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ABSTRACT 
 

Condition assessment is a process, which is used to monitor insulation condition in electrical 

machinery. Condition monitoring allows us to identify the insulation failure which would 

further lead to hardware failure. By using condition assessment, maintenance can be done in a 

scheduled manner or some other precautions can be taken up to avoid the failure. Moisture 

content and natural decay influence the dielectric characteristics of multi-layer insulation in a 

high voltage transformer. The observation and analysis of the dc conductivity and dielectric 

response function is a feasible way of diagnosis of a transformer main insulation condition. 

This research work, is focussed on polarization and depolarization current measurement which 

can be used for evaluating the quality of transformer insulation. This technique is a time domain 

based method for evaluating the conductivity of insulation and moisture content in solid 

insulation materials of a transformer. Prediction from this analysis provides a future course of 

action which include oil refurbishment, drying or changing the paper insulation in the 

transformer. This work presents a description of the PDC measurement technique with the 

quantitative modelling and simulation studies of PDC measurements on several power 

transformer having different dielectric material with different conductivity among the 

insulation configuration. 
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1. INTRODUCTION 

1.1  Motivation 

 

Many power transformers working today around the world are nearing towards the end of their 

expected design life. Power transformer is an expensive electrical machine thereby making it 

very costly to replace; however, few of these transformers until now are in good state and can 

be operated for a few more years. Determining the condition of the transformers would be of 

tremendous importance to the power sector. Well-coordinated maintenance by qualified 

personnel along with replacement planning is not possible in the current scenario. Condition 

assessment and online monitoring are gaining tremendous importance nowadays. A numerous 

number of techniques are available in electrical, mechanical and chemical domain for 

insulation testing of power transformers. 

Insulation degradation is one of the major concern for the aged transformers. Material used 

in transformer insulation degrade at high temperatures in the presence of moisture and air. 

Degradation from thermal stress influences the electrical, mechanical, and chemical properties. 

Transformer insulation failure would eventually lead to transformer failure. Hence we require 

condition assessment of insulation. Most of the condition assessment techniques, namely, the 

dissolved gas analysis (DGA), measurement of insulation resistance (IR), partial discharges 

(PD), dielectric loss factor (DLF), interfacial polarisation, have been in use for quite a number 

of years. 

In this decade, new diagnostic methods are given more emphasis contrary to the classical 

techniques like power frequency dissipation factor, insulation resistance and polarisation index 

measurement. 

These new methods are based on either frequency or time domain polarisation 

measurements. Time domain measurements are carried out by applying dc voltage across the 

test object [1]. Polarisation and Depolarization current measurement and return voltage 
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measurement are time domain techniques and have gained significant impetus in the last ten 

years.  

Polarisation and Depolarisation current measurement (PDC) of transformer insulation is 

one of the best indicator of a transformer’s insulation condition. Transformer Oil conductivity 

as well as moisture content in paper insulation can be found out by this method. This serves as 

a criteria for further actions. 

 

1.2  Literature Review 

 

Ageing of the power transformer insulation (oil/paper insulation) system is influenced by 

chemical, mechanical and thermal stresses. Thermal stress is one of the leading causes for 

degradation process of any insulation which include oil and paper dielectrics. Due to the 

presence of stresses, the paper insulation becomes fragile and the longevity capability of this 

material against mechanical tension is greatly reduced [2]. The process of breaking-down of 

chains of glucose molecules in cellulose gives rise to water molecules in the insulation, which 

acts as a incendiary for further breaking down of molecule chains. Furthermore, the breakdown 

voltage level of the insulation is decreased with increase in moisture content in the oil. The 

material conductivity is a property, by which it can be correlated to the moisture level and 

different by-products prevalent in the insulation. Thus valuable information about the 

conductivity of the dielectric insulation may serve as an important criterion for the condition 

assessment.  

Although there are indirect methods to find out the moisture level in paper insulation. 

But these method require collection of samples from extremely critical locations (outer 

windings, leads) and then examining them in laboratories. Moisture in oil can be evaluated by 

collecting sample from oil-tank and analysing them by Karl-Fischer titration. Similarly 

moisture in paper insulation can be calculated by using Oommen’s equilibrium method [3]. 
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These indirect methods have a much larger error corresponding to the calculated values. Hence 

we require time or frequency domain relaxation current measurement for more accurate results.  

