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ABSTRACT  

The demand and application of composites are increasing nowadays. Composite 

materials in the form of plate or plate-like structures are widely used in wind turbine blades and 

ship building due to its high specific strength and stiffness. For high thermal applications, 

Functionally Graded Materials (FGM) are used in preference to laminated composites because of 

its good performance in the thermal field. The pre-twisted cantilever plates have major use in 

turbine blades, fan blades, compressor blades, chopper blades, marine propellers and chiefly in 

gas turbines. These structures are often subjected to thermal environments, and hence FGMs are 

a good alternative to metal plates. 

 The present work deals with the study of buckling analysis of cantilever twisted 

functionally graded material plates. The analysis is done by using ANSYS, and the results are 

validated using ABAQUS. A SHELL-281 element having six degrees of freedom per node is 

employed in ANSYS. The functionally graded material plate with a uniform variation of the 

material property through the thickness is estimated as a laminated section containing number of 

layers, and each layer is taken as isotropic. The power law is used to determine material 

properties in each layer. From convergence studies, ten by ten mesh and twelve number of layers 

are found to give good accuracy. Buckling behavior of cantilever twisted FGM plate for the 

various parameters like twist angle, side to thickness ratio, aspect ratio and gradient index are 

studied. 

KEYWORDS: Functionally graded materials, Pre-twist, Buckling.   
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NOMENCLATURE  

The principal symbols used in this thesis are presented for reference. Every symbol is used for 

different meanings depending on the context and defined in the text as they occur. 

a, b Length and width of twisted panel 

a/ b Aspect ratio 

H Thickness of Plate 

b/ h Width to thickness ratio  

ɮ Angle of twist 

N Gradient index 

E Modulii of elasticity 

G Shear Modulii 

Ɂ Poissonôs ratio 

K Shear correction factor 

kx, ky, kxy Bending strains 

Mx, My, Mxy Moment resultants of the twisted panel 

[N]  Shape function matrix 

Nx, Ny, Nxy In-plane stress resultants of the twisted panel 

Nx
0, Ny

0, Nxy
0 External loading in the X and Y directions respectively 

Aij, Bij, Dij and Sij 
Extensional, bending-stretching coupling, bending and 

transverse shear stiffnesses 

dx, dy Element length in x and y-direction 

dV Volume of the element 

Qx , Qy Shearing forces 

Rx, Ry, Rxy 
Radii of curvature of shell in x and y directions and radius of 

twist 

u, v, w   
Displacement components in the x, y, z directions at any 

point 

uo, vo, wo 
Displacement components in the x, y, z directions at the mid-

surface 

[P] Mass density parameters 



xi 
 

Q Vector of degrees of freedom 

xi, yi Cartesian nodal coordinates 

ũ Shear strains 

ůx ůy Űxy Stresses at a point 

ůx
0, ůy

0 and ůxy
0 In-plane stresses due to external load 

Űxy, Űxz, Űyz Shear stresses in xy, xz and yz planes respectively 

Ůx, Ůy, ɔxy Strains at a point 

Ůxnl, Ůynl, Ůxynl Non-linear strain components 

ɗx, ɗy 
Rotations of the midsurface normal about x- and y- axes 

respectively 

Nx Critical Buckling load 

ȿ Non-dimensional buckling load 

(ɟ)k Mass density of kth layer from mid-plane 

Ʌ Mass density of the material 

ÖùÖx ,ÖùÖy Partial derivatives with respect to x and y 
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CHAPTER  1 

INTRODUCTION  

1.1 Introduction 

A composite material is a structural material made from two or more constituent 

materials with significantly distinct physical or chemical properties, which when fused produce a 

material with characteristics unlike that of the individual components. The main advantage of a 

composite material is that they are light as well as strong. Functionally Graded Materials (FGM) 

are a set of composites that exhibit a uniform change of material properties from one face to 

another and hence eliminate the stress concentration, normally encountered in laminated 

composites. The characteristics of these FGMôs are the ability to yield a new composite material 

with uniform composition variation from thermal resistant ceramics to fracture resistant metals. 

The FGM concept originated in the year 1984 in Japan during a space research program. This 

program envisaged the manufacture of a temperature resistant material to resist a temperature of 

2000 Kelvin and a temperature gradient of 1000 Kelvin having a thickness below 10mm. The 

structural component of an FGM can be characterized by the material constituents. It shows the 

rate of change of material properties. The gradient index governs the chemical configuration, 

geometric configuration and physical state of FGM. Primaril y FGM involves two material 

mixtures in which material configuration changes from one surface to another. Variation of 

porosity from one face to another face also yields functionally graded material. A steady rise in 

porosity builds impact resistance, thermal resistance, and low density. These FGMôs have 

significant applications in civil and mechanical structures including thermal structures like 
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Rocket heat shield, heat exchanger tubes, wear resistance linings, thermos-elastic generators, 

diesel, and turbine engines, etc.  

 The major applications of pre-twisted cantilever panels are in turbine blades, fan blades, 

compressor blades, chopper blades, marine propellers and chiefly in gas turbines. Nowadays, in 

research field the twisted plates have become key structural units. Because of the use of twisted 

panels in turbomachinery, aerospace and aeronautical industries, it is necessary to understand 

both vibration and buckling characteristics of the pre-twisted panels. 

