Enhancement of Branch Coverage using
Java Program Code Transformer

Thesis submitted in partial fulfilment
of the requirements for the degree of

Bachelor of Technology
m
Computer Science and Engineering

by

Kumar Satyam
(Roll: 111CS0115)

under the supervision of

Prof. D.P. Mohapatra

NIT Rourkela

A

ROURKELA

Department of Computer Science and Engineering
National Institute of Technology Rourkela
Rourkela-769 008, Orissa, India
May, 2015

Certificate

ROURKELA

09 May, 2015

This is to certify that the work in the thesis entitled Enhancement of
Branch Coverage using JPCT by Kumar Satyam, Roll No. 111CS0115,
is a record of an original research work carried out by him under my supervision
and guidance in partial fulfillment of the requisites for the award of the degree
of Bachelor of Technology in Computer Science and Engineering. Neither this
thesis nor any part of it has been submitted for any degree or academic award
elsewhere.

Prof. Durga Prasad Mohapatra

Dept. of Computer Science and Engineering
National Institute of Technology

Rourkela - 769008

Acknowledgement

I would like to express my sincere gratitude to my supervisors, Prof. Dr.
D.P. Mohapatra for providing me with a platform to work on challenging areas of
Enhancement of Branch Coverage Techniques. His guidance, support, patience,
motivation and immense knowledge have been inspiration to my work.

I would like to express deepest appreciation to Sangharatna Godboley (
Phd Research Scholar) for all his inputs, discussions and contributions. I am
thankful to all my lab mates for their encouragement, understanding and useful
discussions.

Kumar Satyam

Contents

1 INTRODUCTION

1.1 Basic Definitions
1.2 Objective of our work
1.3 Organisation of the Thesis

2 LITERATURE REVIEW

2.1 MC/DC coverage using Code Transformer
2.2 Other Related Works
2.3 SUMIMATY . . ¢« v v e e e e

3 PROPOSED WORK

3.1 Java Program Code Transfer
3.2 Cobertura

3.2.1 Test Report using Cobertura

3.2.2 Sample of Cobertura Output
3.3 Schematic Representation
34 Flowofthe Work
3.5 Proposed Algorithm

4 RESULTS

4.1 Input Program for Step 1:
4.2 Output of Step 1 (Predicates Identified) :
4.3 Another input prgram forstep 1:.
4.4 Output of the input 2(predicates identified)
4.5 Output of Step 2 (Generation of SOP) :
4.6 Output of Step 3 (Quine Mc-cluskey Method) :
4.7 Input program for Step 4

4.8 Output of Step 4 (Insertion of empty if-else statement)

5 CONCLUSION AND FUTURE WORK

15
15
16
17
18
19
20
21
22

23

List of Figures

3.1
3.2
3.3

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8

Output sample of cobertura 9
Schematic representation of the work 10
Flow of the work 11
First Input prog forstep 1 15
output of step 1. 16
2nd input prog forstep 1 17
output of 2nd input prog of step 1 L. 18
output of step 2. 19
output of step 3. L. 20
input prog forstep4 L o 21

output of step 4. 22

Abstract

In traditional concolic testing branch coverage is low. Automated
technique appears as a promising technique to reduce test time and
effort. In this project we used a code transformation technique. We
take input a simple java program and transform it using various al-
gorithms. We have used four algorithms to transform the given code
into a transformed code. We used Quine Mc-cluskey method and
Petric methods to achieve the transformed code. After transforming
the code, we pass it through a tool called Cobertura which gives the
branch coverage of that transformed code. Here we observe that the
percentage of branch coverage using the transformed code is greater
than the coverage of original code. Hence, our technique helps to
achieve a significant increase in branch covearge in comparison to
traditional techniques.

Chapter 1

INTRODUCTION

In software testing field the importance of branch coverage cannot
be be neglected. A very slight increase in coverage can improve the
test cases significantly. In this project we design a Code Transformer
to increase the coverage of the program. We use four algorithm to
design the PCT. We are doing it for JAVA programs only. We im-
plemented the algorithm using JAVA programming language.The
role of JPCT is very significant in increasing the coverage. We con-
firm the increase in the coverage by passing both the programs the
original and the transformed through cobertura and note coverage
percentage of both the cases.

1.1 Basic Definitions

Condition[4]: A condition is a boolean expression containing no
boolean or logical operators- AND(&&), OR(]|||) and XOR. These
are the atomic expressions which can not be divided to further sub
conditions.