When an electric field is applied to a dielectric, a relative shift of charges occurs within the 

dielectric giving rise to dielectric polarization. Presently, there are three main types of dielectric 

response measurement techniques: (a) Polarisation and Depolarisation Current measurement 

(PDC), (b) Return Voltage Measurement (RVM) and (c) Frequency Domain Spectroscopy. 

PDC and RVM are DC voltage tests in which dielectric response is measured as function of 

time.  

In Polarisation and Depolarisation Current (PDC) method, a step voltage of constant 

magnitude, is applied to the test sample for a long continuous period of time (e.g. 10000s) and 

the resulting polarisation current through the test sample is measured. This current arises from 

the dc conductivity and the various polarisation processes having different time constants 

pertaining to different insulating dielectric materials. The measurement of polarisation current 

is stopped when the polarisation current becomes either stable or very low. Subsequently, the 

test object is short circuited for a long continuous period of time and the depolarisation current 

is measured, which do not have any contribution from dc conductivity. 

Gafvert et al. [4] reported observations on polarization/depolarization current 

measurements to calculate the quality of the insulation of various transformers. He 

recommends relaxation current measurements as a better method because the properties of oil 

and paper materials can be uniquely explained from the experimental observations.  

Der Houhanessian et al. [5] demonstrated results of polarization current measurements 

of pressboard samples at various moisture content and temperature levels. Their results showed 

how the moisture present in pressboard samples could be quantified from calculation of the 

conductivity of the transformer. 
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1.3  Organisation of Thesis 

 

Chapter 1: This chapter includes the brief introduction, motivation, and literature concept of 

polarisation and depolarisation current measurement technique for condition assessment of 

power transformer. 

Chapter 2: This chapter deals with the detailed overview about the mechanism of dielectric 

response in the presence of an external electric field and also provides basic information about 

polarisation and depolarisation current measurement technique. 

Chapter 3: This chapter deals with the modelling of insulation structure in a power transformer 

along with the details of RC model used to describe a linear dielectric. It also provides the 

equivalent circuit of the insulation in a transformer. 

Chapter 4: This chapter deals with development of Simulink model of the insulation 

arrangement and a novel method by simplifying the equivalent circuit and calculating the 

transfer function of the equivalent circuit along with the simulation results. 

Chapter 5: This chapter deals with the idea of estimating the dc conductivity and moisture 

level present in the paper insulation using the values obtained from the results. It also contains 

the results obtained from the research work. 

Chapter 6: This chapter aims at the conclusion drawn from the results obtained and also 

provides insight into the future prospect of the work. 

Chapter 7: This chapter provides the various references used in this research work. 
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2.  MECHANISM OF DIELECTRIC RESPONSE 

2.1  Polarisation Mechanism of a Linear Dielectric 

When an electric field is applied to a dielectric, a relative shift of charges occurs within 

the dielectric giving rise to dielectric polarization. There are basically four different types of 

polarization mechanisms: 

(a) Electronic Polarisation – In this mechanism, dipoles are induced by the displacement 

of the center of the negative charge of the electrons with respect to the positively 

charged nucleus due to the driving electric field. It is extremely fast with frequency up 

to 1015 Hz. 

(b) Ionic Polarisation – In this case, the dielectric must have some ionic character, which 

cancel each other and cannot rotate. The applied electric field induces dipoles by 

displacing the ions from their original position. Frequencies can range up to 1012 Hz. 

(c) Dipolar Polarisation – If the dielectric material contains permanent dipoles which can 

rotate freely, then on application of driving electric field there is an alignment of these 

dipoles thereby inducing polarization of the dielectric. In this case frequencies can lie 

up to 108 Hz. 

(d)  Interfacial Polarization – In multi-dielectric medium, such as a transformer insulation. 

Under the application of electric field positive and negative charges may get deposited 

at the junction of the two media. This mechanism is slow and frequencies can range up 

to 105 Hz [7]. 

On application of electric field some or all mechanism may act at the same time. Electronic 

Polarisation is always present in any dielectric. Presently there are three types of dielectric 

response measurement techniques. 

(a) Polarisation and Depolarization Current Measurement Technique (PDC). 

(b) Return Voltage Measurement Technique (RVM). 
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(c) Frequency Dielectric Response (FDS). 

PDC and RVM are DC voltage tests and dielectric response is recorded as a function of time, 

whereas FDS is an AC voltage test and response parameters are measured as a function of 

frequency. 