1.2 Importance of Present study 

Composite materials in the form of plate or plate-like structures are widely used in wind 

turbine blades and a certain type of ships, particularly naval ships. Functionally graded material 

plates are finding increasing application in many structures, especially where the temperature is 

high. The plates are also subjected to loads due to fluid or hydrodynamic loading. Thus, 

understanding and proper application of composite materials have helped to control the lifetime 

and stability of these constructions. Hence, the buckling analysis plays a crucial role in the 

design context. From the literature review, it shows that there is plenty of work done in the area 

of flat FGM plates. However, no work has been done on the buckling behavior of twisted FG 

material panels and hence the present study. 
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1.3 Outline of the present work 

The present work consists of the studies made on the buckling behavior of twisted FG 

material plates. The influence of different parameters like twist angle, width to thickness ratio, 

aspect ratio, and material gradient index are studied. 

The outline of this thesis is divided into five chapters. 

Chapter 1 consists of brief introduction on FGM, importance of present study and the outline of 

present work. 

Chapter 2 gives literature reviews on previous studies related to the present study and also the 

objectives of the present studies are explained. 

In chapter 3, the theoretical formulations are presented. The methodology used for the modeling 

of the functionally graded plate is also discussed. 

Chapter 4 consists of convergence studies, comparison studies and the studies of buckling 

behavior of cantilever twisted FGM plate for the various parameters like twist angle, aspect ratio, 

side to thickness ratio and gradient index. 

Chapter 5 contains the conclusions made from the present work and its scope in future work.  
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CHAPTER  2 

LITERATURE REVIEW  

2.1 Literature review 

Reddy (2000) 14 presented the study of FG plates using third-order shear deformation theory. The 

material distribution and modulus of elasticity along thickness were assumed to vary based on 

power-law distribution. The results showed the influence of volume fraction and modular ratio 

on deflections and transverse shear stresses.  

Javaheri and Eslami (2002) 6 derived equilibrium equations and stability equations of 

rectangular FG plate using higher-order shear deformation theory (HSDT) subjected to thermal 

load. The derived equation was found to be identical to the stability and equilibrium equations of 

laminated composite plates. 

Buckling behaviour of FG plates with geometrical imperfections under in-plane compressive 

loading was studied by Shariat et al. (2005) 17. The Classical Plate Theory was used for the 

derivation of equations of equilibrium, stability, and compatibility. From their study, it was 

concluded that the imperfect FG plate has greater buckling load than that of the perfect plate. As 

the imperfection increases, the critical buckling load also increases which can be reduced by 

increasing power law index. 

Yang et al. (2006) 21 presented the sensitivity of post-buckling behaviour of FG material plates to 

initial geometric imperfections such as local type, global type, and sine type imperfections in 

general modes. The formulations used were based on Reddyôs Higher order Shear Deformation 
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Theory and von Karman type geometric non-linearity. The results showed that the post-buckling 

strength was comparatively insensitive to sine mode and global imperfections. However, it was 

highly sensitive to local imperfections that were situated at the center of the plate. They also 

concluded that the post-buckling curves were lowered by an increase in the side to thickness 

ratio, gradient index and aspect ratio. They observed that these curves were less sensitive to 

imperfection sensitivity of the post-buckling reaction of the plate. 

Shariat and Eslami (2007) 18 used third-order shear deformation theory for the analysis of 

buckling of thick rectangular FG plates under various mechanical and thermal loads. The 

mechanical loadings were uniaxial compression, biaxial compression and biaxial compression 

with tension. The thermal loads were a uniform rise in temperature and non-linear rise in 

temperature. It was concluded that for the thick plates, the critical buckling load was over-

predicted by the classical plate theory and in order to have precise buckling load values it was 

recommended that the third-order shear deformation theory was necessary. 

Prakash et al. (2008) 13 presented post-buckling behaviour of FGM skew plates based on shear 

deformable finite element approach under thermal loads. The temperature field was assumed to 

vary along the thickness direction only and to be constant over the plate surface. The thermal 

load carrying capacity increased with increasing skew angle. 

Mahadavian (2009) 7 considered simply supported rectangular plates under non-uniform 

compression loads for the analysis of buckling of FG plate and derived equations of equilibrium 

and stability for the same and also achieved results for FGM sample. In addition, he also studied 

the buckling coefficient caused by the outcome of power law index. 
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Zhao et al. (2009) 23 used FSDT along with the element free kp-Ritz method for the buckling 

analysis of FG plates under thermal and mechanical loading. The buckling analysis of FG plate 

with arbitrary geometry including plates with square and circular holes at the centre was 

investigated. In results, it was stated that the hole size influenced buckling load and buckling 

mode of a plate significantly. 

Mohammadi et al. (2010) 10 presented Levy solution for the buckling analysis of FG plates. The 

plate was assumed to be simply supported along two edges face to face and on the other edges to 

have arbitrary boundary conditions. It was concluded that the critical buckling load decreased 

with the increase of power of FGM. 

The thermal buckling analysis of FG plates using sinusoidal shear deformation plate theory 

(SPT) was presented by Zenkour et al. (2010) 2. Various types of thermal loads were considered 

for the buckling analysis of simply supported rectangular FG plate. The results presented for SPT 

was compared with other theories to demonstrate its importance and accuracy.  