Decision[4]: A decision is a boolean expression composed of
conditions with zero or more boolean operators. An expression with
same condition appearing multiple times in a decision are consid-
ered as separate conditions.

Example: for decision expression (((z == 0)|||[(t < 1))&&((s >
10)[/|[(g == 0))), there are four conditions in the decision which are
(z==0),(t <1),(s>10)and(g == 0).

Black Box Testing : In Black Box testing the internal struc-
ture of the program being tested is not known to the tester.It is
used for higher level of testing like acceptance and system testing.
Black Box testing does not require programming and implementa-
tion knowledge.

White Box Testing : Unlike Black Box testing, in White Box
testing the internal structure of the code is known to the tester.
This strategy is used for lower levels of testing like unit testing and
integration testing.Here, programming and implementation knowl-
edge is required.

Statement Coverage : It is a type of coverage in which the
execution of all the statements in a code is done at least once. It is
used to evaluate the number of statement in the source code which
has been executed.It is also known as the line coverage or segment
coverage. The property of statement coverage is that it covers only
the true conditions. Here, each and every line is not necessary to be
checked.It measures the quality of the code written.

Branch Coverage[4] : Unlike the statement coverage it cov-
ers both true and false statements. IF statements, Case statements,
loop control statements are decision statements. Branch Coverage is
used to evaluate or validate that all branches in the code is reached.

Multiple Condition Coverage : In this coverage all the cases
of condition for each decision is evaluated. This coverage is also
known as Condition Combination coverage. The characteristic of
this coverage is that if there will be p conditions then no. of test
will be 2P.

Modifed Condition / Decision Coverage[4] :In this cover-
age every entry and exit point in the program has been invoked at
least once. Every condition in the code has taken all possible out-
comes once. Each condition has been shoen to effect that decision
outcome independently.

Prime Implicant : It is a term in Sum of product expression
that cannot be concatenated with another term to delete a variable.

Concolic Testing [8]: It is a interbred software authentication
method that relates concrete execution with symbolic execution. It
uses executable paths in the way as symbolic execution. The main
motto of Concolic Testing is to find bugs in real-world software in-
stead of demonstrating code correctness.

1.2 Objective of our work

The main objective of our work is to increase the branch coverage
of a java program. To achieve this task our aim is to design a Java
Program Code Transformer. The JPCT will take a java program
as input and give a transformes program as output. The branch
coverage of the transformed program should be greater than the
original program. We will compare this increase in the coverage
by a tool called Cobertura. First we will take the coverage of the
original program through this tool and then the coverage of the
transformed program would be compared with it. Our main motto
is to increase the value of the coverage.

1.3 Organisation of the Thesis

Chapter 2 gives a brief review of the existing work done related
to our work. We describe the work related to program code trans-
former.

Chapter 3 gives an introduction to our proposed work, flow
of the work and tools used in our project.In this section we also
described the steps used in the formation of Java Program Code
Transformer. This chapter also gives a brief introduction of the Al-
gorithms used in this project.

Chapter 4 consists of the results obtained after implementa-
tion of the algorithmms.It also gives screenshots of the input taken
in all the steps. All the figures and screenshots are explained briefly.

Chapter 5 concludes the project and gives a summary of our
work. It also describes the future scope of the project.

Chapter 2

LITERATURE REVIEW

2.1 MC/DC coverage using Code Transformer

Godboley [4] proposed an approach to improve MC/DC coverage
using code tranformation technique. MC/DC is a standard cover-
age criterion but existing automated test data generation method
like Concolic Testing do not support it. To tackle this problem,
an automated approach to generate test data has been found that
helps in achieving an increment in MC/DC coverage of a code being
tested. To achieve this, code transformation method is used. This
is done by inserting transformed program into a CREST TOOL [4].
It gives test suits and increase the coverage.

2.2 Other Related Works

Das [3] proposed an approach to generate MC/DC test data auto-
matically. This approach helps to increase MC/DC coverage by ap-
proximately 21 percent as compared to the existing Concolic testing.

Godboley et al.[6] proposed an approach to analyse time of Eval-
uation of coverage percentage for C programs using Advanced Pro-
gram code transformer. Godboley et al.[8] proposed a framework
to compute MC/DC percentage for distributed test case generation.
This approach uses many client nodes to generate the non-redundant
test cases in a distributed and scalable manner.

Tiwary [5] proposed an approach to generate test cases automat-
ically for high MC/DC coverage. To achieve this, the concept of

Concolic testing which is a combination of symbolic execution and
concrete execution is used.

