposed to harsh environmental condition like 

elevated temperature. Hybridising a composite using two different reinforcements has proved 

to be a method for improving their performance in such conditions. Present study aims at 

evaluating the mechanical performance of GFRP and Glass/Carbon/epoxy (G/C hybrid) 

composites at ambient and in-situ elevated conditions. When tested for in-situ at +70 
o
C and 

+100 
o
C, significant reduction in inter-laminar shear strength (ILSS) was observed for both 

the composites as compared to that at room temperature. The ILSS of G/C hybrid was found 

out to be 28.2 % more than that of GFRP at room temperature, which became nearly equal 

for both the composite systems when tested at +100 
o
C and thus the fiber hybridisation effect 

was completely diminished. On the other hand, incorporation of carbon nanotubes (CNTs) in 

epoxy resin has also caused drastic improvement in strength over conventional GFRP. In the 

present study, epoxy of GFRP composite was modified with 0.1wt. %, 0.3 wt. % and 0.5 wt. 

% of CNT and laminates were fabricated. Testing was done for these composites at room 

temperature, 70 
o
C, 90 

o
C and 110 

o
C. Composite with 0.1 wt. % CNT showed the maximum 

increment in strength by 32.74 % over GFRP at room temperature. Decrease in flexural 

properties was noted at elevated temperatures for all the composites. Composite with 0.3 wt. 

% CNT showed the maximum strength at 70 
o
C and 90 

o
C among all the fabricated 

composites. It was found that testing near glass transition temperature caused high reduction 

in properties and also confirms the ineffectiveness of hybridisation at such temperature. 

 

 

Keywords: FRP composite; Elevated temperature; Carbon nanotube; Flexural performance; 

hybrid composite; Fractography. 
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1.1 Introduction to Composites 

Composite is a judicious combination of two or more distinct materials, whose combination 

produces a synergistic effect. The constituents do not lose their individual identities and are 

separated by an interface. Composites have presently become one of the essential materials in 

present industrial world. They provide promising mechanical properties like low density, 

high strength to weight ratio, greater wear and corrosion resistance than conventional 

materials and many more. The major two phases include (a) Matrix phase and (b) Dispersed 

phase i.e. reinforcement. Matrix phase is the primary phase which is soft and ductile while 

the dispersed phase is the secondary phase (stronger than matrix) embedded in matrix. 

Composites can be divided on basis of matrix phase as Metal Matrix Composites (MMCs), 

Polymer Matrix Composites (PMCs) and Ceramic Matrix Composites (CMCs) as shown in 

figure 1.1. Composites are also classified on the basis of Reinforcement as (1) Particulate 

composite, (2) Fibrous composites and (3) Laminated composites. 

  

 

 

 

 

 

 

 

 

 

Figure 1.1: Types of Composites. 

1.2 Fiber reinforced Polymer (FRP) composite 
 

Fiber reinforced polymer composites are composites which consists of fibrous reinforcement 

along with a soft and ductile matrix resin. These composites find application in Aerospace 

structures, Marine equipment, parts of Automobile bodies, biomedical applications, Sporting 

goods, structural applications, etc. The commonly used matrix and fibers for PMCs include 

Epoxy and Glass/Carbon/Kevlar respectively. The methods for fabricating the composites are 

Hand Lay-Up method, Bag Moulding Process, Pultrusion, Filament Winding, Preformed 

Composite 

Metal Matrix Composite Polymer Matrix composite Ceramic Matrix composite 

 

Conventional composites 

 

E.g. GFRP, CFRP, KFRP 

 

 

Hybrid composites 

 

E.g. G/C, G/K hybrid, Nano    

reinforced polymer composites 
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Moulding Compounds, Resin Transfer Moulding, Injection Moulding etc. Among these the 

most common method for fabricating the PMC is the Hand Lay-Up Process.  

 

Another class of composite used presently is Hybrid composite. In hybrid composites there is 

either incorporation of two or more types of fibers or using nano fillers with matrix i.e. either 

fiber hybridisation or matrix hybridisation respectively. The behaviour of a hybrid composite 

will be the weighted average of the individual components. Using hybrid composites with 

two or more types of fibers, the lack of properties in one fiber can be complemented with the 

other fibers. For example using Glass fiber reinforced Polymer (GFRP) composite can result 

in a soft laminate as compared to the Carbon fiber reinforced Polymer (CFRP) composite due 

to the high strength of carbon fibers. Hence in hybrid composite we use glass and carbon 

fibers both for appropriate properties. Likewise CFRP composite has a less impact resistance 

as compared to GFRP composite. Here as the carbon fiber is costlier than glass fiber, a 

balance among performance and economy of the obtained composite should be maintained. 

Proper material design can lead to an improved composite. The types of hybrid composites 

include (1) Interply or tow by tow hybrid, (2) Sandwich hybrids, (3) Laminated hybrids, (4) 

Intimately mixed hybrids and (5) Intraply laminated. The judicious designing of hybrid 

composites result in a good balance of properties along with incurred cost. 

1.3 Reinforcements 
 

In fibrous form, many materials are recorded to be stiffer and stronger than their bulk form. 

This fibrous shape leads to easy and effective transfer of load through matrix while providing 

more contact area. Reinforcements are generally the stiff and hard phase of an FRP 

composite. On application of load, reinforcements serve as major load carriers in bulk 

composite. The fibers used in fabrication of conventional composites and hybrid composites 

are listed below: 

a) Glass fibers 

b) Carbon fibers 

1.3.1 Glass fibers 

Glass fibers are based on silica (SiO2) with additives like boron oxide, sodium, aluminium, 

calcium, and iron. In spite of being amorphous, minor amount of  crystallisation can occur 

after heating it at high temperature for long time. This results in reduction in strength. The 
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appearance of E-glass fibers is as shown in figure 1.2 (a). Below mentioned 3 types of glass 

fibers which are popularly used: 

1. E (Electrical)-glass fibers: It is used in electrical applications due to its insulating 

nature. It has good strength, stiffness, electrical and weathering properties. It also 

possesses good resistance to heat and electricity. 