Zenkour and Sobhy (2010) 24 used the sinusoidal SPT to study the thermal buckling of FGM 

sandwich plates. They concluded that the critical buckling temperature decreased with increase 

in core thickness of the plate. 

Naderi and Saidi (2011) 12 presented an exact analytical solution for buckling of moderately 

thick FG plates resting on Winkler elastic foundations. The first order shear deformation theory 

was considered for developing equilibrium equations. The thickness of plate has less effect on 

the stability of FG plates resting on the elastic foundation than that of plates without elastic 

foundation. 
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The buckling analysis of thin rectangular FGM plate under thermal loads using higher order 

deformation theory was studied by Raki et al. (2012) 11. It was concluded that the higher order 

deformation theory predicts buckling behaviour accurately. 

Saha and Maiti (2012) 15 investigated the buckling of simply supported FGM plates loaded with 

constant and linearly varying in-plane compressive load. The HSDT was used to study the effect 

of shear deformation in the case of constant compression loading and classical plate theory as in 

the case of linearly varying load. The buckling results of FGM plate were compared with the 

corresponding isotropic plate and it was found that their ratios were more or less independent of 

loading parameter, aspect ratio and  width-thickness ratio and were functions of only material 

gradient index. 

Latifi et al. (2013) 9 used Fourier series expansion for the buckling analysis of FG material 

plates. Various edge conditions were considered. Here the stability equations were derived from 

the classical plate theory and found accuracy in the proposed approach in the results of buckling 

analysis. 

Reddy et al. (2013) 20 used HSDT for the solutions of buckling analysis of simply supported FG 

plates and concluded that the theory was precise and efficient in predicting the buckling 

behaviour of FG plates. 

Sarrami-Foroushani et al. (2013) 19 used finite strip method to analyse the buckling of FG 

stiffened and unstiffened plates based on CPT. the stiffness and stability matrices were obtained 

by using the principle of minimum total potential energy. Various loading types were considered 

to find critical stresses of rectangular FG plates using the matrix Eigenvalue problem technique.  
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Bhandari and Purohit (2014) 8 analysed FGM plate under transverse load for various end 

conditions. The volume fraction distribution was considered based on power law, exponential 

and sigmoidal distribution. The bending response of E-FGM was found to be nearer to the 

behaviour of P-FGM. 

Zhang et al. (2014) 22 studied the buckling behavior of FGM plates under mechanical and 

thermal loads using the Kriging meshless method. The discrete Eigenvalue equations were 

established in terms of first order shear deformation theory and local Petrov-Galerkin 

formulation. The Kriging technique was used to construct shape function to approximate the 

displacement fields. Convergence studies were made to depict the method presented was 

effective and accurate. 

2.2 Objective of present study 

From the literature review, we can observe there has been plenty of work done on 

buckling of flat FGM plates. However, no work is done on twisted FGM plate. This thesis deals 

with the study of buckling of cantilever twisted FG material plate. The study involves the 

modelling of twisted FGM plate using shell element and solving the buckling problem using 

finite element method software ANSYS and then to validate results in ABAQUS. The effect of 

several factors like twist angle, aspect ratio, side to thickness ratio and material gradient index 

are studied. 

  



NITR  Page 11  
 

 

 

 

 

 

 

 

Chapter 3 

FORMULATION  

  



NITR  Page 12  
 

CHAPTER  3 

FORMULATION  

 

3.1 Characteristics of Twisted plate 

 

 

 

 

 

 

Figure 3. 1: Laminated twisted plate 

 

The Figure 3. 1: Laminated twisted plate illustrates a twisted FGM plate. 

Here,  ū = Twist angle. 

a and b = length and width of the plate respectively. 

h = Thickness of the plate. 
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3.2 Governing Differential Equations 

Consider an element of pretwisted panel with radius of curvatures xR  in x-direction and 

yR  in y-direction shown in Figure 3. 2. The internal forces acting on the element are membrane 

forces ( xN , yN  and xyN  ), shearing forces (xQ  and yQ ) and the moment resultants (xM , yM and

xyM ). 

 

Figure 3. 2: Twisted shell panel element 
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The governing differential equations of equilibrium for shear deformable doubly curved 

pre-twisted panel is given as (Sahu and Datta [16], Chandrashekhara [4]): 

2 2

1 22 2

1 1 1

2
xy

xy xy yx x x

x y x

N M QN Q u
P P

x y R R y R R t t

qå õµ µµ µ µ
+ - - + + = +æ öæ öµ µ µ µ µç ÷

 

22

1 22 2

1 1 1

2
xy

xy y xy y yx

y x y

N N M Q Q v
P P

x y R R x R R t t

qå õµ µ µ µµ
+ - - + + = +æ öæ öµ µ µ µ µç ÷

 

2 2 2
0 0

12 2 2
2

y xyx x x
x y

x y xy

Q NQ N N w w w
N N P

x y R R R x y t

µµ µ µ µ
+ - - - + + =

µ µ µ µ µ
   3.01 

2 2

1 22 2

xyx x
x

MM u
Q P P

x y t t

qµµ µ µ
+ - = +

µ µ µ µ
 

2 2

1 22 2

xy y y

y

M M v
Q P P

x y t t

qµ µ µ µ
+ - = +

µ µ µ µ
 

Where,  

0

xN - External loading in x-direction and 0

yN - External loading in y-direction. 

xR - Radius of curvature in x-direction, yR - Radius of curvature in y-direction and  

xyR - Radius of twist.                                         

              

( ) ()( )
1

2

1 2 3

1

, , 1,z,z
k

k

Zn

k
k Z

P P P dzr

-
=

=äñ
 

3.02 

Here, 

 n= number of layers of the FGM twisted panel. 