2.2  Theory of Dielectric Response 

Applying a non-varying electric field E(t) across the dielectric, the current density flowing 

through the dielectric can be expressed as  

dt

tdD
tEtJ

)(
)()(         (1) 

The current density J(t) is the addition of two separate currents, conduction and displacement 

current [9], here  𝜎 is the dc conductivity and D(t) is the electric displacement and is given as 

below 

𝐷(𝑡) = 𝜀0𝜀𝑟 𝐸(𝑡) + ∆𝑃(𝑡)    (2) 

 

Here  𝜀𝑟 is the relative permittivity and 𝜀0 is the vacuum permittivity. P(t) is called the dielectric 

polarization with dependency upon the response function f(t) of the dielectric material. The 

response function f(t) is used to describe the basic property of the insulating dielectric system 

and is provides valuable data about the dielectric[10]. 

 

Assuming the test object is totally discharged with no residual polarisation and that a dc step 

voltage is applied characterised by 

 

𝑈(𝑡) = {
0                        𝑡 < 0
𝑈0             0 < 𝑡 < 𝑡𝑐

0                       𝑡 > 𝑡𝑐

         (3) 
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It will yield no current for time before t=0, and polarisation current for time 0 < t < tc. The 

polarisation current flowing through the test object can be given as  

 

𝑖𝑝(𝑡) = 𝐶0𝑈0 [
𝜎

𝜀0
+ 𝑓(𝑡)]          (4)  

 

After the removal of dc voltage source, depolarisation current builds up. The magnitude is 

given below 

𝑖𝑑(𝑡) = 𝐶0𝑈0[𝑓(𝑡) − 𝑓(𝑡 + 𝑡𝑐]          (5) 

We know that, for oil/paper insulation system, the dielectric response function can be 

modelled by the following equation [11]. 

𝑓(𝑡) =
𝐴

(
𝑡

𝑡0
)

𝑛
+(

𝑡

𝑡0
)

𝑚             (6)  

2.3  Polarisation and Depolarisation Current Measurement (PDC) Technique 

 

In PDC method, a DC step voltage of constant magnitude (~200V – 2000V), which is ripple 

free, is applied to the test object for a very long stretch of time (~10000s) and the obtained 

polarisation current flowing in the test sample is measured. Polarisation current comprises of 

dc conductivity and various polarisation processes each having different time constants 

corresponding to numerous insulating material and their different conditions. After a certain 

amount of time when the current becomes very small or zero, the measurement is stopped [12]. 

Furthermore, the test sample is shorted for a long interval of time and the resulting 

depolarisation current is recorded, which notably does not have any contribution from dc 

conductivity. 

The findings reported in [13] indicate that the starting part of the curve is highly sensitive to 

higher mobility of charge carriers in insulating oils thereby proving that it is quite responsive 
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to transformer oil. The steady part of the curve at longer times is because of the immobile 

charge dipoles in paper insulation.  

 

Figure 1:  Basic Polarisation and Depolarisation Current (PDC) measuring circuit. 

Fig above shows the basic PDC measuring circuit. For measuring the polarisation current the 

switch is in left position whereas while measuring depolarisation current switch is thrown on 

to the right side. 

 

Figure 2: Typical waveforms of Polarisation and Depolarisation Current. 

Figure 2 shows the typical nature of relaxation currents due to the application of step voltage 

U(t). U0 is the applied dc step voltage. Here tp and td are the charging and discharging periods 
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of the process. ip is the polarisation current whereas id is the depolarisation current. Relaxation 

currents are strongly influenced by the properties of insulating material as well as the geometric 

arrangement of the insulation. 
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3.  MODELLING OF TRANSFORMER MAIN INSULATION 

3.1  RC Model for Dielectric Response 

In the past decade, many researchers [3]–[6] have put forward numerous equivalent circuits for 

modelling the power transformer insulation system for a comprehensive understanding of the 

dielectric response. In reality, many of the proposed models until now have used conventional 

Debye model based on a complex RC model. Gafvert [3], has put forward the quantitative 

analysis of transformer insulation based upon the elementary equations of dielectric physics. 

Researcher [4]-[7], derived the formulation of a corresponding equivalent circuit from (PDC) 

relaxation current measurements. The modelling processes in the literature [3]–[8] were greatly 

dependent on the data of the geometry and positioning of dielectric insulation in the machine. 

 

Figure 3. Equivalent RC circuit to model a linear dielectric. 

