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Abstract 

 

This work was aimed at studying and performing an analysis of a Rotor Bearing 

System with Journal Bearings by finite element analysis techniques. The Eigenvalue 

problems for equation of motions of Finite elements applied to rotors and bearings are stated. 

Design of a rotor bearing system is based upon calculation of various natural frequencies, 

critical speeds and stability analysis. The results for up to 80 element mesh were plotted. A 

computational procedure for finding natural frequencies of vibrating rotors with damping, 

gyroscopic and inertial effects is presented. The dynamic coefficients associated were 

computed by adopting perturbation scheme on governing equation for fluid film bearings. 

Rotating systems are widely studied under rotordynamics in industries for designing the 

systems below critical speeds and stability. 

 

Keywords – Finite element analysis, rotor bearing system, perturbation scheme, critical 

speeds, damping, fluid film bearings 
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Nomenclature :- 

 

D  Journal diameter, m 

E  Journal center eccentricity, m 

S  Sommerfeld number 

M  Interial mass matrix 

K  Stiffness coefficients matrix 

C  Generalized damping matrix 

C1  Bearing damping coefficients 

G  Gyroscopic Matrix 

I  Identity Matrix 

Fx, Fy Components of reaction force in bearing, N 

E  Young’s Modulus, pa
 

s  Eigen value  

x  X-direction 

y  Y-direction 

l  Shaft Length, m 

θ,  Angular shaft displacements, radians 
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α Cross sectional shape factor for shear deformation of shaft 

Ω  Angular speed of shaft, rad/sec 

ρ  Density of shaft material, kg/m
3 

ε Logarithmic decrement of internal shaft damping, divided by  

λ Damping exponents of free vibrations of shaft, sec
-1 
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Chapter -1 

1.1 Introduction:– 

An important part of the standard design procedure for a rotor is the calculation of its critical 

speeds. In recent years methods have become available to investigate whether a rotor may 

experience instability because of the journal bearings, internal shaft damping, and 

aerodynamic excitation or from other sources. 

The critical speeds of a rotor are frequently computed assuming the bearings to act as 

rigid supports. It is, however, well known that the bearings have flexibility which inherently 

lowers the critical speeds. A substantial bearing damping acts in series with the shaft 

flexibility, thereby contributing to a stiffening of the bearing. The effect, which depends on 

the ratio between the shaft and bearing stiffness’s, is included here. A conventional critical 

speed calculation finds, by its very nature, the very nature, the undamped resonant 

frequencies of the rotor. In the general case, as considered, it is the damped natural 

frequencies which are to be determined. Thus denoting any rotor amplitude as x, a free 

vibration can be expressed as 

x = |x|.e
λt 

cos (ωt+)  (1) 

where |x| is the amplitude,  is an appropriate phase angle, ω is the damped natural 

frequency, λ is the corresponding damping exponent, and s is the complex frequency 

s = λ + iω  (2) 

Usually λ is negative such that the vibration dies out exponentially with time. The critical 

speeds of the rotor and its threshold of instability are determined from a calculation of those 
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values of s, also called the eigenvalues, at which the system can perform damped free 

vibrations. 

Beam theory is used for establishment of shape functions. The shape functions are the 

basis for derivation for the matrices of finite element system governing equations. The shape 

functions have an inclusion of a shear a parameter which accounts the transverse shear 

deformation effects. 

The effect of material internal damping and shear deformations combined was 

presented. Natural speed of whirl and response in unbalance were analysed. 
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Chapter – 2 

2.1 Literature Review:- 

The vibration analyses for different types of rotor bearing systems have been performed by 

various researchers in the past and recently. Below, some of the published journals are 

reviewed and discussed. 

FEA of whirl speeds for rotor bearing systems with Internal damping. The study was 

done by M.Ku. In this publication, formulation  of a finite element model of a C
0
 

Timoshenko beam is presented. Internal damping with shear deformations effected forward 

and backward whirl speeds. Speeds with instable threshold for system with linearized 

stiffness and damping by viscosity in bearings are also effected. 

In the past Ruhl and Booker were among the first persons who utilised FEM to study 

stability and understand the unbalance behaviour of turbo rotor systems. But, they had 

considered only translational kinetic energy and bending energy due to elasticity. They had 

not included many other effects. 