 ()
k

r = mass density at kth layer . 
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3.3 Constitutive Relations 

The linear constitutive relations are given by, 
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Where, 
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For the FGM plates, the constitutive relations are expressed as:  
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Coefficients of stiffness are expressed as: 

 ( ) ( )2, , , 1
,B ,D 1, ,

n

i j i j i j ijk k
A Q z z dz

=
è ø= ê úä    For (i, j=1, 2, 6) 3.08 
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The forces and moment resultants can be obtained by integrating stresses over thickness.       
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Where, 

xs - Normal stress in x-direction, ys - normal stress in y-direction. 

xyt , yzt  and xzt  are shear stresses in xy, yz and xz planes respectively. 

3.4 Strain Displacement Relations 

The total strain is considered in two parts namely linear strain and non-linear strain. The 

element stiffness matrix is derived using linear strain part and the geometric stiffness part is 

derived by using nonlinear strain part. The total strain is expressed as 

x x x= +l nl  

The linear strain part for a twisted shell element is, 

 xl x

x

u w
zk

x R
x

µ
= + +
µ
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yzl y

y xy

w v u

y R R
g q

µ
= + - -
µ

 

 
xzl x

x xy

w u v

x R R
g q

µ
= + - -
µ

 

Bending components are given by, 
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=
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      3.11 

3.5 Finite element formulations 

For complex boundary and geometrical conditions where analytical approach is not so 

easily feasible, the finite element approach will be opted. Here, in this work the plate is assumed 

to be a layered panel having number of layers, in which each layer is assumed as homogenous 

and isotropic. The first-order shear deformation theory is used for the present formulation to 

analyse the FG material twisted panel.  

An isoparametric quadratic shell element with eight nodes at its mid-surface shown in 

Figure 3. 3 is considered for the analysis. In this shell element u, v, w, xq and 
yqare the five 

degrees of freedom each node. The Jacobian matrix J is used to transform the isoparametric 
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element from the natural coordinate to the Cartesian coordinate system. The shape function for 

the eight noded shell element is given by, 

( ) 2 2 2 2

1 2 3 4 5 6 7 8,u x h a a x ah a x axh ah ax h axh= + + + + + + +   3.12 

The shape function iN  gives the element and displacement field,   

( )( )( )1 1 1 / 4i i i i iN xx hh xx hh= + + + - i=1 to 4 

( )( )21 1 / 2i iN x hh= - +    i= 5, 7     3.13 

( )( )21 1 / 2i iN xx h= + -     i=6, 8 

Where, 

ix and ihare the values at i th node.x and h are the local natural coordinates of the element. 

 

Figure 3. 3: Element of an Isoparametric quadratic shell 
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The shape function derivatives in Cartesian coordinates óxô and óyô are expressed in natural 

coordinates x and h by,  

[]
1, ,

,y ,

i x i

i i

N N
J

N N

x

h

-è ø è ø
=é ù é ù

ê ú ê ú
         3.14 

Where, 

Jacobian matrix, 
, ,

, ,

x x

h h

è ø
=é ù
ê ú

i i

i i

x y
J

x y
       3.15 

According to first order shear deformation theory, the displacement field is given by, 

 ( ) ( ) ( )0, , ,  ,yu x y z u x y z x yq= +  

 ( ) ( ) ( )0, , ,  ,xx y z u x y z x yv q= +        3.16 

 ( ) ( )0, , ,x y z ww x y=  

Where 0 0,u v  and 0w  are the displacements in x, y and z directions respectively in the mid-plane. 

And u, v and w are the displacements in x, y and z directions respectively at any point. 

xq- Rotation of the mid surface normal to x-axis. 

 and yq - rotation of the mid surface normal to y-axis. 

Displacements derived using the shape functions are, 

i ix N x=ä   i iy N y=ä  

0 i iu N u=ä   0 i iv N v=ä   0 i iw N w=ä      3.17 

x i xiNq q=ä   y i yiNq q=ä  
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3.5.1 Derivation of element matrices 

The linear strains expressed in terms of displacements is given by, 

 {} []{ }eB de=           3.18 

Here, { } { }1 1 1 1 1 8 8 8 8 8, , , , ,............................. , , , ,e x y x yd u v w u v wq q q q=    3.19 

 [] [][ ] [ ]1 2 8, ,.........................B B B B=è øê ú      3.20 
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é ù
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In natural coordinate system, element matrices are derived as: 

Element plane elastic stiffness matrix 

1 1

1 1

T

p p p pk B D B J d dx h
- -

è ø è ø è øè ø=ê ú ê ú ê úê úñ ñ       3.22 

Element elastic stiffness matrix 

[] [][][]
1 1

1 1

T

ek B D B J d dx h
- -

=ñ ñ        3.23 

Where, 

[]B is strain-displacement matrix, []D  stress-strain matrix, []N  is shape function matrix and J  

is the determinant of Jacobian matrix.  
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Shape function matrix is expressed as:  

 [] 5= ³iN I N  For i=1, 2,éé.8       3.24 

Where, 5I - Identity matrix of size 5x5. 