2. C (Corrosion)-glass fibers: It is calcium borosilicate glass, which has very high 

resistance to corrosion and is used mostly in acid and corrosive environments. 

3. S (Strength)-glass fibers: It is magnesium alumina silicate glass, which has high 

strength, high young’s modulus and high temperature resistance. 

 

Figure1.2: (a) E-glass fiber and (b) Carbon fiber. 

1.3.2 Carbon fibers 

Carbon fibres are the most expensive of the widely used reinforcements. Its excellent 

performance in space application along with its low density makes the cost a secondary 

factor. Carbon fibres consist of small amount of crystallinity along with graphite. In a 

graphite crystal, the carbon atoms are arranged in a hexagonal arrangement and strong 

covalent bonds are responsible for this binding. Weak Vander-waal forces are acting among 

the atoms in the basal plane. Therefore they are highly anisotropic. The modulus in the basal 

plane axis is 100 GPa as compared to the modulus in perpendicular plane i.e. 75 GPa. Thus it 

is beneficial if the basal planes are oriented parallel to the fiber axis. The coefficient of 

thermal expansion is very less as compared to glass and aramid fibers. They show very less 

strain to failure due to their high modulus. The appearance of carbon fibers is as shown in 

figure 1.2 (b). 

1.4 Nano-reinforcement 

Carbon nanotube (CNT) is one among the most widely used nano-fillers in current time. Its 

unparalleled characteristics like high specific strength, high stiffness, high resilience etc. 
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make it the most widely used nano-reinforcement. The tensile strength of CNT is between 

200 and 500 GPa and the Young’s modulus is more than 1.0 TPa. As a result, CNTs are 

utilized for the development of new material systems, particularly, structural nano 

composites. On adding carbon nanotubes in composites, the mechanism of bridging restricts 

the growth and propagation of crack and improves the toughness of the material. Moreover, 

during fiber pull-out high increase in fracture energy can be due to the enhanced interface 

area. Moreover, the weaker strength van der Waals forces at the interfaces could result in 

slippage at interface which can thereby result in inefficient transfer of load to fibres via the 

matrix and prevent attainment of high strength in composites. Incorporating very low amount 

of fillers of the size of nanometres significantly increases matrix properties by effectively 

transferring load at the interface. CNT also has a plasticization effect on polymers by 

increasing its free volume and hence lowering the glass transition temperature.  

 

Figure 1.3: Types of Carbon nanotubes (CNT) (A) Single walled CNT and (B) Multiwalled 

CNT. 

1.5 Matrix 

The matrix is the continuous phase of a composite. The chief purpose of matrix is to hold the 

reinforcement together and also provide the path for transfer of load to the reinforcing phase. 

The matrix also acts as a protection to save the reinforcement from abrasive wear, 

environmental contamination and other damages. The most commonly used matrix materials 

are polymer matrix, metal matrix and ceramic matrix. 

1.5.1 Polymer matrix  

Polymer is an organic material which is composed of repetition of monomeric chains. The 

repeating chains mainly consist of carbon, hydrogen and oxygen. Their properties include 

low modulus, low strength, high moisture susceptibility and a low temperature tolerance.  
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There are two types of polymer matrices used  

 Thermoset polymer 

 Thermoplastic polymer 

1.5.1.1 Thermoset polymer 

They are made from semisolid or liquid precursors, which undergo polymerisation or even 

curing when it is heated to high temperature. The final polymer obtained is a very hard solid. 

This hardening obtained is due to the formation of crosslinks in the polymer. These 

polymeric chains further form 3D network and hardens it. Common use polymers are 

epoxies, polyesters, phenolic resins, vinyl ester, etc. 

1.5.1.2 Thermoplastic polymer 

These polymers get soft on heating and harden on cooling. They possess amorphous structure 

where there is disorder/random arrangement of polymeric chains. They are mostly preferred 

in the application where forming is to be done by the liquid flow of it at high temperature. 

Commonly used thermoplastic polymers include polystyrene, polyethylene, PMMA, etc. 

1.5.2 Epoxy 

It is the most commonly used matrix material (polymer) that. It is available ranging from low 

viscous liquids to solids of high melting point and can be modified to a wide range for use. It 

offers high strength, easy and rapid curing by different of curing agents, low shrinkage, better 

electric insulation, etc. These are the properties which make them suitable for use in 

composites. The widely used epoxy is termed as diglycidyl ether of bisphenol A (DGEBA). 

The chemical structure is as shown in figure 1.4. 

 

Figure 1.4: Chemical structure of Epoxy. 

1.6 Applications of FRP composites 

FRP composites are most widely used materials in today’s industries due to its many desired 

properties like low weight to strength ratio, high corrosion resistance, high wear resistance, 
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high strength and stiffness, high impact resistance, high fatigue resistance, etc. They are 

generally used in structural, aerospace and various engineering applications. Low density 

property of these composites is well utilised in applications like automobiles, space crafts, 

boat hulls, sporting goods, etc. Their non-corrosiveness property is beneficial in applications 

like marine, sea water exposure, high humid environment, chemical storage tanks, pressure 

vessels, etc. Few applications are shown below in figure 1.5. 

 

     

     

Figure 1.5: Applications of FRP composites. 