F. M. Dimentberg had published a book on flexural vibrations of rotors. He discusses 

the importance of consideration of many effects, such as the rotary inertial effects, shear 

deformations, gyroscopic moments, internal and external damping in finite element analyses. 

Utilisation of Rayleigh beam model for devising formulation of finite element model 

with consideration of various other effects which were previously neglected was done by 

Nelson and McVaugh generalising the work done by Ruhl. Also a flexible rotor system was 

adopted in the work.  
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Guyan’s work consisted of a reduction procedure to decrease the system matrices 

size. This saves computational time. Facilitation for computation of various natural whirl 

speeds had been done by transformation of element equations to rotating frame for undamped 

bearings. 

The work with finite element formulation by Rayleigh beam model was extended by 

Zorzi and Nelson. The same model now consisted both hysteric and internal viscous damping 

inclusion. 

 

2.1.1 Conclusion for Literature Review: 

All the works conclude the use of finite element modelling to be useful with possibility for 

complicated rotor bearing system problems formulation and yielding successful data. 
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Chapter – 3 

3.1 Theoretical Analysis 
 

3.1.1 Rotor Bearing System:- 
A typical rotor bearing system consists of a rotor shafts, discrete disks and discrete 

bearings. The model incorporated here is axis-symmetric physically. The rotor bearing 

systems can be categorised under continuous mass systems. The rotor is typically a shaft 

which can flexible in nature. The bearing can be of two types ball bearing or hydrodynamic 

journal bearing. The rotor model can simulate any practical shaft geometry. 

 

3.1.2 Jeffcott Rotor Model:- 

This model was proposed by Jeffcott in 1919 which overcame the limitations of the Rankine 

model. Figure 1 shows a typical Jeffcott rotor model. It is also called Föppl or Laval rotor 

model. It consists of a simply supported flexible massless shaft with a rigid thin disc mounted 

at the mid-span. 
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Fig1. Jeffcott Rotor Model 

The transverse stiffness, k, of a simply supported shaft is expressed as 

 

(6) 

E  Young’s modulus, 

I  Second moment of area of the shaft cross-section, 

L Shaft length 

3.1.3 Hydrodynamic Journal Bearings:- 

The supportive part of shaft of a rotor by bearings is inside fluid. When shaft rotates the 

journal forms an eccentricity e  to the centre with vertical and horizontal components. A 

radial clearance allows feasibility of the rotational operation. A ratio of radial clearance to 

radius of bearing is minimum at the vertically lowest point on circumference of internal 

housing for shaft and fluid. 
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3.1.4 Rotor Disk: 

The kinetic energy of an axis asymmetrical rigid disk with mass centre coincident with its 

geometry centre is given as  

T
d  

=  ½ m
d
  { (Y’ – ΩZ)

2
 + (Z’ + ΩY)

2 
} + ½ (ρIx

d
ωx

2
 + ρIy

d
ωy

2
 + ρIz

d
ωz

2
) – 

ρIyzωyωz     (3) 

Where, m
d
 – mass, ρIx

d
, ρIy

d 
, ρIz

d
 and 

 
ρIyz

d 
are the mass moments of inertia of the 

rigid disk, and ωx, ωy and ωz the angular rates of the deformed cross-sectional relation to R: 

OXYZ, respectively. Superscript ‘d’ denotes the rigid disk. Application of Lagrange’s 

Equations yield four simultaneous second order differential equation with respect to Y,Z,B 

and Γ. 

 

The resulting linearized equations then become 

M
d
 + q

d
’’ + ΩG

d
 q

d
’ – Ω

2
 N

d
 q

d
 = Q

d
  (4) 

Where, the terms on the left are related to the relative acceleration, the Coriolis 

acceleration plus gyroscopic moment and the centripetal acceleration, respectively. 
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3.1.5 Shaft Modelling :- 

 

 

Fig2. A flexible rotor with bearings reduced to linearalised stiffness model. 