Godboley et al.[9] proposed an approach to measure percentage of
coverage of C code using code Slicer and Crest Tool. An augmented
method is used to generate a test suite that helps in measuring cov-
erage percentage of a program.

2.3 Summary

In this chapter we discussed about related work on Enhancement
of Branch Coverage and Program Code Transformer. We also dis-
cussed other related works.

Chapter 3

PROPOSED WORK

Mainly two component levels are there in our proposed framework.

3.1 Java Program Code Transfer

It modifies the program under test by generating and inserting ad-
ditional condition statements based on the requirements of Branch
coverage criterion.

Steps

e First scan the program and list out the predicates . For this
we use the 1st algorithm.

e Add all the predicates in a list.

e For each predicate, generate we generate corresponding SOP
expression. Method is called Petric Method.

e Then Minimize the SOP expression using Quine-Mcluskey method.

e Then re-construct the predicates using minimized SOP expres-
sion. Method is called Reverse Petric method.

e Then we generate the nested if-else statement for each predi-
cate.

3.2 Cobertura

It is a coverage tool. It shows how many lines of code are touched.
In most cases we’ll use cobertura to see how good our regression test

are. We can also use it to see how many lines of codes are reached
or to improve code that is accessed a lot.

It wil generate HTML or XML reports. Cobertura is meant to be
used with ant but it also works with the command line and plugins
are under development for Maven2 and Eclipse.

3.2.1 Test Report using Cobertura

The first column shows package name, second column shows how
many classes are in the package. The third column is named lined
coverage. Line coverage is the amount of lines of code that are exe-
cuted. A useful line is a line of code where something happens (so
no curly braces or new lines).

The next column gives us information about the branch coverage.
Branch coverage is the coverage of the decision points in your class
(this can be if/else/then loop). When your code only reaches the
first part the if loop and skips the else part you will have 50 percent
branch coverage. We were probably thinking we’ll never get a higher
coverage than 50 percent with if/else/then loop. With cobertura it
is possible to execute our code as many times as we want to test all
the branches we have.

The last column is the so-called McCabe cyclomatic code complex-
ity. This is a way to determine how complex our code is. One of the
methods McCabe uses is measuring the amount of decision point in
our code. A higher rating means more complex code.

A higher coverage does not mean that our code is bug-free. It is
very easy to write code that touches many lines but doesn’t do re-
ally anything. We should always keep in mind to write useful tests
and then cobertura will be a usefu tool.

3.2.2 Sample of Cobertura Output

Package #Classes Line Coverage Branch Coverage COMPlenity
all Packages 38 50% R ;- 1.078
net.jvw fdbs 177% I 1+ 1
nek.jvw fdbs logic 3574 I ;. 0
net.jvw fdbS lucane 2 455, DD ;. D 0
net.jvw fdbS model 5 6% I coc 1.286
net.jvw fdbS modelibatis 9 70% I /A | 1
netivw fdbs model ras 169% N o 1,222
net.jvw fdbS struts 13 21% DN ;. 157
net.jvw . taglibs tooltip 1.2

Figure 3.1: Output sample of cobertura

3.3 Schematic Representation

The following figure gives a overview of how we would proceed with
the input program and after getting the transformed program we
have to check its increase through a coverage tool called Cobertura.
The output of the Java Program Code Transformer will become the
input of the Cobertura.

Program Code Transformed
(Input] Gt Java Program
—_— e Branch Coverage

Code Transformer

Figure 3.2: Schematic representation of the work

3.4 Flow of the Work

The following figure shows the flow of our work. To design a Java
Program Code Transformer we have basically four modules. Identi-
fication of predicates, Generation of SOP, Quine McClusky method
and the insertion of nested empty if-else statements. We take a java
program as input and gives a transformed code as output using these
four modules.

10

Identification of _
Generation of SOP

predicate Method

Insertion of empty nested if-else
statement

Input Java Pregram

Figure 3.3: Flow of the work

3.5 Proposed Algorithm

We have used three Algorithms in this project. first Algorithm is
used for identification of predicates.This algorithm scans the input
program and gives the list of predicate found in that as output. sec-
ond algorithm is used to generate sum of product. It takes the list
of predicates as input and convert them into sum of product form.
It also minimizes the SOP using the Quine McClusky method. Fi-
nally, third algorithm inserts the nested empty if-else statement in
the program and gives transformed program as the output.