3.2  Elementary Theory behind the Model 

When an electric field is applied to a dielectric, a relative shift of charges occurs within the 

dielectric giving rise to dielectric polarization. When the field is switched off, the dipoles 

follow their normal tendency and return to their original state [14]. In a linear dielectric, every 

polar group has a different arrangement of neighbouring molecules. Thus, the response time of 

polar groups after the implementation of the electric field differs from each another [11]. These 
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processes can be efficiently modelled by an arrangement of parallel RC branches each having 

resistor and capacitor connected in series as shown in the circuit of Fig. 3. 

These dipoles, which are randomly distributed, are characterised by time constants given by τ 

= RC. Conduction current flows in the insulating dielectric material along with polarisation 

current. This conduction current is prevalent due to the insulation dc resistance R0, here C0 is 

the geometric capacitance of the insulation. 

3.3  Modelling of Transformer Insulation 

The winding composition of a single phase of a power transformer is build on a primary 

winding (low voltage winding) closest to the limbs of the transformer core, covered by the 

secondary winding (high voltage winding), which is kept apart from the former by the main 

duct. This duct contains a series of paper insulator pressboards along with oil ducts in between 

to provide cooling and insulation. This arrangement also contains axial insulating paper 

material spacers to hold the barriers firmly. Figure 4 portrays a cross-section view of the major 

insulation between the windings. As the total length of the transformer windings is much more 

than the radial length between the transformer windings, the impact of the insulation between 

the windings and the yoke of the transformer is assumed to be negligible. To carry out 

assessment of the moisture level in the paper pressboard and the conductivity of oil in the power 

transformer insulation system data pertaining to the dimensions and the configuration of the 

insulation is needed. 
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Figure 4: The cross-sectional view of the main insulation between primary and secondary 

windings of a power transformer. 

Since the above description is too intricate to model, we can simplify the equivalent model by 

lumping all the spacers, barriers and oil ducts together to form a simpler insulation structure 

[18]. 

 

Figure 5: Lumped Insulation system in a single sector of the main insulation between 

windings. 

If we consider a single phase of a transformer, its insulation between the low voltage and high 

voltage windings can be represented with the height h, the total number of sectors in the 

insulation depicted by Nsec, coincidentally, it is also equal to the number of the spacers in the 

periphery of insulation and the lumped arguments X1, X2, Y1 and Y2, which describe the 

configuration of the main insulation.  

The height h is given by 
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ℎ =
(ℎ𝐿𝑊+ℎ𝐻𝑉)

2
       (7) 

here, "h
LW

" and "h
HW

" are respectively the height of the primary winding and the height of 

the secondary winding. The parameters X1, X2, Y1 and Y2, are calculated as given below. 

𝑋1 = ∑ 𝑏𝑖,                           𝑓𝑜𝑟 𝑖 = 1 … . 𝑛,   (8) 

Here bi is the width of barrier i. 

𝑋2 = 𝑑 − 𝑋1      (9) 

Also,    𝑑 = 𝑟2 − 𝑟1        (10) 

The d, R2, R1 are width of the main duct, outer radius and inner radius respectively. 

 𝑌1 = 𝑠,        (11) 

s is the spacer width 

𝑌2 = (
𝑐

𝑛𝑠𝑒𝑐
) − 𝑌1      (12) 

c is the median circumference of the main insulation duct and is described as 

𝑐 = 𝜋[𝑟1 + 𝑟2]      (13) 

After successfully calculating the dimensions of the insulation model, geometric capacitance 

of all the lumped parameters can be calculated by considering insulation to be of cylindrical 

shape with height hwin. 

3.4  Equivalent Circuit of the Main Insulation in a Power Transformer 

Simplified lumped insulation model of the main insulation of a transformer can be used to 

model the equivalent circuit of the insulation. 
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Figure 6: Equivalent circuit of the main insulation of a power transformer. 

Here, the oil duct is represented by its resistance Roil and the capacitance Coil. The reason for 

such an assumption is that transformer oil shows no polarisation phenomenon within the power 

frequency range. Geometric capacitance of the oil duct can easily be calculated from the 

geometry of the insulation system, the values for Roil and Coil can be determined by using the 

following equations. 

𝑅𝑜𝑖𝑙 =
𝜀0

𝜎𝑜𝑖𝑙 𝐶𝑂
     (14) 

𝐶𝑜𝑖𝑙 = 𝜀𝑟𝑜𝑖𝑙𝐶𝑜     (15) 

Here, 𝜀0 is the permittivity of vacuum, 𝜎𝑜𝑖𝑙 and 𝜀𝑟𝑜𝑖𝑙  are the dc conductivity and relative 

permittivity of oil. 