 

The rotor base is sufficiently rigid compared to the flexible rotor–shaft. So the effect of base 

movement is conceived in terms of six motion parameters: three translational displacement 

components of any point attached to the base and three rotations about a set of three 

orthogonal axes. Due to rotation of the base, dynamics of the rotor–shaft system, where the 

rotor–shaft continuum is discretized using beam finite elements, is influenced by the Coriolis 

Effect and parametric excitations of different forms, in addition to the effects due to 

translational as well as rotary inertia, gyroscopic moment, flexural stiffness and internal 

damping. The equations of motion for individual disc and shaft elements are derived in a 

frame attached to the base using Lagrange’s equation. Since the work aims at mitigation of 

bending vibration response of the flexible rotor–shaft system with respected to the rigid base, 

the effect of base-inertia does not appear in the equations of motion. Duchemin et 
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al. developed similar mathematical model of a rotor–shaft–bearing system; however, used a 

lumped parameter approach to keep the analysis simple. 

 

3.1.5.1 Finite Rotor Shaft Element: 
A typical finite rotor element is shown here in Fig. 3. It is assumed that the nodal cross 

sectional displacements (V, W, θ, ζ) time dependent and function of position (s) throughout 

the element axis. The rotations (θ, ζ) are related with translations (V, W). V, W are account 

for degrees of freedom translationally and θ, ζ are for rotational degrees of freedom. 

 

Fig3. Finite rotor shaft element and coordinates 

3.1.6.2 Matrix Displacement Equations:- 
In matrix displacement method stiffness matrix of an element is assembled by direct 

approach while in FEM through direct stiffness matrix may be treated as an approach for 

assembling element properties, it is energy approach which has revolutionized entire FEM. 

 The matrix displacement method is presented and solution techniques for 

simultaneous equations are discussed briefly. 
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The standard form of displacement equation is, 

[K]{δ} = [F]  (5) 

Where, K is the stiffness matrix 

{δ} is displacement vector and 

{F} is force vector in the coordinate directions 

 

3.1.7 Bearing support modelling:- 
The bearing support flexibility may be modelled by placing a support spring, mass and 

damper in series with the bearing’s fluid film stiffness and damping properties. The equations 

for the resulting equivalent support stiffness and damping are derived and listed. Horizontal 

and vertical damping properties are included in the model at each bearing.  

 Although the proposed model assumes only a single level of support flexibility, 

multiple levels exist in real rotating machinery. These levels include the bearing pivot for 

tilting-pad bearings, the bearing support bracket or case, the machine casing, the support 

pedestals, the I-beam base and the concrete foundation. The first step in employing this 

model is to determine which part of the overall supporting structure is the most flexible. 

Often, but not always, the bearing case and bearing support case are more flexible than the 

other parts of the structure. 

3.1.7.2 Reynold’s Equation 
The governing equation for pressure distribution in the fluid film from Lubrication theory is a 

partial differential equation. This equation is called Reynold’s Equation. 
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 (6). 

 

3.1.7.3 Damping and Stiffness Coefficients: 
A particularly mathematically useful type of damping is linear damping. Linear 

damping occurs when a potentially oscillatory variable is damped by an influence that 

opposes changes in it, in direct proportion to the instantaneous rate of change, velocity 

or time derivative, of the variable itself. In engineering applications it is often desirable 

to linearize non-linear drag forces. This may be done by finding an equivalent work 

coefficient in the case of harmonic forcing. In non-harmonic cases, restrictions on the speed 

may lead to accurate linearization. 

(7) 

 

 

3.1.8 Global Equation of Motion:- 
Equations of motion for the finite element model of the rotor–shaft–bearing system may be 

obtained after assembling appropriately equations for individual discs, shaft elements as well 

as mass unbalance. 

[M+N]{U’’}+[C]{U’}+[K]{U}={R}  (8) 

 

In the above equation, [M]  is the assembled inertia matrix, [D]  is the assembled matrix 

coefficient to global velocity vector including the gyroscopic matrix, Coriolis matrix, 

https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Linearization
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damping matrix, etc. and [K]  is the assembled matrix coefficient to global displacement 

vector including bending stiffness matrix, circulatory matrix, parametric stiffness matrices 

due to base motion and the bearing stiffness matrix. {f}  is global load vector containing the 

effects of mass unbalance and the inertia force due to the base motion. It is to be noted that 

both the matrices [K]  and [D]  have time-dependent terms originating due the base motion. 

