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                                                 INTRODUCTION: 

                  

                              
In the given project  titled “Existence of weak solutions of the p-Laplacian problem” , unique 

methodology is used to find the existence of weak solution to the given p-Laplacian problem. There 

are several ways of solving the problem out of which the Nehari method of finding solutions is used 

in this project , specifically which uses the concept of the mountain pass theorem. In other                     

words, the Nehari hypothesis comes into existence ,or we can say, can be derived from the famous 

mountain pass theorem which is very helpful in case of finding solutions to the linear or non-linear 

partial differential equations. The study of differential equations and variational problems with 

variable exponent has been a new and interesting topic. Its interest is widely justified with many 

physical examples, such as nonlinear elasticity theory, electrorheological fluids, etc. The study on 

variable exponent problems is attracting more and more interest in recent years, for example, there 

have been many contributions to nonlinear elliptic problems associated with the p(x)-Laplacian  for a 

thorough overview of the recent advantages from various view points. 

 

 

Literature Survey: 

          

 In all the papers, information about the p-Laplacian as well as different techniques of solving it are 

provided which is  actually, in mathematics, a quasilinear  elliptic partial differential operator of 

second order . In the paper  by  Bin Ge(2013) , a method of formulating the sign changing solutions 

was obtained which also included the techniques of finding the weak solutions of a given p-Laplacian 

problem. Lorenzo,Enea P,Marco(2015) had introduced  methodologies for stability of the variational 

eigenvalues for the fravtional p-Laplacian. In the paper by Dragomir(2005) , the first eigenvalue came 

into existence for the p-Laplacian operator.In this paper, he specifically mentioned the variational 

techniques of finding the eigenvalues.Kovacik and Rakosuik(1991) gave the different properties of 

the spaces including the Sobolev spaces and also the    spaces.This paper thoroughly gives a clear 

understanding of both the spaces with some new forms.While Fan X L , Zhang Q H(2003) discussed 

about the existence of the  p(x)-Laplacian dirichlet problems. Also the embedding theorems i.e. the 

Sobolev embedding theorems  for the spaces      are tackled in a very unique manner by Fan X 

L,Shen J,Zhao D(2001) 
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                                                 ABSTRACT 

This project deals with the variational and the Nehari manifold method or by the Nehari hypothesis 

for the p-Laplacian equations in a bounded domain or in the whole space.Then a proof of the 

existence of the weak solutions of the given p-Laplacian problem is given under certain specific 

conditions. In this project ,a different approach is used to tackle the proposed p-Laplacian problem 

which is by the variational method  by using the mountain pass theorem which is used to guarantee 

the existence of solutions of the  non-linear partial differential equation. Few information about 

various topics which is required to solve the proposed problem like the Sobolev spaces,Sobolev 

embeddings,distribution theory,Sobolev inequalities etc, are provided to have better understanding of 

the given p-Laplacian problem.The hypothesis by Nehari along with the techniques to solve non-

linear partial differential equations is given along with some of the theorem like the Lax-Milgram 

theoerem, mountain pass theorem and the Banach fixed point theorem.  
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1   DISTRIBUTIONAL THEORY 

1.1   Distributions  

                    Distributions or the generalized functions  are objects that generalize the classical notion  

of functions in mathematical analysis. They make it possible to differentiate functions for which 

derivatives doesnot exist. In particular the locally integrable functions have distributional derivative. 

They are generally encountered in case of the partial differential equations(PDE) . The basic idea in 

distribution theory is to reinterpret functions as linear functionals acting on a space of test functions. 

Standard functions act by integration against a test function, but many other linear functionals do not 

arise in this way, and these are the "generalized functions". There are different possible choices for the 

space of test functions, leading to different spaces of distributions. The basic space of test function 

consists of smooth functions with compact support, leading to standard distributions.  They are in 

mathematical sense a class of linear functionals which are a mapping from the set of test functions to 

set of real numbers. 