Explanation of 1st Algorithm :1st algorithm give the proce-
dure to degisn Program Code Transformer|7]. First it search for the
Predicates[4] and if it finds one , immediately add that predicate
in a list called add_in_list. Then for each predicate in the list it calls
a function called gen_sumofproduct to give the corresponding SOP
statement. After generating the SOP statement it minimizes it us-
ing a function Minimiz_ QM and in the last step it inserts nested
empty if—else statements in the given input program to give the

11

1st Algorithm: JPCT [17].

Input: Y // Program Y is in Java
Output: Y’ // program Y ’ is transformed program
Begin

1: for each statement s € Y do

if && or ||or unary ! found in s then

List_Predicate < add_in_List(s)

end if
end for
: for each predicate p € List_Pred do
P_SOP «+ gen_sumofproduct(p) //Generation of SOP
P _Minterm < convert_to_Minterm(P_SOP)
P_Min < Minimize QM (P_Minterm)
List_Statement < Generation_nested_if-else_JPCT(P_Min)
11: Y’ < entry_of_code(Statement_Record,Y)
12: end for
13: Exit

© P NP

—
<

transformed program.

Explanation of 2nd algorithm: This algorithm is used for
converting the predicates into SOP form. Here we convert each
minterm into binary form and process them to find Sop. We process
this task by checking each bits individually.

12

2nd Algorithm: QM Method [4].

Input: A_Minterm
Output: A_Simp
Begin

[e e e e T e i e e
I e B R A

for each min_term a € A_Minterm do
List_V < convert_to_binary(minterm)
end for
List-Z < sort(List_V)
for each List z € Z do
for each group_first to group_last € groups do
for each bit € total_bits do
1_bit_diff_term <+ Compare(current_group, next_group)
end for
if 1 _bit_diff term = 1 && existed_legal_dash_position then
replace the bit with char — and put check char t
else
give check char * for uncompared group
end if
end for

: end for

: A Implicant < Uncompared any more and indicated including *

. essential A _Tmplicant + Covtable(minterms,Prime _Implicants)

. simplified_function A_Simp < assigning_variables to test Prime_Implicant
. Exit

13

3rd Algorithm: Insertion of nested empty if-else statement[}].

Input: h
Output: list_of_statements
Begin

1:
2:
3:
4:

o

10:
11:
12:
13:
14:
15:
16:
17:
18:

for each && connected con_group € h do
for each condition ¢ € con_group do
if ¢ is first_condition then
insert an IF clause n with ¢ as the condition list_of statement <
add_list(n)
else
insert a nested IF statement n with ¢ as the condition insert an
empty true branch TB and an empty false branch FB in order
list_of_statement < add_list(strcat(n,TB,FB))
end if
end for
insert an empty false branch FB for the 1st condition list_of_statement <
add_list(FB)
end for
for each condition € h and not € any con_group do
repeat line 4,8 and 9
end for
if P is an else if predicate then
insert an false if statement n
make an empty truebranch TB list_of_statement <+ add_list(strcat(n,TB))
end if
return list_of_statement

14

Chapter 4

RESULTS

4.1 Input Program for Step 1 :

Mj Largestl - Motepad = | [E]

File Edit Format Wiew Help

Class Largest {

public static void main(string [] args)i
Int X,Yy,Z;
system.out.printin{“Enter the three integers "J;
Scanner in = new Scanner (System.in);
Xx=in.nextInt();
y=in.nextInt();
Z=1n. nextInt{);
If(x>y&& x>z)
system. out. printIn{“First number is largest");
else if (y=x && y=z)
System.out.printin{“second number is Targest");
else 1 (Z=x && Z=y)
] system. out. printIn{“Third number is largest ");
else
System. out. printin{"eEntered number are not distinct");

Figure 4.1: First Input prog for step 1

The above figure is a simple JAVA code to find the largest number
among three numbers. From this program we have to find the pred-
icates. predicates are those if-else statement which contains AND,
OR or NOT opreator. We use 1st algorithm to find the predicates
from this program.

15

4.2 Output of Step 1 (Predicates Identified) :

Figure 4.2: output of step 1

In the above figure, 3 predicates got identified from the input pro-
gram. Based on these predicates, sum of predicates will get gener-
ated.