1.7 Limitations of FRP composites 

FRP made components and structures are normally exposed to various environmental 

conditions like high temperature, low temperature, humid climate, alkaline environment, 

etc.[1–5] and can be more perilous if continuous cyclic variation of temperature occurs like 

thermal spike, low earth orbit space environment and hygrothermal exposure [6]. These 

composites are more subtle to environmental damage. The interface is the most important and 

critical part of composites and it administers the behaviour of these composites The most 

common mode of failure found at interface includes fiber/matrix debonding. A high 

differential thermal expansion coefficient between matrix and fibers can lead to different 



8 
 

expansion at elevated and thus leading to interfacial debonding. Thus debonding is the 

common culprit in reducing the ILSS of the composite [7,8]. While at low temperature, 

polymer matrix exhibits brittle manner and avoids the internal residual stress removal or 

stress concentration. Large debonding at the interface can be because of these residual 

stresses induced in the matrix at low temperature. Interface is also badly affected by presence 

of moisture. This moisture at interface can alter the chemical reactions occurring at it and 

thus affects the mechanical performance of the composite in bulk level.  

1.8 Objectives of the present research work 
 

 Present work focuses on understanding the behaviour and evaluating the mechanical 

performance of Glass/epoxy (GE) composite and Glass/Carbon/epoxy (G/C) hybrid 

composite at elevated temperatures [Chapter 2]. 

 Fabrication of GE composite and GCE composite was done by hand layup process. 

Interlaminar shear strength (ILSS) of samples was assessed at elevated temperatures. 

 Finally determination of failure modes was undertaken using Scanning Electron 

Microscope (SEM). 

 Further, hybridization was done using carbon nanotubes (CNTs) in epoxy resin and 

fabrication of nanophased glass/epoxy composite (CNT-GE composite) was done. 

Flexural performance was evaluated for both GE and CNT-GE composites at various 

elevated temperatures [Chapter 3]. 

 Failure mechanisms of the fractured samples were identified using SEM. 
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Hybrids composite are those which include two or more types of reinforcements or 

hybridization matrix with some nano reinforcement. The concept in fabricating them is to 

take positive effects from both the reinforcements [1–4]. Glass fibers possess low strength, 

low modulus and a high strain to failure as compared to carbon fibers. They are less costly 

than carbon fibers. Carbon fibers possess high strength, high modulus but a lower strain to 

failure as compared to glass fibers. Hence for obtaining optimum strength, modulus and 

strain to failure, hybridization of carbon fibers in GE composite should be done to improve 

the mechanical performance and also economic consideration. It is thus economical to keep 

balance between the performance and the cost of the overall composite because of high cost 

and low failure strain of carbon fiber.  

2.1 Literature Survey 

Wang et al. [5] tested the CFRP plates at steady and transient states. The range of temperature 

was 20 to 700 °C. It was obtained that in the range of 20–150 °C and 450–706 °C, decrease 

in tensile strength of the CFRP plate was noted. Little drop in tensile strength was observed 

in these range. But at 300 °C, the ultimate strength was noted to be half of its strength at 

room temperature. Also at 700 °C, the tensile strength was 7% of the tensile strength at 

ambient. 

 

Figure 2.1: Stress-displacement relationship for CFRP. 

Hanson [6] experimentally determined the strength and creep characteristics of PRD49 fiber 

in epoxy. Tensile strength properties were generally retained to 450 K (350 F); however, at 

477 K (400° F), the tensile strength was about 73 percent of that at 297 K (75° F). The tensile 

modulus showed no significant change at elevated temperatures; however, at 20 K (-423° F), 
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the modulus increased by about 40 percent as compared to the modulus at 297 K (75° F). In 

creep testing, the PRD49 fiber experienced an accelerated primary creep followed by a much 

lower secondary creep rate. At room temperature, the fiber exhibited a low secondary creep 

rate and sustained a tensile stress of about 80 percent of the ultimate tensile strength for 1000 

hours without failure. Humidity caused a minor effect on creep behaviour of the fiber. 

Birger et al. [7] analysed the failure mechanism of thermally aged samples and concluded 

that aging of composites at high temperature is affecting both the mechanical as well as 

physical properties. FRPs are very sensitive to change in temperature due to the different 

expansion of matrix and fiber. Hence this leads to development of thermal stresses in the 

composite. These thermal stresses can be released on the cost of crack formation in the matrix 

and sometimes it may result in fiber failure. It was observed that there was reduction in shear 

strength and flexural strength due to thermal aging. Weakening of the interface takes place. 

As the time of aging increased, the failure transitioned from ductile appearance to more 

brittle appearance. 

 

Figure 2.2: Variation in tensile strength with span to depth ratio for various dry thermal 

aging conditions. 

Cao et al. [8] evaluated  the tensile performance of CFRP, hybrid C/GFRP and hybrid 

C/BFRP composites in the range of 16 
o
C to 200 

o
C. Reduction in tensile strength was 

observed as the temperature was elevated to glass transition temperature. Wang et al. [9] 

demonstrated the mechanical performance of steel reinforcing bars at elevated temperatures 

and inferred that 350
 o

C temperature was found to be perilous temperature for FRP bars. At 

such temperature, reduction in strength for GFRP and CFRP composite bars by 45 % and 35 
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% respectively was noted as compared to their ambient strength.  Also the resin of GFRP bar 

got ignited at temperature of 500 
o
C. 

 

Figure 2.3: Evaluation of average tensile strength ratios with changing fiber system. 

Sayer et al. [10] experimentally investigated impact performance of hybrid composite 

laminates and found the following: Delamination and minor matrix cracking were observed 

on glass fiber and while there was matrix breaking and indentation on carbon fiber surface. 

On increase of impact energy, the major mode of failure observed was fiber fracture. The 

impact sustainability of CG hybrid composite was found to be less than that of GC hybrid 

composite. Hence the excessive energy is more for CG than GC. The perforation threshold 

also increased by few values on increasing thickness of carbon fiber [10]. 