                                                                  T :  D(R) → R  

1.2    Test functions 

In the simplest case, the set of test functions considered is D(R), which is the set of functions             

φ : R → R having two properties: 

 φ   is smooth(infinitely differentiable); 

 φ  has a compact support(is identically zero outside some bounded interval). 

A distribution T is a linear mapping T : D(R) → R. Instead of writing T(φ), it is conventional to write 

<T, φ> for the value of T acting on a test function φ. A simple example of a distribution is the  δ  

called as the Dirac delta , defined by 

                                                   <δ , φ> =  φ(0)  

meaning that δ evaluates a test function at 0. Its physical interpretation is as the density of a point 

source.In case of test functions, there is a space called the test function space. The space D(U) of test 

functions on U is defined as follows. A function  : U → R is said to have compact support if there 

exists a compact subset K of U such that   (x) = 0 for all x in U \ K. The elements of D(U) are the 

infinitely differentiable functions φ : U → R with compact support – also known as bump functions. 

This is a real vector space. It can be given a topology by defining the limit of a sequence of elements 

of D(U). A sequence (  k) in D(U) is said to converge to   ∈ D(U) if the following two conditions 

hold : 

 There is a compact set K ⊂ U containing the supports of all   : 

                                   ⋃          ⊂ K  

 

 For each multi-index  , the sequence of partial derivatives      tends uniformly to     
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1.3  Functions as distributions 

 

The function  f : U → R is called locally integrable if it is Lebesgue integrable over every compact 

subset K of U. This is a large class of functions which includes all continuous functions and all L
p
 

functions. The topology on D(U) is defined in such a fashion that any locally integrable function f 

yields a continuous linear functional on D(U) – that is, an element of D′(U) – denoted here by Tf, 

whose value on the test function φ is given by the Lebesgue integral : 

                                     〈    〉   ∫       
 

 

Conventionally, one abuses notation by identifying Tf with f, provided no confusion can arise, and 

thus the pairing between Tf and φ is often written: 

                                                 〈   〉   〈    〉 

If f and g are two locally integrable functions, then the associated distributions Tf and Tg are equal to 

the same element of D′(U) if and only if f and g are equal almost everywhere . In a similar manner, 

every Radon measure μ on U defines an element of D′(U) whose value on the test function   is ∫  dμ. 

As above, it is conventional to abuse notation and write the pairing between a Radon measure μ and a 

test function φ as ⟨μ,   ⟩. Conversely, as shown in a theorem by Schwartz (similar to the Riesz 

representation theorem), every distribution which is non-negative on non-negative functions is of this 

form for some (positive) Radon measure.The test functions are themselves locally integrable, and so 

define distributions. As such they are dense in D′(U) with respect to the topology on D′(U) in the 

sense that for any distribution T ∈ D′(U), there is a sequence  n ∈ D(U) such that 

                                                       〈    〉     〈   〉  ,        ∈ D(U)  

 

 

 

 

1.4   Derivatives of distributions 

  It is desirable to choose a definition for the derivative of a distribution which, at least for   

distributions derived from smooth functions. Then the disributional  derivative  of a locally integrable 

function  say  f  is given by 

                                                    <    ,  > =  ∫      
 

                                

                                                         =  - <f ,   >        
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 Let  us take the example of the Heaviside function denoted by H(x) and which is defined by 

                 H(x) =  {
              

               
 

Then the distributional derivative of a Heaviside function is found as: 

 <     ,   > =  - < H ,   > 

                  =   ∫            
 

   

                  =   ∫            
 

  
 

                  =  - ∫        
 

 
 

                  =  -[ ( ) -     ]  =   (0)  =  <  ,   > 

So we will get that the dirac delta function is the distributional derivative of the Heaviside function. 

 

 1.5     Convolutions 

      In mathematics and, in particular, functional analysis, convolution is a mathematical operation on 

two functions f and g, producing a third function that is typically viewed as a modified version of one 

of the original functions, giving the area overlap between the two functions as a function of the 

amount that one of the original functions is translated. Convolution is similar to cross-correlation. It 

has applications that include probability, statistics, computer vision, image and signal processing, 

electrical engineering, and differential equations. 