16

4.3 Another input prgram for step 1 :

3 Heotatjava - Notepsd
File Edit Format WView Help

class Htotal
I public static void main(String args[]){ int student]][] = new int [5][4];
inttotal]] = new int [5];
for(int i=0;1=<5;1++{
for(int j=0;j<4 j++) {
studenti][j] = (infi{Math random{)*100);
}
}

System_out printin{"marks of each student is as follows ");

for(int i=0;i<5i++){
for(int j=0j<4;j++){
System.out printin{studentfi][j]);
}

1
for(int j=0:j<5;j++)
{

for(int k=0 k<4 k++) {
totallj] = studentj][k] + total[j];
}

System_ out printin{"total marks of each student is as follows ");
for(int i=0;i<5i++) {
System_out printin{totalli]);
}int ht = total[O];
for(int i=1;i<5i++)
{ if{total[i]>ht)
ht = total[i];
1 System out printin("highest marks is:" + ht);}}

Figure 4.3: 2nd input prog for step 1

In the above figure another input program for step is taken.

17

4.4 Output of the input 2(predicates identified)

& CAWindoy

Figure 4.4: output of 2nd input prog of step 1

In the above figure the output of the second program for step one
is depicted. It contains all the predicates available in the previous
figure.

18

4.5 Output of Step 2 (Generation of SOP) :

Figure 4.5: output of step 2

In the above figure, sum of product of two if statements has been
generated. We used 2nd Algorithm to generate the sum of product.
Here, we substituted A for a > 8 , B for b < 10, C for ¢ == 0 and
D for d > 9 in the first satement and likewise in the second.

4.6 Output of Step 3 (Quine Mc-cluskey Method)

B Command g™ N 5 T @l O

Figure 4.6: output of step 3

In the above figure the output of the QM method is depicted. It
contains the minimized sop expression.

20

4.7 Input program for Step 4

class My
{

public static void main()

{
fi2>10 && b==088 c<90)

System.out printn(‘insert')
else
System.out printin("Do not insert’),

Figure 4.7: input prog for step 4

Above Figure is input program for the last step of JPCT.

21

4.8 Output of Step 4 (Insertion of empty if-else
statement)

17 CllesSatyam\Downloadssjamere W0 W o

Figure 4.8: output of step 4

Above figure depicts the output of the last step. It has nested empty
if—else satements in it.

22

Chapter 5

CONCLUSION AND
FUTURE WORK

All the algorihtms to design a code transformr have been success-
fully implemented and desired results were obtained. The trans-
formed program were passed through cobertura tool and an increase
of branch coverage have been recorded. Since the algorithms were
implemented only for JAVA programing language, it can be gener-
alised for every programing language.

23

Bibliography

[1] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Ri-
erson, “emphA practical tutorial on modified condition/ deci-
sion coverage”, vol. NASA /TM-2001-210876, May 2001.National
Aeronautics and Space Administration , Langley Research Cen-
ter Hampton,Virginia 23681-2199.

[2] Mall R, “Fundamental of Software Engineering” Prentice Hall |
3rd edition , 2009.

[3] A. Das, “Automatic generation of MC/DC test data”,” Master’s
thesis, II'T Kharagpur, April 2012.

[4] S. Godboley, “Improved Modfied Condition/ Decision Coverage
using Code Transformation Techniques”, M.Tech Thesis, NIT
Rourkela, May 2013.

[5] S. Tiwary, “Automatic generation of test cases for high MC/DC
coverage”, M.Tech Thesis, II'T Kanpur, June 2014.

[6] Sangharatna Godboley, Durga Prasad Mohapatra, “Time Anal-
ysis of Evaluating Coverage Percentage for C' Program using Ad-
vanced Program Code Transformer” 7 th CSI International Con-
ference on Software Engineering, 7 th CSI CONSEG, 2013.

[7] Sangharatna Godboley, GS Prashanth, Durga Prasad Mo-
hapatro and Bansidhar Majhi, “Increase in Modified Condi-
tion/Decision Coverage using program code transformer”, Ad-
vance Computing Conference (IACC), 2013 IEEE 3rd Interna-
tional, 22/2/2013.

[8] Sangharatna Godboley, Subhrakanta Panda, Durga Prasad Mo-
hapatra, “SMCDCT: A Framework for Automated MC/DC Test
Case Generation Using Distributed Concolic Testing”, Springer
International Publishing, 5/2/2015.

24

[9] Sangharatna Godboley, Avijit Das, Kuleshwar Sahu, Durga
Prasad Mohapatra and Banshidhar Majhi, “Measuring Cover-

age Percentage for C Programs using Code Slicer and CREST
Tool”.

25