Under fluctuating motion of the base, the time-dependent terms of the stiffness matrix cause 

parametric excitation and possible instability for a particular set of base motion parameters. 

To find out a method for avoiding the onset of such an instability phenomenon during the 

operation of the rotor–shaft system is one of the main objectives of the present work. 

   (9) 

Where, y,x,, θ have same configuration as V, W, θ, ζ defined earlier for finite rotor shaft 

element. 
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3.1.8 Finite Element Equations:- 
In engineering problems some unknowns are there which are basic. Finding them, prediction 

of whole structure gets possible. These basic unknowns can be called to be field variables. 

They are generally encountered in the engineering problems. Some of them are 

displacements, velocities, electric and magnetic potentials in solid mechanics, fluid 

mechanics, electrical engineering and temperature in heat flow problems. 

 In continuum, these unknowns are infinite. The finite element procedure reduces such 

unknowns to a finite number by dividing the solution region into small parts called elements 

and by expressing the unknown field variables in terms of assumed approximating functions 

(Interpolating functions/Shape functions) within each element. The approximating functions 

are defined in terms of field variables of the nodal points. Thus in the finite element analysis 

the unknowns are the field variables of the nodal points. Once these are found in the field 

variables at any point can be found by using interpolation functions. 

 After selecting elements and nodal unknowns next step in finite element analysis is to 

assemble element properties of each individual element. For example, in solid mechanics, we 

have to find force-displacement i.e. stiffness characteristics of each individual element. 

Mathematically this relationship is of the form 

[K]e{δ}e = {F}e   (10) 

Where [K]e is the element stiffness matrix, [δ]e is nodal displacement vector of the 

element and {F}e is the nodal force vector. The element of stiffness matrix kij represents the 

force in coordinate direction ‘i’ due to displacement in coordinate direction ‘j’. Four methods 

are available for formulating these element properties viz. direct approach, variational 

approach, weighted residual approach and energy balance approach. Any of these methods 
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can be used for assembling element properties. In solid mechanics variational approach is 

commonly employed to assemble stiffness matrix and nodal force vector (consistent loads). 

 

3.1.8.1 Steps involved in finite element analysis: 
1) Select suitable field variables and the elements. 

2) Discretise the continua. 

3) Select interpolation functions. 

4) Find the elemental properties. 

5) Assemble element properties to get global properties. 

6) Impose the boundary conditions. 

7) Solve the system equations to get the nodal unknowns. 

8) Make the additional calculations to get the required values. 
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Fig4. A flow chart for the steps in process of Finite Element Analysis 

 

3.1.8.2 Advantages with use of Finite Element Method: 
 One of the advantages of finite element model resides in its suitability for the 

automatic formation of the system equations with the separately developed component 

equations with the separately developed component equations. 

 

 

  

Physical Problem 

Mathematical model Governed By Differential 

Equations 

 

Finite Element Solution 

Interpretaion of results 
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3.1.9 Eigen Value Problems:- 
Matrix eigenvalue problems occur in different situations. The eigenvalues of a matrix can 

describe  behaviour  independent of coordinates. Matrix eigenvalues are 

very useful in analyzing Markov chains and in the fundamental theorem of demography. 

Efficient computation of matrix powers can be done by theorems about diagonalization 

An example of where a matrix eigenvalue problem arises is the determination of the 

main axes of a second order surface Q=xTAx=1 (defined by a symmetric matrix A). The task 

is to find the places where the normal is parallel to the vector x, i.e Ax=λx.  

http://planetmath.org/node/32464
http://planetmath.org/node/41903
http://planetmath.org/node/32886
http://planetmath.org/node/33813
http://planetmath.org/node/30664
http://planetmath.org/node/38071
http://planetmath.org/node/30974
http://planetmath.org/node/36640
http://planetmath.org/node/31532
http://planetmath.org/node/41603
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Methodology :-  

For the purpose of computing damped natural frequencies (eigenvalues), a rotor bearing 

system can be presented mathematically by a stiffness matrix, damping matrix and an inertia 

matrix from which the eigenvalue problem can be formulated. The dimension of resulting 

matrix however, equals, 8 times the number of mass stations in system which, in a practical 

rotor calculation, may mean a matrix size of, for example, 240*240. Further complications 

arise from the matrix being symmetric, requiring special modification in the available 

standard methods for eigenvalues calculation. For this reason an alternative method is 

desirable and in following a computational procedure is developed. 