 

Figure 2.4: Impact properties of hybrid composites. 
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Ghasemnejad et al. [11] improved impact property of single and multi-delaminated FRP 

composites by using natural Flax yarn as the reinforcement. 

From the above literatures, it can be noted that hybridisation of FRP composites has a 

beneficial effect on performance at room temperature and elevated temperature. Hence the 

objective of this study is to evaluate the mechanical performance of G/C composite (glass and 

carbon fibers are alternately stacked in the laminate) in room and elevated temperature 

environments.  

2.2 Materials 

Below mentioned materials were required for fabricating conventional GE composite as well 

as GCE composite. 

1. Plain weave woven fabric E-glass fibers (FGP, RO-10) as reinforcement  

2. Plain weave woven fabric carbon fibers (TC-33) as reinforcement. 

3. Epoxy resin (Lapox, L-12) based on Bisphenol A as matrix. 

4. Triethylene tetra amine (TETA) (K6-primary amine) as hardener. 

Table 2.1: Properties of constituents 

Material  Tensile strength Young’s Modulus  Density 

 
  (MPa) (GPa)        (g/cc) 

E-glass 

fibers 

 

 2000 80  2.58 

Carbon 
fiber 

 2900 525  1.85 

      Epoxy  85 3.5  1.2 

2.3 Experimental procedure 

E-Glass fibers sheets/layers were cut from the fiber roll in the size of 25 cm x 25 cm. 14 

layers of this size were weighed using a digital weighing machine. For fabricating 

glass/epoxy laminate, 60 wt. % glass fibers and 40 wt. % epoxy resin was taken. Hardener 

was taken about 10 wt. % of epoxy. The laminate was prepared by hand lay-up process and 

was followed by curing in a compression press at 60
o
C for 20 minutes with the applied 

pressure of 10 kg/cm
2
. The cured laminate was cut for Short beam shear test as per the ASTM 

D2344-84 standard with the help of Diamond cutter. The samples were dried in an oven for 3 
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hr maintaining 50
o
C to remove moisture and other volatile entities. Specimens were then post 

cured at 140
o
C for 6 hr [12]. 

 

Other batch of samples was obtained by fabricating hybrid glass/carbon epoxy composite. 5 

sheets of woven E-glass fibers (0.3 weight fraction) and 4 sheets of woven carbon fibers (0.3 

weight fraction) were cut in 25cm x 25cm size. They were weighed using a digital weighing 

machine. Glass/carbon/epoxy (G/C hybrid) composite was fabricated using alternate stalking 

sequence of glass and carbon fiber (keeping glass fiber at both ends). Diamine hardener was 

taken about 10 % weight of epoxy. The hybrid laminate was prepared by hand lay-up 

method. The laminate was then cured in compression moulding hydraulic press at 60
o
C for 

20 minutes with pressure of 10 kg/cm
2
. The cured laminate was cut for Short beam shear test 

as per the ASTM D2344-84 standard with the help of Diamond cutter. The samples (as 

shown in figure 2.5 (a, b)) were dried in an oven for 3 hr maintaining 50
o
C to remove 

moisture and other volatile entities. Specimens were then post cured at 140
o
C for 6 hr [12]. 

2.4 Material characterization 

2.4.1 Short Beam Shear (SBS) test.  

The SBS  test was carried out in environmental chamber of UTM (Instron 5967) using 3 point 

bend fixture as shown in figure 2.5 (c)) to find apparent ILSS of the standard samples. In-situ 

testing of samples was done at 70
o
C and 100

o
C with the holding time of 10 minutes. Also, 

ex-situ conditioning of samples was done at 70
o
C and 100

o
C for 60 hrs. in an oven. The 

samples were tested after they were furnace cooled to room temperature. The loading rate 

was set to 1 mm/min. 

     

Figure 2.5: (a) GFRP samples, (b) G/C hybrid samples and (c) 3 point bend fixture. 
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2.4.2 Fractographic analysis 

The fractured samples were further analysed to identify the failure modes and understand the 

mechanisms behind failure of the composite. This was done using JEOL-JSM 6480 LVSEM 

operated at 20KV. 

2.5 Results and discussion 

2.5.1 In-situ high temperature testing 

        

 

Figure 2.6: Variation in ILSS with (a) in-situ testing temperature for GFRP and G/C hybrid 

samples and (b) ex-situ conditioning temperature for GFRP and G/C hybrid samples. 

It can be seen from figure 2.6 (a) that there is decrement in ILSS of GFRP at 70
o
C and 100

o
C 

by 18.9 % and 40 % respectively as compared to that at room temperature. This decrease was 

27 % and 56 % at 70
o
C and 100

o
C respectively for G/C hybrid composite. Due to different 

degree of expansion for epoxy and reinforcement, thermal residual stresses are induced in the 

matrix at elevated temperatures. This difference in expansion will lead to generation of micro 

cracks and voids at the interface as well as in the matrix. On application of load, these micro 

cracks coalescence together and generate a major crack. This crack may be the cause of 

decreased performance of the composite. The ILSS of G/C hybrid was noted to be increased 

by 28.2 % over GFRP at room temperature. This increased strength is due to presence of 

carbon fibers (high strength and stiffness) in the composite. Also the bond between carbon 

fibers and epoxy is much stronger than bond between glass fibers and epoxy. The ILSS of 

both the composite systems were nearly equal at testing temperature of 100
o
C. The glass 
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transition temperature of epoxy resin is nearly 110 
o
C. Hence testing near this temperature 

will soften the matrix and thus the effectiveness of load transfer will reduce. Thus the 

performance of the composite will be governed totally by the matrix and hybridising effect 

will be found diminishing at such temperature. 

 

Figure 2.7: Flexural stress vs. strain curves for GFRP and G/C hybrid at (a) room 

temperature and (b) 70 
o
C. 