   The convolution of f and g is written f*g, using an asterisk or star. It is defined as the integral of the 

product of the two functions after one is reversed and shifted. As such, it is a particular kind of 

integral transform: 

                     

                    f  g (t)   =   ∫             
 

  
 

                              =   ∫             
 

  
          (commutativity) 

                   While the symbol t is used above, it need not represent the time domain. But in that 

context, the convolution formula can be described as a weighted average of the function f(x) at the 

moment t where the weighting is given by g(−x) simply shifted by amount t. As t changes, the 

weighting function emphasizes different parts of the input function. 
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2   WEAK DERIVATIVES 

    

 In mathematics, a weak derivative is a generalization of the concept of the derivative of a 

function(strong derivative) for functions not assumed differentiable, but only integrable, i.e. to lie 

in the L
p
 space .  Let  v be a function in the Lebesgue space         . We say that a function  f in 

space          is a weak derivative of  v if, 

                                       ∫            
 

 
    =    -∫           

 

 
   

                                                                                                       ,              ∈    
       

Generalizing to n dimensions, if u and v are in the space     
     of locally integrable functions 

for some open set U ⊂     and if   is the multi-index then we say, v is the     weak derivative 

of u if, 

                                           ∫      
 

     =     | | ∫   
 

   ,    

                                                                                                            ∈    
       

   

 Let us see one example , for the absolute value function  u:[-1,1] [0,1] defined by u(t) = | |  

which is not differentiable at t=0 has a weak derivative  v known as the sign function given by 

 

                                v:[-1,1] [    ]        =  {
       
            
         

 

 

This is not the only weak derivative for u: any w that is equal to v almost everywhere is also a 

weak derivative for u. Usually, this is not a problem, since in the theory of L
p
 spaces and Sobolev 

space, functions that are equal almost everywhere are identified. 

 

 

2.1   Weak formulation 

            ∆u = f  in weak formulation can be written as 

                                  ∫          
 

     =   ∫             
 

           ,       v ∈   
     

                            ⇒    - ∫         
 

    =   ∫             
 

   

           If u satisfies the second equation ,then  it is  said to be the weak formulation of first equation. 
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2.2   Weak solutions 

In mathematics, a weak solution (also called a generalized solution) to an ordinary or partial 

differential equation is a function for which the derivatives may not all exist but which is nonetheless 

deemed to satisfy the equation in some precisely defined sense. There are many different definitions 

of weak solution, appropriate for different classes of equations. One of the most important is based on 

the notion of distributions.Avoiding the language of distributions, one starts with a differential 

equation and rewrites it in such a way that no derivatives of the solution of the equation show up (the 

new form is called the weak formulation, and the solutions to it are called weak solutions). Somewhat 

surprisingly, a differential equation may have solutions which are not differentiable; and the weak 

formulation allows one to find such solutions.Weak solutions are important because a great many 

differential equations encountered in modelling real world phenomena do not admit sufficiently 

smooth solutions and then the only way of solving such equations is using the weak formulation. Even 

in situations where an equation does have differentiable solutions, it is often convenient to first prove 

the existence of weak solutions and only later show that those solutions are in fact smooth enough. 

   As an illustration of the concept, consider the first-order wave equation, 

                                                    
  

  
 + 

  

  
 = 0 

  where u = u(t, x) is a function of two real variables. Assume that u is continuously differentiable on 

the Euclidean space R
2
, multiply this equation (1) by a smooth function   of compact support, and 

integrate. One obtains , 

       

      ∫ ∫
       

  
            

 

  

 

  
 + ∫ ∫

       

  
            

 

  

 

  
 = 0 

  Using Fubini's theorem which allows one to interchange the order of integration, as well as 

integration by parts (in t for the first term and in x for the second term) this equation becomes 

   

            -∫ ∫       
       

  
      

 

  

 

  
   - ∫ ∫       

       

  
      

 

  

 

  
 = 0 

 (Notice that while the integrals go from −∞ to ∞, the integrals are essentially over a finite box 

because   has compact support, and it is this observation which also allows for integration by parts 

without the introduction of boundary terms.) 