3.5.2 Geometric stiffness matrix 

The nonlinear strains with curvature component are used to derive the element geometric 

stiffness matrix for the twisted plate by employing the technique described by Cook, Malkus and 

Plesha [3]. Due to applied edge loading, the geometric stiffness matrix depends on in-plane stress 

distribution in the element. Finite element method is employed in carrying out plane stress 

analysis to determine the stresses. 

The strain energy is given by, 

 { }0

2

T

nl
v

U dvs eè ø= ê úñ          3.25 

The non-linear strain components are given by, 

 

2 22 2 2

21 1 1 1

2 2 2 2

yx
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u v w u
z

x x x R x x

qq
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è øµå õ å õµ µ µ µå õ å õ å õ
= + - - + +é ùæ öæ ö æ ö æ öæ ö

µ µ µ µ µç ÷ ç ÷ ç ÷ç ÷é ùç ÷ ê ú
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The strain energy obtained by using non-linear strain is, 
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This can also be written as 

 [][][]2

1

2

T

v

U f S f dV= ñ         3.28 

Where 

 {} , , , , , , , , ,
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q qq qè øå õ µ µå õµ µ µ µ µ µ µ µ
= - -é ùæ öæ öæ öµ µ µ µ µ µ µ µ µ µç ÷é ùç ÷ê ú

  3.29 

And, []
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[]
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       3.30 

Where,  []
0 0 0 0

0 0 0 0

1x xy x y

xy y xy y

N N
S

N Nh

s t

t s

è ø è ø
= =é ù é ù
ê ú ê ú

       3.31 

The in-plane stress resultants 
0

xN , 0

yN  and 0

xyN  each Gauss point are obtained separately by 

plane stress analysis, and the geometric stiffness matrix is formed for these stress resultants 

 {} []{}ef G q=          3.32 

Where, {}
T

e x yq u v w q qè ø=ê ú        3.33 
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The strain energy becomes 

 {}[][][]{} {} []2

1 1

2 2

T TT

e g ee
U q G S G q dV q K qè ø= = ê ú      3.34 

Where the element geometric stiffness matrix is expressed as: 
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3.6 Methodology 

This project work involves creating a finite element model of a functionally graded 

twisted plate subjected to in-plane uniform compressive load. The initial step is to build a model 

of a functionally graded plate using ANSYS. First a flat FGM plate will be modelled, and 

buckling behavior will be analyzed, and the results are compared with previous studies. Then a 

twisted functionally graded plate will be modelled and analyzed for its characteristics subjected 

to in-plane loads. Results will be analyzed and validated with the calculations using ABAQUS. 

The three steps involved in modelling and analysis of plates are: 

I. Pre- Processor  

II.  Solution  

III.  General Postprocessor 

3.6.1 Material modelling 

FGMs consist of a mixture of metal and ceramic by gradually varying the volume 

fraction of the constituent materials. A simple rule of mixture based on power-law is assumed to 

obtain the effective mechanical properties of FGM plate. The variation of material properties 

through the thickness of the plate is given by (Reddy, 2000) [14] 

 ( )z t b f bP P P V P= - +         3.37 

where subscripts t and b refers to the top and bottom of the plate respectively, Pz represents a 

property of the material and z is measured along the thickness of the plate. In Eq.(3.37), Vf is the 

volume content of ceramic and is expressed by power-law distribution as 

 0.5

n

f

z
V

h

å õ
= +æ ö
ç ÷

         3.38 
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In which h is the thickness of the plate. n is the gradient index that is always positive, and z is the 

distance from the centre of layer under consideration to the centre of plate in which -(h /2) Ò z Ò 

+(h /2) . Change of Vf over plate thickness is shown in Figure 3. 4. 

 

 

Figure 3. 4: Change of Volume fraction (Vf) over plate thickness 
 

Since the material constituents of the FG material varies over the thickness, the numerical 

model is made into divisions consisting of a number of layers as shown in Figure 3. 5. Each layer 

is assumed to be isotropic. The power law is employed to find the material properties in each 
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layer. The laminated structure represents the stepwise variation in properties, and the gradation 

can be approximated by using a high number of layers. 

Ceramic  

 

Metalic 

 

Figure 3. 5: FG Material section and its equivalent laminated composite section  
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CHAPTER  4 

RESULTS AND DISCUSSIONS 

4.1 Overview 

In this section, the results of the buckling analysis of cantilever twisted functionally 

graded material plates subjected to in-plane loads are presented.  The analysis is carried out using 

finite element software ANSYS with the SHELL281 element. The element considered has eight 

nodes and each node has six degrees of freedom. The functionally graded material plate section 

is modelled in the form of laminated composite section consisting of number of layers by 

approximating the uniform variation of the material property along the thickness and considering 

each layer as isotropic. The power law is used to determine the material properties of each layer. 

Convergence studies are made to fix up the number of layers and mesh size as well, and results 

are compared with the previous studies. 