Figure 2.7 shows the flexural stress vs. strain curves for GFRP and G/C hybrid composites 

tested at ambient and 70 
o
C. It is seen that the curves at 70 

o
C shows more ductile nature 

than that at room temperature.  

2.5.2 Ex-situ high temperature conditioning 

It can be seen from figure 2.6 (b) that testing of GFRP at 70
o
C and 100

o
C caused decrement 

in ILSS by 11.8 % and 21.5 % respectively over ILSS at room temperature. The decrement in 

ILSS for G/C hybrid was 0.05 % and 17 % at 70
o
C and 100

o
C respectively as compared to 

ambient ILSS. As the bonding between carbon fibers and epoxy is stronger than the bonding 

between glass fibers and epoxy, so the G/C hybrid exhibits high strength. The interface 

between glass fibers and epoxy degrades at a higher rate as compared to carbon fiber/epoxy. 

Hence this may be the cause of generation of cracks at the interface after certain time of 

conditioning. 

2.6 Fractographic analysis 

To identify and understand various mechanisms responsible for failure of the composite, it is 

analysed under SEM. Figure 2.8 (a) it is evident that GFRP showed large amount of 

fiber/matrix debonding when tested at ambient. This debonding further may have resulted in 
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separation of fibers from matrix. Thus due to this, imprints of fibers were observed on the 

matrix surface. The figure 2.8 (b) is a clear indicative of high cohesive bonding between 

carbon fiber and epoxy. The figure indicates that the interface was too strong to initiate 

failure and finally the failure initiated at a distance away from interface i.e. in the matrix. 

Thus this can be ascribed to the high ILSS of hybrid as compared to GFRP composite.  

It is seen from figure 2.9 (a) that for GFRP composite at +70
o
C formation of voids take place 

as a result of coalescence of micro-voids. Little epoxy adherents are observed on fiber 

surfaces in case of G/C hybrid tested at 70 
o
C as shown in figure 2.9 (b). This separation 

between fiber and matrix is a clear indicative of poor performance at elevated temperature.  

                           

Figure 2.8:  SEM images of room temperature tested (a) GFRP and (b) G/C hybrid 

composite. 

 

Figure 2.9: SEM images of in-situ tested (a) GFRP and (b) G/C hybrid composite at 70
o
C. 
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2.7 Conclusion 
 

. The following inferences can be made from the present investigation.  

 

 At room temperature G/C hybrid shows better interlaminar property as compared to 

GFRP. But as the testing temperature increases, G/C hybrid degrades at a higher rate than 

GFRP.  The ILSS of both the composite systems were nearly equal at testing temperature 

of 100
o
C. Hence testing near this temperature i.e. the glass transition temperature of 

epoxy, softening of matrix will take place and would further reduce the effectiveness in 

transferring load to the fibers. It can be concluded that behaviour of composite will be 

only matrix dependent when the testing temperature is near glass transition temperature of 

matrix used. 

 

 During in-situ elevated temperature testing, the matrix attains glassy characteristics and 

starts softening. This soft matrix will not be able to transfer load/stress efficiently and 

hence low ILSS will be attained. On the other hand, ex-situ conditioning is less perilous 

than in-situ testing. Here after getting conditioned at elevated temperature, the sample is 

brought to room temperature. This will help the material to recover its original properties 

upon cooling from elevated temperature. Generation of micro-cracks and their coalescence 

may be the reason for decrease in ILSS.  
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CNTs are well acknowledged around the world due to its out throwing mechanical properties 

like high specific surface area, high strength, high stiffness, excellent electrical [1] and 

thermal properties, etc. [2–5]. The recent trend in the field of FRP composites involves 

incorporation of CNTs in composites to tailor the interface as per the need. As interface is the 

most important part in a composite, its modification is necessary to improve the final 

property of the composite. As the in-plane properties are fiber dominated, CNTs are 

incorporated in order to enhance the z-direction (or transverse) property of the composite. 

3.1 Literature Survey 

Jeelani et al. [6] fabricated and characterised multi-walled carbon nanotubes embedded 

carbon/epoxy composites. Ultrasonic cavitation was done to infuse CNTs in epoxy. They 

found that 0.3 % CNT addition in epoxy caused higher increment in tensile strength than neat 

epoxy and nano-systems. They also noticed improvement in flexural strength by 28.3 %, 

glass transition temperature by 2.4 
o
C and decomposition temperature. 

 

Figure 3.1: Variation in strength and modulus with weight % CNT. 

Rahman et al. [7] studied the improvements in flexural and visco elastic properties of 

functionalised MWCNTs incorporated glass/epoxy composites. 0.3 % CNTs was found 

optimum in improving mechanical and thermo mechanical properties. The flexural modulus, 

flexural strength and strain of 0.3 % MWCNT incorporated glass/epoxy composites was 

found to be enhanced by 21 %, 37 % and 21 % respectively over glass/epoxy samples. 

Thermal analysis showed that the storage modulus of 0.3% samples was increased by 41 %, 

loss modulus by 52 % and increase in glass transition temperature by 10 
o
C. Also this study 
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demonstrated that amino-functionalised MWCNTs can enhance the mechanical as well as 

thermo mechanical performance of glass/epoxy composite significantly. 

 

Figure 3.2: Variation in flexural strength and modulus with weight % of CNTs. 

 Kim et al. [8] evaluated surface modification effects on the mechanical and rheological 

properties of CNT/epoxy composites and demonstrated that plasma treated CNTs showed 

more improvement as compared to the other surface modification techniques. It was also 

noticed that the dispersion of surface modified CNTs in the matrix was very good and 

uniform as compared to the untreated CNTs and it also showed a good interfacial bonding 

with the resin. 

 

Figure 3.3: Stress vs. strain plots for epoxy and 1 wt. % CNT composites. 