We have shown that first equation  implies second equation  as long as u is continuously 

differentiable. The key to the concept of weak solution is that there exist functions u which satisfy 

second equation  for any  , and such u may not be differentiable and thus, they do not satisfy first 

equation . A simple example of such function is u(t, x) = |t − x| for all t and x. (That u defined in this 

way satisfies second equation  is easy enough to check, one needs to integrate separately on the 

regions above and below the line x = t and use integration by parts.) A solution u of  second equation 

is called a weak solution of the first equation . 
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3   SOBOLEV SPACES 

Sobolev spaces are the space of functions whose distributional derivatives exists in the    spaces. In 

other words, in mathematics, a  Sobolev space is a vector space  of functions equipped with a norm  

that is a combination of L
p
-norms of the function itself as well as its derivatives up to a given order. 

The derivatives are understood in a suitable weak sense to make the space complete, thus a Banach 

space. Intuitively, a Sobolev space is a space of functions with sufficiently many derivatives for some 

application domain, such as partial differential equations, and equipped with a norm that measures 

both the size and regularity of a function. 

Sobolev spaces are named after the Russian mathematician Sergei Sobolev. Their importance comes 

from the fact that solutions of partial differential equations are naturally found in Sobolev spaces, 

rather than in spaces of continuous functions and with the derivatives understood in the classical 

sense. 

 They are generally denoted by           where, 

                                         =  { u ∈   (Ω) : |  | ∈   (Ω)} 

  Here 1 represents the appearance of the first order derivative and p refers to the existence of the p 

norms. 

In the one-dimensional case (functions on R) the Sobolev space W
 k,p

 is defined to be the subset of 

functions f in       such that the function f and its weak derivatives up to some order k have a finite
 
p 

norm, for given p (1 ≤ p ≤ +∞). As mentioned above, some care must be taken to define derivatives in 

the proper sense . 

  With the above definition  Sobolev spaces admits a natural norm 

                               ‖ ‖    =  √∑ ‖  ‖ 
  

   

 

 =    ∑ |     |
 
    

   

   
   

 One of the type of Sobolev spaces where p=2 is the Hilbert space . 

 

3.1  Sobolev Embeddings 

   For  any  two spaces X and Y  such  that  X ⊂ Y   and 

                                                       ‖ ‖   ≤  C ‖ ‖                ,      u ∈ X 

    then we say X is embedded in Y . 
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3.2  Sobolev Inequalities 

    

    3.2.1    General Sobolev inequalities 

                 Let U be a bounded open subset of    , with a    boundary (U may also be unbounded, 

but in this case its boundary, if it exists, must be sufficiently well-behaved.) .Assume  u ∈          

then we consider the two cases, 

 For  k <  
 

 
  ,            In this case u ∈       where  ,      

 

 
 

 

 
 

 

 
  

We have in addition the estimate, 

                                 ‖ ‖         ≤   C ‖ ‖                     

 For  k >  
 

 
  ,           In this case u belongs to holders space, 

We have in addition the estimate , 

                             ‖ ‖
 

  *
 
 
+    

   
 ≤   C ‖ ‖                     

 

 

       3.2.2    Gagliardo Nirenberg Sobolev inequality 

               Let   us  1≤p<n  , first to see we can establish an inequality of the form 

                       ‖ ‖          ≤   C ‖  ‖                       u ∈   
      

                      for certain constant C >0  ,  1≤q<    

 Motivation: 

 Let us first demonstrate if any inequality  holds then q cannot be arbitrary but have a very specific 

form. 