4.2 Convergence study 

The convergence study is made for the mesh size necessary for the buckling analysis and 

also for the number of layers necessary to represent the FG material section. Since there are no 

studies done on twisted FGM plates, the convergence is first conducted on flat plates, and the 

results are compared with previous studies. Later the convergence is made on twisted FGM plate 

and then mesh size, and number of layers is again decided. 

The Aluminium/Alumina (Al/Al2O3) FGM [15] with the material properties Al - (Em = 70GPa, ɡ 

= 0.3), Al2O3 - (Ec = 380GPa, ɡ = 0.3) are considered for the present study throughout. 
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The Titanium/Zirconium oxide (Ti/ZrO2) FGM [5] with the material properties Ti ï 

(Em=116GPa, ɡ = 0.32) and ZrO2 ï (Ec = 200GPa, ɡ = 0.3) are used in finding the buckling 

behavior for varying gradient index. 

Non-dimensional buckling load is given by [15] 

 
2

3

x

m

N b

E h
l=  

4.2.1 Convergence study on simply supported flat FGM plate 

The convergence study on simply supported flat FGM plate with gradient index n = 0 for 

various mesh divisions are shown in Table 4. 1. The results show good convergence for 10×10 

mesh division and hence, the 10×10 mesh division is used for the further study. 

Table 4. 1: Convergence of Non- dimensional buckling load of simply supported flat FGM plate 

(n=0) with varying mesh size (a/b =1, b/h=100) 

Mesh size 
Buckling Load 

( )x
N kN 

Non-dimensional 

Buckling Load ()l  

4×4 696.59 19.9025 

6×6 687.00 19.6285 

8×8 686.59 19.6168 

10×10 686.53 19.6151 

12×12 686.52 19.6148 

Ref [20] 19.57 

FGM section is considered as an equivalent laminate section for the modelling. The 

convergence study is done by using simply supported flat FGM plate with varying number of 

layers using gradient index n = 1. The observations are given in Table 4. 2. From the 

observations, it is concluded that the 12 number of layers are sufficient to represent FGM 

property as an equivalent laminate section.  
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Table 4. 2: Convergence of Non- dimensional buckling load of simply supported flat FGM plate 

(n=1) with varying number of layers (a/b =1, b/h=100) 

Number of Layers 
Buckling Load 

( )x
N  kN 

Non-dimensional 

Buckling Load ()l  

4 350.01 10.0002 

8 344.23 9.8351 

12 343.12 9.8034 

16 342.73 9.7922 

Ref [15] 9.7775 

 

4.2.2 Convergence study on Cantilever twisted FGM plate 

The convergence study on cantilever twisted FGM plate with gradient index n = 0, and 

twist angle ū =15Á for various mesh divisions is shown in Table 4. 3.  The results show good 

convergence for 10×10 mesh division and the same is used for the further study. 

Table 4. 3: Convergence results of Non- dimensional buckling load of cantilever twisted FGM 

plate (n= 0) with varying mesh size (a/b =1, b/h=100, ū =15Á) 

Mesh size 
Buckling Load ( )x

N  kN 
Non-dimensional Buckling 

Load ()l  

1st Buckling  2nd Buckling  1st Buckling  2nd Buckling  

4×4 41.300 365.17 1.1800 10.4334 

6×6 41.197 362.86 1.1771 10.3674 

8×8 41.172 362.35 1.1763 10.3528 

10×10 41.163 362.19 1.1761 10.3483 

12×12 41.160 362.13 1.1760 10.3465 

Convergence study for the number layers on cantilever twisted FGM plate with gradient index n 

= 1 is shown in Table 4. 4. From the observations, it is concluded that 12 number of layers are 

sufficient to represent FGM property as equivalent laminate section, hence 12 number of layers 

are used in the further studies. 
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Table 4. 4: Convergence results of Non- dimensional buckling load of cantilever twisted FGM 

plate (n=1) with varying number of layers (a/b =1, b/h=100, ū =15Á) 

Number of 

layers 

Buckling Load ( )x
N  kN 

Non-dimensional Buckling Load 

()l  

1st Buckling  2nd Buckling  1st Buckling  2nd Buckling  

4 20.998 184.79 0.5999 5.2797 

8 20.652 181.75 0.5901 5.1928 

12 20.586 181.17 0.5882 5.1763 

16 20.563 180.96 0.5875 5.1703 

 

4.3 Comparison with previous studies 

The comparative studies are made on cantilever twisted laminated panels to validate the 

methodology used in ANSYS. The results obtained are closely matched with the previous study 

results. Table 4. 5 and Table 4. 6 shows the comparative study on the variation of Non-

dimensional buckling load of cantilever twisted laminated panels with different angle of twist 

and aspect ratio respectively.  