Allaoui et al. [9] evaluated the electrical and mechanical performance of MWCNT embedded 

epoxy composites. Improvement in properties was noticed when epoxy was improved with 1 
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% and 4 wt. % of CNT. Young’s modulus and the yield strength of the 1 wt.% composite 

increased by 100 % and 200 % respectively over neat epoxy. Also the conductivity was 

increased on increasing the amount of CNT by 0–4 wt. %.due to percolation phenomenon. 

 

Figure 3.4: Tensile stress vs. strain curves for epoxy and nano composites. 

The above stated literatures show that the improvement in mechanical performance at room 

temperature is possible by incorporating nano reinforcement in the epoxy composites. But 

very less literature has evaluated the performance of these nano particle embedded FRP 

composite at elevated temperature. As FRP composites are prone to degrade under elevated 

temperature, study of these nano particle embedded FRP composite and identification of 

failure modes generating at elevated temperature is also essential. 

3.2 Materials 

Below mentioned materials were required for fabricating conventional polymer composites as 

well as hybrid polymer composites. 

1. Plain weave woven fabric E-glass fibers (FGP, RO-10) as reinforcement 

2. Epoxy resin (Lapox, L-12) based on Bisphenol A as matrix. 

3. Triethylene tetra amine (TETA) (K6-primary amine) as hardener. 

4. Multi-walled carbon nanotubes (Outer diameter 6-9 nm and length 5 µm) as nano 

reinforcement. 
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3.3 Experimental procedure 

3.3.1 Dispersion of MWCNT into epoxy resin 

Before commencing the fabrication of MWCNT embedded glass/epoxy (CNT-GE) 

composite, the epoxy resin was modified by incorporating MWCNT to it using below 

mentioned procedure. The amount of CNT in GE composite was varied as 0.1 wt. %, 0.3 wt. 

% and 0.5 wt. % of epoxy. Three different laminates were fabricated using these different 

CNT compositions. Required amount of CNT was dispersed in 150 mL of acetone. This 

suspension was agitated for half hour at 1000 rpm using magnetic stirrer. Sonication of this 

suspension was done for 30 minutes in an ultrasonicator. The purpose of stirring and 

sonication is to deagglomerate the existing agglomerates of CNTs. The figure 3.5 shows the 

process of stirring and sonication for dispersing CNT in acetone. This CNT/acetone mixture 

was added to pre-weighed epoxy, which was brought to sufficient fluidity by heating. 

Further, stirring of epoxy/CNT/acetone mixture was done at 1000 rpm for 2 hr at 70 °C. 

Sonication was thereafter again carried out at 70 °C for 1 hr. At this stage, evaporation of all 

acetone was made certain. The left epoxy/CNT suspension was kept in vacuum for 12 hr to 

aid in removal of air bubbles entrapped in the suspension.  

 

 

Figure 3.5: Dispersing CNT in acetone. 

3.3.2 Fabrication of Fiber reinforced nano-composites 

Sufficient amount of hardener (10 wt. % of epoxy) was blended and stirred properly in the 

epoxy/CNT suspension. Matrix and fibers were taken approximately in 1:1 proportion by 

weight. Fabrication of laminates was done by hand lay-up process using 14 layers of E-glass 
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fibres and the modified epoxy resin. Curing was done in a hot press at 60 °C with applied 

pressure of 10 kg/cm
2
 for 20 minutes. Similarly using the same parameters as used in CNT-

GE composite, the control glass fiber/epoxy (GE) composite laminate was fabricated using 

neat epoxy and 14 layers of glass fiber by hand lay-up method followed by hot pressing. The 

laminates were allowed to keep at room temperature for 24 hrs. Flexural (as per ASTM 

D7264) samples were cut from the prepared laminates with a diamond cutter. The samples 

were kept in oven at 140 °C for 6 hr for post-curing.  The methodology is shown in figure 

3.6. 

 

Figure 3.6: Experimental methodology of fabricating CNT incorporated GE composite. 
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3.4 Material characterization 

3.4.1 Mechanical characterization 

In-situ flexural testing of the samples was done at room temperature (20 °C), 70 °C, 90
o
C and 

110 °C (with a holding time of 10 minutes) with a 1 mm/min loading rate using the 3-point 

fixture of  UTM (Instron 5967) (as seen in figure 3.7) following ASTM D7264 standard.  

 

                             

Figure 3.7: Experimental chamber of UTM (Instron 5967). 

 

3.4.2 Fractographic analysis 

The post fractured samples were analysed to identify various damage and degradation micro-

mechanisms responsible for the bulk failure of the material using scanning electron 

microscope JEOL-JSM 6480 LVSEM operated at 20KV. 
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3.5 Results and discussion 

3.5.1 Flexural behaviour at various testing temperatures 

 

Figure 3.8: Stress vs. strain curves of GE and CNT-GE composites at (a) room temperature 

(20 
o
C), (b) 70 

o
C, (c) 90 

o
C and (d) 110 

o
C. 

The above figure 3.8 shows the stress vs. strain plots of GE composite and CNT (0.1%, 0.3% 

and 0.5%)-GE composites when tested at various in-situ testing temperatures i.e. at room 

temperature (20 
o
C), 70 

o
C, 90 

o
C and 110 

o
C.  

Figure 3.9 shows the variation in strength and modulus vs. wt. % of CNT. It can be seen that 

on incorporating CNTs, increment in flexural strength was noticed in its as fabricated 

condition. CNT (0.1%)-GE showed the maximum increment in strength of 32.74 % as 

compared to GE composite among all the composites fabricated. The reinforcement 

efficiency (i.e. the ratio of increment in strength over content of CNT ) noticed in this study 

was 1038 MPa per % CNT which came out to be quite near to the one obtained by Rahman et 

al. [7] when he fabricated glass/epoxy composite by fusing amino-functionalised CNTs in it. 