            For this let us define for  >0,  the rescaled function 

                                       =  u(  )   

          So we get :  
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                         ‖     ‖          =   
 

 
 
 

 (∫ |    | 
    )

1/q  
   ,  here          =     

                        ‖      ‖       =   
 

 
 
 

 (∫ |     | 
     )

1/p
 

  Putting in the equation , 

                           
 

 
 
 

‖ ‖               
 

 
 
 

 ‖  ‖       

                    ⇒      ‖ ‖                
  

 

 
 

 

 ‖  ‖         

                                  So in order that the estimate should hold, 

                                              
 

 
 

 

 
  must be 0 

                                     ⇒      q = 
  

   
  

  This observation motivates the following. 

 

3.3   Sobolev embedding theorem 

If   is  Ω a domain in    ,   
       ⊂       is a continuous  embedding provided p< n  

      and         p    
  

   
  ,      ‖ ‖       C ‖ ‖     holds  

                         u ∈   
             and       by    completion            u  ∈   

       

 

 

3.4   Sobolev conjugate 

 By definition if 1≤p<n , then the sobolev conjugate of p ,i.e. p* is defined as     p* = 
  

   
  

So the foregoing analysis  shows that the estimate or the inequality can only be true if 

q=p*.This special case of the Sobolev embedding is a direct consequence of the Gagliardo–

Nirenberg–Sobolev inequality. 
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4    THE p-LAPLACIAN PROBLEM  

 

Here we are concerned with the elliptic problem or specifically the p-laplacian problem 

                                                         =   f(x,u) 

                                                    u|   = 0 

                              where        = -div(|  |     ) 

 First of all by the definition of the weak solution , u ∈   
   

(Ω) is a weak solution of P if   

                                    ∫ |  |   
 

         =    ∫             
 

 

        Now we define , 

                                                     ∫
 

 
|  | 

 
   

       and                                        ∫         
 

 

                                                                                      where         F(x , u) =∫         
 

 
 

    Now   the energy function            
   

(Ω)  R   associated with the problem is well 

defined. Then it is easy to see that       
   

(Ω)) is  weakly lower semi-continuous and   u∈   
   

(Ω) 

isa weak solution of the proposed proble if and only if u is a critical point of the energy function. 

   Indeed we have,  

                                         (u) v   =    ∫ |  |   
 

         -  ∫          
 

 

                                                   =         v   -          v  

 

Now we have a method to study the existence of solutions of the given problem whose hypothesis on 

non- smooth potential f(x,t) are as follows: 

   H(f): f:Ωx R→ R  is a continuous function satisfying , 

i) f  is    in t. 

ii) f(x,t) = o(| | 
   )  as  | | →0  uniformly in x. 
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iii)    >   and    < q <p* such that  

                                                            | |  
      

| | 
  =  +  

                                                              | |  
|      |

| |     =  0  uniformly in x∈    where 

                                                             p*(x) =  
     

      
 

                                                and            F(x , t) =∫         
 

 
 

                                                 

iv)   For each  x ∈ Ω , 

                                     
 

  
(

      

| | 
   

)  > 0           for      |t| >0 

  So if the hypothesis H(f) holds , then the problem has a weak solution u ∈   
   

(Ω) such that    

                                               =                > 0 

  Now the proof of the existence of solution to the given problem  is considered in different steps: 

 

STEP 1:  In the first step we will show that 0 is a strict local minimum of   

                 Now by the conditions h(f)   i  to iii  for any   > 0 ,     >0  such that 

                                   |      |     | | 
 

   +       | |
   

                   So now ,  

                                           =    ∫
 

 
|  | 

 
    -   ∫         

 
                                        

                                                    
 

   ∫ |  | 
 

    -    ∫ | | 
 
  

 
 -    ∫ | |   

 
 

  Note that     
   

(Ω)          , so     a    >0 such that 

                                                     | |          ‖ ‖  

     Hence for   ‖ ‖ =   p(  
 

  
)  we have    

                                                             | |      1, 

                                                              | | 
  

           ∫ | |     
 

        | | 
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Thus                                          
 

   ∫ |  | 
 

    -    | |
  
  

 -    ‖ ‖  
  

                                                           
 

  
 ‖ ‖  

    -    
   

  ‖ ‖  
  -    ‖ ‖  

 