The barrier and the spacers are also modelled (Fig. 6) in a similar way by their resistances, RB 

and RS, along with their power frequency capacitances, CB and CS calculated from their DC 

conductivity 𝜎𝑝𝑏 and relative permittivity 𝜀𝑟𝑝𝑏. The dispersion phenomenon in dielectric 

material of pressboard is represented by number of parallel RC chains. These can be calculated 

from previously conducted PDC measurement on homogeneous pressboard material only. 

Usually 𝜀𝑟𝑜𝑖𝑙 = 2.2 whereas 𝜀𝑟𝑝𝑏 = 4.9.Using these values we obtain the following. 
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Table 1: Calculated Geometric Capacitance of 4 test Transformers 

 

Transformer 

Sample 

Hwin 

(mm) 

X1 

(mm) 

X2 

(mm) 

Y1 

(mm) 

Y2 

(mm) 

C0D 

(F) 

CSD 

(F) 

CBD 

(F) 

A 1597 18 54 30 120.1 6.63E-9 2.57E-9 4.11E-8 

B 1820 28.5 49.5 20 123.9 7.98E-9 1.71E-9 2.9E-8 

C 2585 65 55 15 75.27 1.24E-8 2.45E-9 2.27E-8 

D 2270 8 29 12 11.77 4.74E-9 7.8E-9 3.54E-8 

 

Table 2: Calculated R and C of lumped parameters 

  

Test  

Sample 

𝝈𝒐𝒊𝒍 

(pS/m) 

𝝈𝒑𝒃 

(pS/m) 

ROil 

(Ω) 

COil 

(F) 

RB 

(Ω) 

CB 

(F) 

RS 

(Ω) 

CS 

(F) 

A 0.29 0.0025 4.6E12 1.46E-8 86E12 2E-7 1.4E15 12.5E-9 

B 2.4 0.3 4.6E11 1.756E-8 1.02 E12 1.42 E-7 1.72E13 8.4E-9 

C 1.65 0.06 4.32E12 2.728E-8 6.5 E12 1.12 E-7 6E13 12E-9 

D 0.3 0.003 6.22E12 9.83E-8 83.3 E12 1.73 E-7 3.8 E14 38E-9 

 

 

The polarisation dispersion of pressboard made up of paper material, which is an important 

quantity in these analysis, is represented by a number of parallel connections of RC chains, 

which demonstrate the dielectric response function. The exact quantity of these RC chains can 

be evaluated from previously conducted polarisation and depolarisation current experiment on 

dielectric paper test samples, again taking into account the geometrical capacitance of the 

sample. The individual Ri-Ci with corresponding time constant τi can be determined by curve 

fitting the depolarisation current with the following equation [19]. 

𝑖𝑑 = ∑ (𝐴𝑖 . 𝑒
(−

𝑡

τi
)
)𝑛

𝑖=1      (16) 
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The process initiates with the greatest time constant RC chain. The value of depolarization 

current at the end time is assumed to be only due to the contribution from greatest time constant 

RC chain, the effect of branches with smaller time constant is negligible because its effect dies 

down before this time. Henceforth, the end region of the depolarization current is essential to 

calculate the value of largest time constant RC chain by using an exponential curve-fitting 

approach. 
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Figure 7: Flowchart for calculation of parallel RC parameters of RC insulation model. 
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Polarisation and Depolarisation results on pressboard samples provide the following data [9]. 

Table 3: Calculated Values of RC elements of paper sample through curve fitting technique.  

Coefficient (Ai) Time Constant (τi) Ri (GΩ) Ci (nF) 

2.384E-8 20842 55 378 

9.527E-8 2891.8 20 138 

3.346E-7 569.15 5.9 95 

1.214E-6 91.57 1.46 55.5 

3.475E-6 22.722 6.57 39.5 

4.608E-6 3.98 41.6 9.6 

 

These calculated values are used in the insulation model, which are simulated in different 

environments. 

 

3.5  Estimation of DC Conductivity of Main Insulation in a Transformer 

From measurements of relaxation currents (PDC), we can easily compute average conductivity 

σr, of the sample in question (oil-paper insulation) [4], [10], and [11]. If the sample object is 

diagnosed with PDC technique for sufficient charging time then, (4) and (5) can be recombined 

in such a way to eliminate the response function and find the conductivity of the oil-paper 

insulation system as 

𝜎𝑟 =
𝜀0

𝐶0𝑈0
(𝑖𝑝𝑜𝑙(𝑡) − 𝑖𝑑𝑒𝑝𝑜𝑙(𝑡))     (17) 

The average conductivity of a power transformer insulation is found to be proportional to the 

difference of polarization and depolarization current. The average conductivity, is a mixture of 

the conductivities of oil dielectric and paper material that together form the insulation model. 