The reinforcement efficiency obtained was 1000 MPa per % CNT. The reason for this 

increased strength and modulus might be ascribed to the availability of high CNT/epoxy 
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interfacial area because of very high specific surface area of CNTs, thus leading to more 

load/stress transfer across interface. Thus, this results in requirement of more stress in 

breaking a specimen. On the contrary, CNT (0.3%)-GE composite and CNT (0.5%)-GE 

composite showed less strength as compared to CNT (0.1%)-GE composite. Due to high 

amount of CNTs, formation of CNT agglomerates takes place in the matrix. These 

agglomerates acts as stress enhancers and thus lower the stress required in breaking the 

sample. Hence results in less strength as compared to CNT (0.1%)-GE composite.  

 

Figure 3.9: Variation in (a) strength and (b) modulus with wt. % of CNT. 

In-situ testing at 70 
o
C and 90 

o
C caused decrease in strength of GE composite as well as all 

the CNT-GE composites. The reduction in strength for GE composite may be because of 

formation of micro-voids and micro cracks in matrix as well as at interface due to different 

co-efficient of thermal expansion of epoxy (6.2 × 10
-5

 K
−1

)  and E-glass fibers (5-12 × 10
−6

 

K
−1

) [10]. In addition to the glass fiber/epoxy interfacial area, CNT/epoxy interfacial area 

also exists in case of CNT-GE composites. Hence due to more interfacial area, more micro 

voids and micro-cracks are generated due to different thermal expansion co-efficients of CNT 

(0.73–1.49 × 10
-5

 K
−1

) [11], epoxy and glass fibers. The reduction in strength noticed at 70 
o
C 

for GE composite, CNT (0.3%)-GE composite and CNT (0.5%)-GE composite was 6.8 %, 

13.54 % and 14.91 % respectively as compared to as fabricated conditions. 

The maximum reduction in flexural strength by 35.38 % was observed in case of CNT 

(0.1%)-GE composite as compared to the strength in as fabricated condition. The reason may 

be ascribed to even distribution of CNTs in epoxy leading to more interfacial area as 

compared to CNT (0.3%)-GE and CNT (0.5%)-GE composites, where agglomerated decrease 

the interfacial area. Further at elevated temperature, micro cracks and voids generation sites 



30 
 

are more in CNT (0.1%)-GE due to more availability of interfacial area. Hence it shows the 

least strength among all the fabricated composites. 

At 90 
o
C, the maximum reduction in strength was noticed for CNT (0.1%)-GE composite and 

the reduction was by 43.14 %. The decrement in strength noticed at 90 
o
C for GE composite, 

CNT (0.3%)-GE composite and CNT (0.5%)-GE composite was 19.45 %, 28.81 % and 38.71 

% respectively as compared to as fabricated condition. 

 

Figure 3.10: Variation in (a) strength and (b) modulus with testing temperature. 

When the GE and CNT-GE samples were tested at 110 
o
C, very high reduction in strength 

was obtained. The maximum decrement in flexural strength by 87 % was noticed for CNT 

(0.1%)-GE composites as compared to as fabricated condition. As the samples are tested near 

the glass transition temperature of the matrix, very high softening of matrix occurs. This 

softening of matrix leads to huge decrement in strength. Also the cracks formed due to 

coalescence of micro-voids increase in number and result in overall decrement in strength for 

all the composites. The decrement in strength noticed at 110 
o
C for GE composite, CNT 

(0.3%)-GE composite and CNT (0.5%)-GE composite was 52.19 %, 87 % and 64.91 % 

respectively as compared to as fabricated condition.  

It can be visible from the figure 3.9 (b) that the modulus also has nearly followed the same 

trend as strength for both GE as well as CNT-GE composites at various testing temperatures. 

3.5.2 Constitutive flexural deformation model 

The deformation/failure of laminated composite is the result of a number of failure 

mechanisms like buckling, formation of shear cusps, kink bands, etc. this finally lead to  

failure modes like matrix cracking, fiber/matrix interfacial debonding, fiber fragmentation, 
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etc. The stress (σ) - strain (ε) relationship for a FRP composite can be modelled using 

Weibull distribution function [6,12]. 

       [  (
  

  
)
 

]         (1) 

Here, E represents flexural modulus.    and β represents scale and shape parameters 

respectively of Weibull function respectively.    is measure of nominal strength of the 

composite and β is measure of unpredictability in strength. To evaluate    and β, consider 

taking double log on both the side of equation 2. 

  *  (
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Equation 2 is an indicative of straight line between   (  ) and   *  (
  

 
)+, which can be seen 

from figure 3.11. The slope of this straight line gives the value of β and from the value of 

intercept and β,    can be determined. 

 

Figure 3.11: Weibull fitting of GE and CNT (0.3%)-GE composites at (a) room temperature, 

(b) 70 
o
C and (c) 110 

o
C. 
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Critical parameters of Weibull function for GE and CNT-GE composites are obtained from 

figure 3.11 and are reported in tables 3.1 and 3.2. 

Table-3.1: Shape (β) parameters for GE and CNT-GE composites at various temperatures 

Temperature 

(
o
C) 

GE CNT (0.1%)-GE CNT (0.3%)-GE CNT (0.5%)-GE 

20 2.52 2.48 2.38 2.34 

70 2.48 2.55 2.93 2.60 

90 2.79 2.19 1.94 2.19 

110 2.23 2.08 2.35 2.44 

 

Table-3.2: Scale parameter (σo) (MPa) for GE and CNT-GE composites at various 

temperatures 

Temperature 

(
o
C) 

GE CNT (0.1%)-GE CNT (0.3%)-GE CNT (0.5%)-GE 

20 663.69 845.75 813.77 769.16 

70 627.17 580.51 567.72 667.95 

90 522.94 533.77 652.56 503.32 

110 312.22 101.0 208.18 267.65 

 

The experimental and simulated stresses vs. strain plots were drawn for GE and CNT (0.1% and 

0.5%)-GE composite at room temperature and 90 
o
C using the data obtained from table 3.1 and 

3.2 as seen from figure 3.12. This figure indicates that the experimental data and the simulated 

results are in close agreement with each other. 