 Here we use the Sobolev embedding with constant     and choosing 

                                 
   

    =  
 

        then ,  

                                     ‖ ‖  
 (

 

        -      ‖ ‖     ) 

                            which shows that           > 0  if     

                                             0 ‖ ‖       
 

     

 

      
 

  
     

 

  

STEP 2:  Here we will show that for any u  0 ,                as    t   +     

              By  H(f)  ii and  iii  ,     l >0 , such that  

                 F(x,t)      | |  – C  for any  x ∈       and t ∈ R  

     Hence  for  u   0 ,   

                                   
 

   ∫ | |  |  |   
 

 -  l ∫   | |   
 

 -        ) 

                                        
   

   ∫  |  |   
 

 -  l ∫   | | 
 
  

 
 -        ) 

                                       -   as     t   +     

 

 

        Thus  by step 1 and step 2 , we get  

               c   0 is well defined. 

    Now let  {  } be a minimizing sequence of c such that, 

                       =                  c    as    n     

 We first  prove that        in    
   

(Ω) ,      v in        and             almost  everywhere 

. 
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  If  v(x)   0 , 

we have  |     |   +   almost everywhere , x ∈   , 

 then using  H(f) iii   we obtain, 

  
         

|     | 
|     |

      +   almost everywhere , x ∈   , 

  Since ,  ‖  ‖ > 1  for large value of n , then by  H(f) iii  and also by Fatou’s Lemma  

    we have, 

              
 

                 
 

  ‖ ‖   ∫ |   |
     ∫ |  |

    
  

 

                                             
 

‖ ‖   ∫
 

 
|   |

    
 

 

                                            
 

‖ ‖  ∫
 

 
|   |

    
 

  

                                =           
 

‖ ‖    (      ∫           
)  

                                  ∫    
       

      

|  | 
|  |

       

                                  +   as  n    

                                  which is impossible. 

  If  v(x) = 0 , then fixing  an  R> max( 1,    
 

    , we have 

 

 c               
   

‖  ‖
   =           

                                          =  ∫
 

 
|    |

    
 

  -  ∫            
 

                                                
 

     
∫ |   |

    
 

  -  ∫            
 

                                           =     
 

     
   -   ∫            

 

                                                  
 

     
           as       n     

 

  So,                         c        
 

      
            

                  ⇒         
         

                               ⇒         
    (        

 

                  ⇒         R       (        
    which  is impossible . So {  } is bounded .   
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STEP 3:     Now  we will show that su is a critical point of     . 

                  Since               is achieved at only one point t=s  , it is only the unique    

     point  at which <             . Next we claim that su is the critical  point of    . 

    Without any loss of generality , we can assume that  s=1 . If u is not a critical point , then 

     there  is  v  ∈   
      , such that   <             . There is some  >0  such that 

                                                 

                                           <                 

                                                   for  |   | + | |       . 

  Now  consider the two dimensional plane spanned by u and v. For small     > 0 , 

 let     > 0 be the unique  number such that 

                                                                    

                                                =              

    Then        1  as       0 . 

  For    small such that  |    | +           ,we have contradiction as follows, 

              On one hand,                               c   

             On the other hand,       

                                     

                      =         + ∫ 〈  (           )     〉  
 

 
  

                          c -      

                       < c   

                   So  s is a critical point of   . 
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                                                        APPENDIX 

 

Nehari  techniques to solve non-linear PDEs     

  H(f): f:Ωx R→ R  is a continuous function satisfying , 

i) f  is    in t. 

ii) f(x,t) = o(| | 
   )  as  | | →0  uniformly in x. 

iii)    >   and    < q <p* such that  

                                                            | |  
      

| | 
  =  +  

                     | |  
|      |

| |     =  0  uniformly in x∈    where 

                                                             p*(x) =  
     

      
 

                                                and            F(x , t) =∫         
 

 
 

                                                 

   iv)   For each  x ∈ Ω , 

                                     
 