 

The rotor is supported in fluid-film bearings whose dynamic properties are given 

through a set of stiffness and damping coefficients. The bearing reaction in x - direction can 

be expressed as reaction in x-direction = 

  (11) 

And similarly for the reactions in the y,θ and  directions (“dot” indicates 

differentiation with respect to time). There are 32 coefficients in all which can be arranged in 

stiffness matrix K and a damping matrix B, respectively. 

 

The coefficients are obtained from the lubrication equation (Reynold’s equation) as 

the gradients of the hydrodynamic forces. For conventional journal bearings, only the radial 
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coefficients are of importance. On the other hand, for very short rotors or at higher-order 

shaft modes the angular coefficients may also be of important significance. 

Equation also describes certain aerodynamic forces in turbomachinery. In axial flow 

compressors and turbines, a radial displacement of the wheel in a stage sets up a transverse 

force, proportional to the displacement. With the notation of equation (12) the coefficient of 

proportionality becomes 

Kxy =  -Kyx = *T/2rh   (12) 

Where T is the stage torque, r is the pitch radius, h is the vane height, and  is the 

dimensionless parameter. The remaining stiffness and damping coefficients are equal to zero. 

 

The radial amplitudes at station number xn and yn , and the corresponding angular 

amplitudes are θn and n. For free vibrations of the form of equation (1), these quantities 

become complex and the equations of motion for station n are in figure 5. 
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Figure 5 – Sign convention for radial displacement, angular displacement, bending moment, 

and shear force 

 

(13) 

In further analysis, the derivatives of the variables with respect to s are also required. 
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(14) 
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Chapter -4 

4.1 Results  And Discussion :- 
 

4.1.1 Problem Statement 
 

Numerical results have been obtained for a uniform shaft with length of 50inch. a diameter 

4inch., Young’s modulus 20710
9 

Pa. For simplicity the shaft is treated as a uniform beam. It 

is supported at the ends with identical fluid-film bearings and natural frequencies. The results 

are shown in figures. 

 

4.1.1.1 Table -1: Input values taken for numerical analysis 
Serial No. Parameter Description Value Unit 

1 L Shaft span 1.190 m 

2 D Shaft Diameter 0.1036 m 

3 E Modulus of Elasticity 211*10
9 

Pa 

4 Ρ Density 8081 Kg/m
3 

5 kb Direct coefficient of 

stiffness for bearings 

10.18*10
6 

N/m 

6 cb Direct coefficient of 

damping for bearings 

16542 N.s/m 
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4.1.2Results: 

4.1.2.1 Table -2 Results of Natural Frequencies in different 

modes 
FEM  results 

ω/n 5 10 20 40 60 80 100 120 

1st 5117 5296 5373 5342 5329 5323 5319 5316 

2nd 6278 6062 5983 5985 5994 6001 6003 6008 

3rd 16543 16834 16938 16864 16829 16809 16796 16788 

4th 46428 46480 46447 46188 46118 46054 45992 45966 

5th 93100 92934 92113 91826 91613 91508 91456 91418 

 

 

Fig6. Results for mesh plotted as natural frequencies function of number of elements. 
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4.1.2.2 Table – 3: Calculated Natural Frequencies relative 

error in percentage values.  

FEM  results 

ω/n 5 10 20 40 60 80 100 120 

1st -0.3% 2.9% 2.5% 2.1% 2.0% 1.8% 1.6% 1.5% 

2nd 4.70% 0.9% -0.3% -0.2% -0.1% 0.0% 0.1% 0.1% 

3rd -0.2% 2.5% 2.6% 2.1% 2.0% 1.9% 1.8% 1.7% 

4th 3.5% 3.5% 3.2% 2.7% 2.4% 2.3% 2.2% 2.1% 

5th 3.0% 2.2% 2.1% 1.8% 1.7% 1.6% 1.6% 1.5% 

 

 

 

 

 

Fig7 Results for mesh plotted as relative error as function of number of elements. 
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4.1.3 Discussion: 
 A analysis for finite element model had its basis on natural frequencies of the 

rotordynamic system. “NF” represents natural frequency while “n” represents number of 

elements.  