For the purpose of modelling, it is quite often to show the insulation arrangement by a lumped 

spacers, oil ducts and barriers, known as the X-Y model, as shown in Fig. 21 [22]. This model, 

comprises of a parameter X, which is defined as the ratio of the total width of all barriers, fused 
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together to form a single entity, to the duct width [13]. The spacer coverage, Y, is described as 

the ratio of the total thickness of every spacers to the total periphery of the duct. 

 

 

Figure 8: X-Y model of Main Insulation in Power Transformer. 

According to the figure 21, “X” and “Y” are defined as follows [13]. 

𝑋 = 𝐵𝑇𝑜𝑡𝑎𝑙/𝑑        (18) 

𝐵𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑏𝑖,                           𝑓𝑜𝑟 𝑖 = 1 … . 𝑛,    (19) 

𝑌 = 𝑆𝑇𝑜𝑡𝑎𝑙/𝑐        (20) 

𝑆𝑇𝑜𝑡𝑎𝑙 = 𝑚 × 𝑠        (21) 

Here d and c, are already defined by equations (10) and (13) 

Table 4: Calculated X-Y parameters 

Transformer 

Sample 

d 

(mm) 

X1 

(mm) 

X 

 

Y1 

(mm) 

Y2 

(mm) 

Y 

A 72 18 0.25 30 120.1 0.25 

B 78 28.5 0.36  20 123.9 0.16 

C 120 65 0.46 15  75.27 0.2 
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For the X-Y model (as shown in Fig. 21), the equivalent conductivity of the insulation is written 

in terms of paper and oil conductivities as, 

𝜎𝑟 =
𝑌

1−𝑋

𝜎𝑠𝑝𝑎𝑐𝑒𝑟
+

𝑋

𝜎𝑏𝑎𝑟𝑟𝑖𝑒𝑟

+
1−𝑌

1−𝑋

𝜎𝑜𝑖𝑙
+

𝑋

𝜎𝑏𝑎𝑟𝑟𝑖𝑒𝑟

     (22) 

We know that, 

σbarrier = σspacer= σpaper 

𝜎𝑟 =
𝑌
1

𝜎𝑝𝑎𝑝𝑒𝑟

+
1−𝑌

𝜎𝑝𝑎𝑝𝑒𝑟(1−𝑋)+𝑋𝜎𝑜𝑖𝑙
𝜎𝑜𝑖𝑙× 𝜎𝑝𝑎𝑝𝑒𝑟

      (23) 

Similarly, the effective relative permittivity of the insulation can also be evaluated as 

𝜀𝑟 =
𝑌
1

𝜀𝑝𝑎𝑝𝑒𝑟

+
1−𝑌

𝜀𝑝𝑎𝑝𝑒𝑟(1−𝑋)+𝑋𝜀𝑜𝑖𝑙
𝜀𝑜𝑖𝑙×𝜀𝑝𝑎𝑝𝑒𝑟

      (24) 

The oil conductivity can be represented in terms of polarization current just at start of the 

experiment. 

𝜎𝑜𝑖𝑙 =
𝜀0.𝜀𝑜𝑖𝑙

𝜀𝑟.𝐶0.𝑈0
× 𝑖𝑝𝑜𝑙(0+)       (25) 

Using these equations we can find the average conductivity of the mail insulation in a power 

transformer. 
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4.  SIMULINK MODEL OF THE MAIN INSULATION OF POWER 

TRANSFORMER 

4.1  Simulink Model for Polarisation and Depolarisation Current Measurement 

Technique 

We have successfully evaluated all the branch parameters, these parameters are used to model 

the insulation system of a power transformer. Simulink software is used to simulation. 

 
Figure 9: Simulink Model of PDC measuring circuit for transformer insulation. 

 

Figure 8 shows how the PDC circuit is formulated in the software environment. A constant DC 

voltage source is applied across the test sample. Here the test sample is main insulation of the 

power transformer. Two pulse generators are connected respectively to switches which control 

the charging and discharging time. Two current measurement blocks are also connected to 

measure the polarisation and depolarisation current through the sample.  
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Figure 10: Main insulation model used as test sample in polarisation and depolarisation 

current measurement technique. 