Table 4. 5: Comparative study of the variation of Non-dimensional buckling load of cantilever 

twisted laminated panels for different angle of twist (ū) 
(a/b=1, b/h=250, E11=141GPa, E22=9.23GPa, ɡ12=0.313, G12=5.95GPa, G23=2.96GPa) 

Angle of Twist 

Φ 

Non-dimensional Buckling Load ()l  

Present Ref [1] 

0°/90° 0°/90°/0°/90° 0°/90° 0°/90°/0°/90° 

0° 0.7106 1.4397 0.7106 1.4432 

10° 0.7000 1.4191 0.6949 1.4078 

20° 0.6698 1.3570 0.6473 1.3114 

30° 0.6202 1.2556 0.5689 1.1526 
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Table 4. 6: Comparison study of the variation of Non-dimensional buckling load   of cantilever 

twisted laminated panels for different aspect ratio (a/b) (ū =15°, b/h=250) 

a/b 

Non-dimensional Buckling Load ()l  

Present Ref [1] 

0°/90° 0°/90°/0°/90° 0°/90° 0°/90°/0°/90° 

0.5 2.7050 5.4780 2.7010 5.4706 

1 0.6876 1.3931 0.6750 1.3676 

2 0.1725 0.3496 0.1687 0.3418 

3 0.0767 0.1555 0.0750 0.1519 

In both cases, the results agree very well. Hence, the twisted plate modelling in ANSYS gives 

good results. 

4.4 Results and Discussions 

Buckling analysis of cantilever twisted Aluminium/Aluminium oxide (Al/Al2O3) FG 

material plate is studied. The material properties are Al - (Em = 70GPa, ɡ = 0.3), Al/Al2O3 - (Ec = 

380GPa, ɡ = 0.3). The effect of various parameters on the buckling of pre-twisted FGM plate is 

studied.  

Non-dimensional buckling load is given by 

‗
ὔὼὦ

ς

ὉάὬ
σ
 

The non-dimensional buckling load for the cantilever twisted plate with varying twist angle is 

studied first using ANSYS and then the results obtained in ANSYS are validated using 

ABAQUS. The results obtained are shown in Table 4. 7, and the same is shown graphically for 

the first buckling mode in Figure 4. 1. The results obtained in ANSYS and ABAQUS are close to 
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each other and hence, further studies are continued with ANSYS. From the results, it is observed 

that the Non-dimensional buckling load decreases with increase in twist angle.  

Table 4. 7: Variation of Non-dimensional buckling load with varying twist angle (ū)  

(a/b=1, b/h=100, n=1) 

Angle of 

Twist 

Non-dimensional Buckling Load ()l  

ANSYS ABAQUS 

1st Buckling 

mode 

2nd Buckling 

mode 

1st Buckling 

mode 

2nd Buckling 

mode 

0° 0.5899 4.4685 0.5924 4.5566 

10° 0.5896 5.2485 0.5918 5.4408 

15° 0.5882 5.1763 0.5902 5.3657 

20° 0.5852 5.0657 0.5872 5.2514 

30° 0.5758 4.7497 0.5775 4.9237 

 

 
 

Figure 4. 1:  Variation of Non-dimensional buckling load with varying twist angle (ū) 
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The 1st and 2nd buckling modes of untwisted and 15° twisted plates are shown in the Figure 4. 2 

and Figure 4. 3 respectively. 

  

   1st Mode      2nd Mode 

Figure 4. 2: Buckling modes of an untwisted plate 

 

  1st mode      2nd mode  

Figure 4. 3: Buckling modes of 15° twisted plate. 
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Variation of non-dimensional buckling load with increasing aspect ratio for different gradient 

index n = 1 and n = 2 is then studied with twist angle 15° and results are presented in Table 4. 8 

and Table 4. 9 respectively. The variation of non-dimensional buckling load is shown graphically 

in the Figure 4. 4. From the results, it has been observed that the non-dimensional buckling load 

decreases largely with increasing aspect ratio. This is because when the aspect ratio increases, 

the length of the plate in the direction of the in-plane compression load acting also increases 

resulting in decreased stiffness. Hence, the amount of critical buckling load required to cause 

critical buckling decreases. 

Table 4. 8: Variation of Non-dimensional buckling load with varying aspect ratio (a/b)  

(b/h=100, ū =15°, n=1) 

a/b 

Non-dimensional Buckling Load ()l  

1st Buckling 2nd Buckling 

0.5 2.4338 17.4845 

1 0.5882 5.1766 

2 0.1443 1.2734 

3 0.0634 0.5606 

 

Table 4. 9: Variation of Non-dimensional buckling load with varying aspect ratio (a/b)  

(b/h=100, ū =15°, n=2) 

a/b 
Non-dimensional Buckling Load ()l  

1st Buckling  mode 2nd Buckling mode 

0.5 1.8321 13.5971 

1 0.4589 4.0383 

2 0.1125 0.9936 

3 0.0495 0.4374 
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Figure 4. 4: Variation of Non-dimensional buckling load with varying aspect ratio(a/b) 

The variation of non-dimensional buckling load with increasing side to thickness ratio for a 15° 

pre-twisted plate is studied, and the results obtained are presented in Table 4. 10 and the 

graphical representation of variation is shown in Figure 4. 5. From the results, it has been 

observed that the critical buckling load decreases with increasing the side to thickness ratio but 

the non-dimensional buckling load increases with increasing the side to thickness ratio. Because, 

as the side to thickness ratio of twisted plate increases, the stiffness of the plate decreases, and 

thus it decreases the critical buckling load. But in Non-dimensional buckling load, the term óhô is 

in the denominator and hence it shows increasing value with increasing the side to thickness 

ratio.   