  
(

      

| | 
   

)  > 0           for      |t| > 0 

          Solutions corresponds to the critical pont of the    functional ,  

                = ∫
 

    
|  |      

 
 -  ∫         

 
  ,     u ∈   

   
(Ω) 

 

            Now for a function  u(x) we use,   

                                                     =  max{ u(x) , 0} 

                                                     =  min{ u(x) , 0} 

      So if the hypothesis H(f) holds , then the problem has a weak solution u ∈   
   

(Ω) such that    

                                               =                

                                                     > 0 
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Lax- Milgram theorem 

In mathematics, the Babuška–Lax–Milgram theorem is a generalization of the famous Lax–Milgram 

theorem, which gives conditions under which a bilinear form can be "inverted" to show the existence 

and uniqueness of a weak solution to a given boundary value problem. The result is named after the 

mathematicians Ivo Babuška, Peter Lax and Arthur Milgram. 

Statement of the theorem 

  In 1971, Babuška provided the following generalization of Lax and Milgram's earlier result, which 

begins by dispensing with the requirement that U and V be the same space. Let U and V be two real 

Hilbert spaces and let B : U × V → R be a continuous bilinear functional. Suppose also that B is 

weakly coercive: for some constant c > 0 and all u ∈ U 

                                      sup|      |    c‖ ‖  

and for all 0 v ∈ V ,     sup|      | > 0 

Then, for all f ∈ V , there exists a unique solution u = uf ∈ U to the weak problem , 

                                         B(      =  〈   〉         ,     v ∈ V 

Moreover, the solution depends continuously on the given datum: 

                                              ‖  ‖   
 

 
‖ ‖ 

 

 

Banach fixed point theorem 

                     In mathematics, the Banach fixed-point theorem (also known as the contraction 

mapping theorem or contraction mapping principle ) is an important tool in the theory of metric 

spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric 

spaces, and provides a constructive method to find those fixed points. The theorem is named after 

Stefan Banach (1892–1945), and was first stated by him in 1922. 

  Statement: 

                 Let (X,d) is a metric space. Then a map T : X → X is called a contraction mapping on X if 

there exists q ∈ [0, 1) such that    d(T(x),T(y))   qd(x,y)   ,     x,y ∈ X 

       Let  (X, d) be a non-empty complete metric space with a contraction mapping T : X → X. Then T 

admits a unique fixed-point x* in X (i.e. T(x*) = x*). Furthermore, x* can be found as follows: start 

with an arbitrary element x0 in X and define a sequence {xn} by xn = T(xn−1), then xn → x*. 
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The following inequalities are equivalent and describe the speed of convergence: 

                                  d(           
  

   
 d(        

                                  d(            
 

   
 d(         

                                  d(             q d(       

   Any such value of q is called a Lipschitz  constant for T, and the smallest one is sometimes called 

"the best Lipschitz constant" of T.  

 

 Mountain pass theorem 

    The mountain pass theorem is an existence theorem from the calculus of variations. Given certain 

conditions on a function, the theorem demonstrates the existence of a saddle point. The theorem is 

unusual in that there are many other theorems regarding the existence of extrema, but few regarding 

saddle points. 

Theorem statement: 

The assumptions of the theorem are: 

i)   I is a functional from a Hilbert space H to the reals . 

ii) I ∈          and    is Lipschitz continuous on bounded subsets of H, 

iii) I satisfies the Palais-Smale compactness condition, 

iv) I[0]=0 

v)  there exists  positive constants r and a such that  I[u]  a if ‖ ‖ = r and 

vi) There exists     ∈ H  with ‖ ‖ > r    
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                                                          CONCLUSION 

 

A partial differential equation involving the p-Laplacian operator  which is of 

the following type 

                                    ∈  , 

                    |      

has been studied using the Nehari hypothesis. To understand the problem, a 

thorough knowledge on the Sobolev spaces was gained which will be useful in 

extending this work in the future. As a future plan, we propose to obtain an 

existence result for the above problem using the classical fixed point theorems.   
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