 

As already discussed in section 3.4, the main insulation is simulated through R and C elements 

of oil, spacer and barrier blocks. Since both pressboard barrier and spacer blocks are assumed 

to be made of same paper material, data from Table 3 is used in parallel RC chains to simulate 

dielectric response function. 
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5.  RESULTS AND DISCUSSION 

5.1  Simulation Results 

Transformer A (7MVA, 66/11kV, Y/∆ connected) of dimensions given in Table 1 is 

simulated with its calculated insulation parameters using this model. DC voltage source 

applied is of the magnitude 1000.5 V and charging and discharging time of 10000 seconds is 

used.  

 

Figure 11: Polarisation and Depolarisation Current curves obtained for Transformer A. 

Transformer B (30 MVA, 132/33kV, Y/∆ connected) of dimensions given in Table 1 with its 

calculated insulation parameters was simulated using this model and the obtained curves are 

shown below. 
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Figure 12: Polarisation and Depolarisation Current curves obtained for Transformer B. 

5.2  Influences of Oil and Paper Conductivities on Polarisation and Depolarisation 

Current. 

To understand the relationship of the paper and oil conductivities on the relaxation currents, a 

simulation is done with the already created Simulink model. Researcher [8] proved that the 

response function f (t) as given in equation (6), is greatly affected by the 2 dominant time-

constants n and m. The time constant n affects the curvature of the dielectric response function 

at small times, whereas the characteristics of response function at larger times is heavily 

dependent upon counterpart time-constant m. Meanwhile, it was previously pointed out [20] 

that the curvature of the relaxation currents (polarisation and depolarisation current) at smaller 

times are affected by the conductivity of the oil used, likewise the end parts of the relaxation 

currents are determined by paper dielectric conductivity of the system. Time-constants namely, 

n and m are, therefore associated with the conductivities of oil dielectric material and paper 

material. To know more about the effects of the changing of oil and paper conductivity on the 

relaxation currents (PDC), these currents are simulated through the Simulink model, with 

various values of conductivities. Figures 12 to 14 show the effect of variation in paper and oil 

conductivities on relaxation currents. Variation in conductivity of oil and paper would lead to 
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variation in resistance and capacitance of the lumped parameters according to the equation (14) 

and (15). 

Table 5: Variation in Resistance due to change in conductivity. 

𝝈𝒐𝒊𝒍 

(pS/m) 

𝝈𝒑𝒃 

(pS/m) 

ROil 

(Ω) 

COil 

(F) 

RB 

(Ω) 

CB 

(F) 

RS 

(Ω) 

CS 

(F) 

1.5 0.015 0.89E12 1.46E-8 14.35E12 2.01E-7 2.3E14 12.5E-9 

3 0.15 1.78E11 1.46E-8 1.43E12 2.01E-7 2.3E13 12.5E-9 

6 1.5 3.56E12 1.46E-8 1.43E11 2.01E-7 2.3E12 12.5E-9 

 

 

Figure 13: Variation of Polarisation Current with change in oil conductivity. 
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Figure 14: Variation of Polarisation Current with change in paper conductivity. 

 

Figure 12 and 13 shows the effect of changing the paper and oil conductivity. The variation 

in oil conductivity targets the curvature at the starting region whereas on the contrary paper 

conductivity changes the end regions of the curve. This is due to the not so mobile charge 

carriers in paper dielectric which become dominant when quite a period of time has passed 

by. 

 

5.3 Investigation of Temperature Effects on Polarisation and Depolarisation 

Current Measurement 

In a power transformer insulation, both the oil and paper conductivities were found dependent 

on temperature. Further studies show that it increases exponentially with temperature [21].As 

reported by [11], the conductivity can be describes through an exponential function. 

𝜎(𝑇) = 𝐴. 𝑒(−𝐸𝑎𝑐/𝑘𝑇)      (26) 

Where T is the absolute temperature with standard unit as Kelvin (K), A is a constant used to 

refer the mobility of dipoles, k is the Boltzman constant and Eac is the activation energy of the 

insulator. If we take Logarithm on both the right and left hand side of the equation, it can be 
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shown that conductivity of the insulator has an inverse relationship with the absolute 

temperature. 

ln(𝜎(𝑇)) = ln(𝐴) −
𝐸𝑎𝑐

𝑘𝑇
      (27) 

For the transformer oil used, we have   Eac  = 0.5eV 

For paper Insulation used, we have    Eacp = 1.10eV 

And we know that Boltzman constant   k     = 8.62E-5 eV K-1 

For Transformer C we have     σoil  = 1.65pS/m 

 

Table 6: Variation of Oil Conductivity with Temperature. 