A n = 80 element mesh resulted for an error lesser than 2% at calculation of 1
st
, 2

nd
, 

3
rd

 and 5
th

 natural frequencies and at the 4
th

 natural frequency , the error is lesser than 2.4%.  

The lowest two modes of natural frequency are critically damped. The third shows up 

at a frequency slightly below the first critical speed. The fourth mode comes in just above the 

second bearing critical and similarly for the higher modes. The mode number differs with the 

critical speed number. 

 

In an actual rotor, the bearings usually have different stiffness and damping 

properties, in vertical and horizontal directions. Each mode will split up into two, one mode 

corresponding to the minimum bearing stiffness.  

 

In the absence of any damping and with no interference with other modes, it is readily 

seen that the rotor will be in a state of backward precession between the two modal 

frequencies and although the presence of damping and overlapping modes complicate the 

picture, it is normally found that one mode has predominantly forward precession while the 

other mode is backward precession. This is further amplified by the gyroscopic moments in 

the rotor. 
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Stiffening up the bearing results in second and third mode being critically damped 

instead of first and second. In this case, the first critical speed corresponds with the first mode 

and the frequency is just below the value computed. 

 

In the analysis it is shown that maximum two modes can be critically damped for 

simple shaft bearing system. It is true for systems with reasonable symmetry. 

 

When the value of logarithmic decrement exceeds 1, the particular mode is well 

damped. Each rotor actually consists of two modes, one with forward precession, identified 

by the letters F and B respectively. In addition, E identifies even modes where the amplitudes 

are in phase and O are for the odd modes where the end amplitudes are out of phase. The first 

rotor mode is even, the second odd, and so on. The backward precession modes are critically 

damped. 

 

Mass unbalance excites the rotor. The intersection between synchronous frequency 

and the modal curves  give damped critical speeds of the rotor. It is seen that the first and 

second modes are never excited while the third mode is synchronous.  

 

The whirl frequency at oneset of instability is close to one half of the rotational 

frequency. The rotor whirls in its first mode (forward precession) but this mode is not the first 

critical speed. The threshold of instability is not twice the first critical speed, as it is otherwise 

accepted as the rule of thumb, as seen, it equals twice the frequency of the first mode. Even 
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though a bearing calculation may be successful in predicting unbalanced response peaks, it 

cannot be used for whip encounter speed. 
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4.2 Conclusions and Future Scope:- 
The damped natural frequencies (eigenvalues) of a general flexible rotor supported in fluid 

film journal bearings. The rotor model also incorporates internal hysteric shaft damping and 

destabilizing aerodynamic forces.  

 

The method is basically an extension of the previous method for calculating critical 

speeds, which utilizes the computational procedure of the well-known Holzer method. As 

such the method can be readily applied to a wide variety of rotor and support configurations 

and is easily programmed for numerical computation. The program is simple with fast 

execution. 

 

The calculated eigenvalues establish the stability margin of the rotor system, 

conveniently expressed in terms of logarithmic decrement of the eigenvalue closest to the 

threshold of instability. If the margin is insufficient, or the rotor is even found to become 

unstable, the program can be used to explore possible means of improvement, either by 

reducing or eliminating the sources causing the instability, by the design modifications of 

shaft or bearings, or by providing stabilizing external damping through damper bearings. In 

performing such investigations, and to optimize corrective measures, the program can be a 

valuable design tool. 

 

The obtained damped natural frequencies also establish the actual critical speeds of 

the rotor, including the stiffening effect of the damping in the bearings. These results give a 

more realistic base than conventional critical speed calculation for assessing any potential 
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trouble from passing through or operating close to a critical speed. In addition, knowing the 

logarithmic decrement at critical speeds and thereby, the response amplification factor, means 

are provided for evaluating the rotors sensitivity to mass unbalance. 

 

However, in the present studies the bearing data are calculated on the assumption that 

the portion of the shaft in the bearing is rigid, so iterative method between flexible rotor 

analysis and bearing analysis will give more realistic results for a real rotor bearing system. 
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