 

Figure 4. 5: Variation of non-dimensional buckling load with varying side to thickness ratio(b/d) 
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Table 4. 10: Variation of Non-dimensional buckling load with varying side to thickness 

ratio(b/d) (a/b=1, ū =15°, n=1) 

b/h 
Buckling Load ( )x

N kN 
Non-dimensional Buckling Load 

()l  

1st Buckling  2nd Buckling  1st Buckling  2nd Buckling  

10 20218 156470 0.5776 4.4706 

20 2547.10 22144 0.5822 5.0615 

30 756.91 6622.20 0.5839 5.1085 

40 319.60 2802.80 0.5844 5.1251 

50 163.84 1438.60 0.5851 5.1378 

60 94.925 834.14 0.5858 5.1478 

70 59.844 526.15 0.5865 5.1563 

80 40.132 352.99 0.5871 5.1637 

90 28.220 248.29 0.5878 5.1715 

100 20.586 181.17 0.5882 5.1763 

 

The variation of non-dimensional buckling load with increasing gradient index for a 15° 

pre-twisted plate is studied for two different FGMs Al/Al2O3 and Ti/ZrO2. The results obtained 

are presented in Table 4. 11 and Table 4. 12.  From the results, it is observed that non-

dimensional buckling load decreases with increase in the gradient index. This is because, when 

the gradient index is zero, the plate will be completely ceramic which is very stiff and hence the 

critical buckling load is higher. As it goes on increasing, the metal content in the plate also 

increases, resulting in reduced stiffness and, therefore, the critical buckling load goes on 

decreasing. When the gradient index reaches infinity, the plate will be completely metallic which 

is less stiff than ceramic and thus critical buckling load is less. The variation is shown in the 

Figure 4. 6 and Figure 4. 7. 
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Table 4. 11: Variation of Non-dimensional buckling load with varying gradient index (n) for 

Al/Al2O3 FGM (a/b=1, ū =15°, b/h=100) 

Gradient index 

(n) 

Buckling Load ( )x
N kN 

Non-dimensional Buckling Load 

( )x
N  

1st Buckling  2nd Buckling  1st Buckling  2nd Buckling  

0 (Al2O3) 41.163 362.19 1.1761 10.3483 

0.5 26.270 231.42 0.7506 6.6120 

1 20.586 181.17 0.5882 5.1763 

2 16.062 141.34 0.4589 4.0383 

5 13.510 118.85 0.3860 3.3957 

10 12.386 108.95 0.3539 3.1128 

20 12.298 99.377 0.3228 2.8393 

30 10.865 95.571 0.3104 2.7306 

50 10.615 93.374 0.3033 2.6678 

100 10.563 92.918 0.3018 2.6548 

             Њ Al)  7.5827 66.720 0.2166 1.9063 

  

 

Figure 4. 6: Variation of Non-dimensional buckling load with varying gradient index(n) for 

Al/Al2O3 FGM. 
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Table 4. 12: Variation of Non-dimensional buckling load with varying gradient index (n) for 

Ti/ZrO2 FGM (a/b=1, ū =15°, b/h=100) 

Gradient index 

(n) 

Buckling Load ( )x
N kN 

Non-dimensional Buckling Load 

( )x
N  

1st Buckling  2nd Buckling  1st Buckling  2nd Buckling  

0 (CrO2) 21.665 190.63 0.3735 3.2867 

0.5 18.031 158.52 0.3109 2.7331 

1 16.791 147.74 0.2895 2.5472 

2 15.811 139.12 0.2726 2.3986 

5 14.943 131.46 0.2576 2.2665 

10 14.308 125.88 0.2467 2.1703 

20 13.799 121.41 0.2379 2.0933 

30 13.624 119.87 0.2349 2.0667 

50 13.528 119.02 0.2332 2.0521 

100 13.509 118.85 0.2329 2.0491 

             Њ Ti)  12.667 111.53 0.2184 1.9229 

 

 

Figure 4. 7: Variation of Non-dimensional buckling load with varying gradient index (n) for 

Ti/ZrO2 FGM. 
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CHAPTER  5 

CONCLUSIONS 

 

5.1 Conclusions 

The present work enables to arrive at the following important conclusions: 

× With the increase in angle of twist, the non-dimensional buckling load decreases. 

× As the aspect ratio (a/b) increases, the non-dimensional buckling load of a twisted FGM 

plate decreases largely. This is because when the aspect ratio increases, the length of the 

plate in the direction of the in-plane compression load also increases resulting in the 

decreased stiffness. Hence, the amount of critical buckling load required to cause critical 

buckling decreases. 

× The non-dimensional buckling load also increases with increase in the side to thickness 

ratio (b/d).  Because, as the side to thickness ratio of the twisted plate increases, the 

stiffness of the plate decreases as well, and thus it increases critical buckling load. 

× The non-dimensional buckling load decreases with increase in the material index of a 

pre-twisted functionally graded material plate. This is because, as the material gradient 

goes on increasing, the metal content in the plate also increases but the ceramic content 

decreases resulting in reduced stiffness and, therefore, the critical buckling load goes on 

decreasing with increase in gradient index. 
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5.2 Scope of Future Works 

The present study can be extend to: 

× Study the effect of thermal loads alone and combination of mechanical and thermal loads 

on the buckling analysis of twisted FG material plate.  
× Considering different varying edge load on buckling analysis of twisted functionally 

graded material plate.  
× Study the non-linear buckling analysis of twisted functionally graded material plate.   
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