Absolute Temperature (K) Oil Conductivity (pS/m)  Resistance Roil (Ω) 

293 1.65 4.32E12 

313 4.3 1.66E12 

333 13.5 5.28E11 

353 41.03 1.73E11 

 

Table 7: Variation of Paper Conductivity with Temperature. 

Absolute Temperature (K) Paper Conductivity (pS/m) Resistance Rp (Ω) 

293 6.03E-2 6.5 E12 

313 2.19E-1 1.87 E12 

333 3.16 1.24E11 

  353 22.85 1.7 E10 
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Figure 15: Effect of Temperature on Polarisation Current in insulation of transformer D. 

 

 

Figure 16: Effect of Temperature on Depolarisation Current in insulation of transformer. 

Figure 18 and 19 show the variation in polarisation and depolarisation current with changes 

made in temperature. The temperature measured here is absolute temperature and the unit is in 
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Kelvin (K). According to the data obtained in Table 7 we observe that conductivity is dependent 

on temperature. With increase in temperature the conductivity shoots up, which thereby 

increases the dc conductivity of both oil and paper dielectrics used in main insulation of a 

power transformer. 

5.4  Estimation of Average Conductivity of the insulation 

Using equations (22)-(25), it can be shown that average conductivity depends upon the 

difference of relaxation currents. Calculated values are shown below. 

Table 8: Calculated values of oil, paper and average conductivities. 

Transformer ipol - idepol 

(A) 

Ipol(0+) 

(A) 

σr 

(pS/m) 

Ɛr σoil 

(pS/m) 

σpaper 

(pS/m) 

A 2.89E-8 6.13E-8 6.3E-15 3.14 0.31 0.00021 

B 2.12E-7 5.09E-7 0.572E-12 3.012 2.51 0.27 

C 1.04E-8 7.013E-8  8.87E-14 3.28 1.71 0.054 

 

 

5.5  Discussion 

 

MATLAB Simulink program was used to simulate the transformer insulation system to obtain 

the polarisation and depolarisation curves for analysis of four transformers. From the 

simulation results it is evident that we can find out the dc conductivity of the dielectric test 

sample, in this study it is power transformer insulation. Furthermore, the effects of changing 

the conductivities of oil and paper dielectrics have been studied. The oil conductivity plays a 

dominant role in the starting of the polarisation and depolarisation current while changes in 

dielectric paper conductivity affects the latter end of the PDC curves. Using the simplified 

equivalent circuit, we find that there is more than 90 % correlation with the Simulink model 
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results. Also, using the equations from basic dielectric response theory we can easily find out 

the conductivity of the transformer insulation. In this study, for transformer A (7 MVA, 

66/11kV, Y/∆ connected) the average conductivity was estimated to be around 0.0063 pS/m, 

transformer B (50 MVA, 132/66kV, Y/∆ connected) insulation conductivity was found out to 

be 5.72 pS/m. 
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6.  CONCLUSION AND FUTURE WORK 

6.1  Conclusion 

In this research work, PDC method has been discussed in detail and a simplified equivalent 

circuit has been presented and the equations have been derived to describe the insulation of 

power transformers. By using this method, we have analysed four power transformers. The 

effect of changing the oil and paper conductivities is also studied in this work, along with the 

effect of temperature on relaxation currents. We have obtained the physical parameters of the 

transformers and the moisture level. The linear correlation coefficient between the Simulink 

data and the theoretical curves is of the order of 0.9 or greater, proving the accuracy of the 

model. The oil resistance is about three to ten orders of magnitude smaller than that of the 

paper, seemingly due to the increased content of copper ions with respect to the new 

transformers. Their activation energy was estimated to be = 0.5 eV, justifying the above 

supposition. 

6.2  Scope for Future Work 

There is a huge potential for future work in this area. Hardware implementation is of the utmost 

priority. Results from the simulated data can be compared with the experimental values to 

obtain the percentage error in the proposed model. An expert system can also be implemented 

which could provide fast and more accurate results based on the previously conducted 

assessment on power transformer. Furthermore, conventional Debye model approach can be 

replaced with a much more efficient Modified Debye Model [14]. 
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