 

Figure 3.12: Comparison between experimental and simulates stress-strain relationship. 
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Figure 3.13 shows the variation in shape parameter and scale parameter with respect to 

testing temperature. It shows that the shape parameter has an irregular and a non-linear trend 

for all the composites and for all the testing temperatures. 

 

Figure 3.13: Variation in shape parameter and scale parameter with testing temperature. 

3.5.3 Thermal analysis using DSC 

From figure 3.14 it is observed that for as fabricated samples, on adding 0.1 % CNT in epoxy 

there was lowering in glass transition temperature (Tg) by 13
o
C as compared to control GE 

composite. This lowering in Tg may be due to entrapment of CNTs between polymer cross-

links chains and thus will give rise to increase in free volume. The uniform dispersion of 

CNTs in matrix of CNT (0.1%)-GE may be the reason of this entrapment. On further 

increasing the amount of CNT i.e. in case of 0.3 % and 0.5 %, agglomerates of CNT may 

form in the resin. These agglomerates, due to their micro size, may not be able to hinder the 

cross-link chains and restrict the mobility of matrix around these agglomerates. Thus this 

results in further increase in Tg.  

 

Figure 3.14: Variation in glass transition temperature with wt. % of CNT. 
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Also from the figure it can be seen that the Tg of CNT (0.1%)-GE composite is the lowest of 

all the composites fabricated. Homologous transition temperature i.e. T/Tg obtained for CNT 

(0.1%)-GE was the maximum among all and hence this also reflected the reason behind high 

strength of CNT (0.1%)-GE in as fabricated condition.  

3.6 Fractography  

The fractured surfaces of GE and CNT-GE composites were analysed under SEM to identify 

damage mechanisms responsible for the overall failure of the composites.  

Figure 3.15 shows the SEM micrographs of the fractured GE surface at (a) room temperature 

and (b) 110 
o
C. At room temperature it can be noticed that Delamination is the cause of 

failure of the composite. Delamination is generally occurring due to fiber/matrix debonding 

when the composite is undergoing application of load. But as the testing temperature is 

increased to 110 
o
C, riverlines markings are observed on the surface of matrix. These 

riverlines are formed due to soft behaviour of matrix. At this temperature i.e. near glass 

transition temperature of matrix, epoxy becomes soft and starts flowing. Thus it also reflects 

drastic reduction in strength at 110 
o
C (as evident from figure 3.9). 

 

Figure 3.15: SEM images of fractured surfaces of GE composite at (a) 20 °C and (b) 110 °C. 

Figure 3.16 shows SEM images of CNT-GE composite’s surface at (a) room temperature and 

(b) 110 
o
C. It is seen that at room temperature the failure mode observed in CNT (0.1)-GE 

composite was delamination. At 110 
o
C in addition to delamination, ply splitting is also 

observed in this composite. This delamination along with ply splitting will lower the strength 

and stiffness of the composite to a much high extend. This is also reflected from the figure 

3.9. 
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Figure 3.16: SEM images of fractured surfaces of CNT-GE at (a) 20 °C and (b) 110 °C. 

 

 

Figure 3.17: SEM images of fractured surfaces of (a) GE at 20 °C, (b) GE at 90 °C, (c) CNT 

(0.3%)-GE at 20 °C, and (d) CNT (0.3%)-GE at 90 °C. 

Fiber/matrix debonding is the main culprit for generation of delamination. It is shown here in 

figure 3.17 (a) for GE composite at 20 
o
C and (c) for CNT-GE at 20 

o
C. Apart from riverlines 
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marking, generation of micro voids are also observed in GE composite at 90 
o
C as shown in 

figure 3.17 (b). Extensive riverlines are visible on the surface of epoxy in case of CNT 

(0.3%)-GE at 90 
o
C. These lines as shown in figure 3.17 (d) will meet on load application and 

end in a potential crack. 

 

 

Figure 3.18:  Dispersion of CNT in CNT (0.1%)-GE composite. 

The uniform dispersion of CNTs in epoxy resin of CNT (0.1%)-GE composite is evident 

from figure 3.18. This even distribution of CNTs in matrix may hold the key for higher 

strength of this composite at room temperature as compared to all other composites 

fabricated.   

3.7 Conclusion 

The following conclusions can be drawn from the above investigation. 

 Incorporating CNT in GE composite increased the mechanical properties of GE 

composite in its as fabricated condition. CNT (0.1%)-GE showed 32.74 % increment 

in flexural strength as compared to GE due to increased load transfer because of 

increased interfacial area. 

 Elevated temperature testing at 70 
o
C and 90 

o
C caused reduction in strength and 

modulus of GE as well as CNT-GE composites. This decreased performance is 

attributed to the formation of micro voids and cracks at the interface due to 

differential expansion co-efficient of epoxy, CNT and glass fibers.  

 At 70 
o
C the maximum reduction in flexural strength was observed in case of CNT 

(0.1%)-GE composite by 35.38 % as compared to the strength in as fabricated 
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condition due to availability of more interfacial area which provides more potential 

sites for generation of micro cracks and voids. 

 At 110 
o
C, GE composite shows the maximum strength among all the composites. 

Hence CNT reinforcement becomes ineffective when the testing is done at a 

temperature which is near the glass transition temperature of matrix. 
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