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ABSTRACT 

In this report I applied Homotopy analysis method to solve SIR Model and HIV model 

using fuzzy initial boundary value problem. In order to solve ordinary differential equation we 

use a Zeroth order deformation equation which relates between linear differential equation to 

nonlinear differential equation. And then apply the Taylor series concept to change the equation 

into iterative form. We convert the HIV model into two crisp differential fuzzy model and after 

that we used Homotopy analysis method to solve HIV model using given initial condition. 

Homotopy analysis method is easy-to-use analytic method to solve fuzzy initial value 

problems. 
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Introduction 

In my thesis, series solution of fuzzy initial value problems of differentiability by means 

of the Homotopy analysis method is considered. The new approach provides the solution in the 

form of a rapidly convergent series with easily computable components using symbolic 

computation software. The Homotopy analysis method contains the auxiliary parameter, the 

convergence region of the series solution can be controlled in a simple way. The proposed 

technique is applied to a few test examples to illustrate the accuracy and applicability of the 

method. The results reveal that the method is very effective and straightforward. Meanwhile, 

obtain results show that the Homotopy analysis method is a powerful and easy-to-use and to 

solve fuzzy initial value problems. 
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CHAPTER 1 

Theory behind solving fuzzy initial value problem 

In this section we define a first order fuzzy initial value problem (FIVP) of differentiability 

than we replace it by its parametric form. And after that we present an algorithm to solve the 

new system which consist of two ODEs. 

Let us consider ordinary differential equation  

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)),                    𝑡0 ≤ 𝑡 ≤  𝑡0 + 𝑎, 𝑤ℎ𝑒𝑟𝑒 𝑎 > 0                                        (1.1) 

and initial condition  𝑥( 𝑡0) = 𝑥
0,                                                                                                          

(1.2) 

where 𝑓: [𝑡0, 𝑡0 + 𝑎  ] × 𝑅 → 𝑅 is a continuous real –valued function, 𝑥0 ∊ 𝑅 and 𝑡0 and 𝑎 are 

finite constant with 𝑎 > 0. 

Now in order to solve above equation simultaneously we write the fuzzy function 𝑥(𝑡)in its r-

cut representation to get 

[𝑥(𝑡)]𝑟 = [𝑥𝑟(𝑡), 𝑥𝑟(𝑡)],
  

and initial condition in r cut form  

[𝑥(0)]𝑟 = [𝑥𝑟(0), 𝑥𝑟(0)]  𝑜𝑟 [𝑥𝑟
0 , 𝑥𝑟

0
]. 

The extension principal of Zadeh leads to the following definition of 𝑓(𝑡, 𝑥(𝑡)) where 𝑥(𝑡) is 

a fuzzy number 

𝑓(𝑡, 𝑥(𝑡))(𝑠) = sup {𝑥(𝑡)(г)  = 𝑓(𝑡, г), 𝑠 ∊ 𝑅}. 

According to Nguyen theorem it follows that  

[𝑓(𝑡, 𝑥(𝑡))]𝑟 = [𝑓𝑟(𝑡, 𝑥(𝑡)), 𝑓𝑟(𝑡, 𝑥(𝑡))] = 𝑓(𝑡, [𝑥(𝑡)]
𝑟)  

= {𝑓(𝑡, 𝑦): 𝑦 ∊ [𝑥(𝑡)]𝑟}                                                                               

= [𝑓1,𝑟 (𝑡, 𝑥𝑟(𝑡), 𝑥𝑟(𝑡)) , 𝑓2,𝑟 (𝑡, 𝑥𝑟(𝑡), 𝑥𝑟(𝑡))],                                     

where the two term end point function are given as  

𝑓1,𝑟 (𝑡, 𝑥𝑟(𝑡), 𝑥𝑟(𝑡)) = min{𝑓(𝑡, 𝑦): 𝑦 ∊ [𝑥(𝑡)]𝑟}, 

𝑓2,𝑟 (𝑡, 𝑥𝑟(𝑡), 𝑥𝑟(𝑡)) = max{𝑓(𝑡, 𝑦): 𝑦 ∊ [𝑥(𝑡)]
𝑟}. 
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Definition: let [𝑡0, 𝑡0 + 𝑎  ] and 𝑅 → 𝑅𝑓 such that 𝐷1𝑥 or 𝐷2𝑥 exist. If 𝑥 and 𝐷1𝑥 satisfy FIVP 

(1.1) and (1.2), we say 𝑥 is a (1.1) solution of FIVP (1.1) and (1.2). Similarly, if 𝑥 and 𝐷2𝑥 

satisfy FIVP (1.1) and (1.2), we say that 𝑥 is a (1.2) - solution of FIVP (1.1) and (1.2). 

The objective of the next algorithm is to follow a method to solve (1.1) and (1.2) in parametric 

form in terms of its r-cut representation. 

 

 

Algorithm  

Case 1: if x (t) is (1)-differentiable then [𝐷1𝑥(𝑡)]
𝑟 = [𝑥𝑟

′ (𝑡), 𝑥𝑟
′
(𝑡)] and solving FIVP (1) and 

(2) translate into the following subroutine  

Step (i): solve the following system of ODEs for [𝑥𝑟(𝑡), 𝑥𝑟(𝑡) ]  

{
𝑥𝑟
′ (𝑡) = 𝑓1,𝑟 (𝑡, 𝑥𝑟(𝑡), 𝑥𝑟(𝑡)) ,

𝑥𝑟
′ (𝑡) = 𝑓2,𝑟 (𝑡, 𝑥𝑟(𝑡), 𝑥𝑟(𝑡)) ,

                                                                                                    (1.3) 

subject to the initial condition 

{
𝑥𝑟(𝑡0) = 𝑥𝑟

0,

𝑥𝑟(𝑡0) = 𝑥𝑟
0
,
                                                                                                                            (1.4) 

Step (ii): ensure that the solution 𝑥𝑟(𝑡), 𝑥𝑟(𝑡) and its derivative [𝑥𝑟
′ (𝑡), 𝑥𝑟

′
(𝑡)]are valid level 

sets for each other r∊ [0, 1], 

Step (iii): use equation 𝑢(𝑠) = sup {𝑟: 𝑢(𝑟) ≤ 𝑠 ≤ 𝑢(𝑟)} to construct a (1) solution x(t) such 

that [𝑥(𝑡)]𝑟 = 𝑥𝑟(𝑡), 𝑥𝑟(𝑡) for each r∊[0,1]. 

Case 2: If x (t) is two differentiable the [𝐷2𝑥(𝑡)]
𝑟 = [𝑥𝑟

′
(𝑡), 𝑥𝑟

′ (𝑡)] and solving FIVP (1.1) and 

(1.2) and translate into the following routine: 

Step (i): solve the following system of ODEs for 𝑥𝑟(𝑡), 𝑥𝑟(𝑡)
 

{
𝑥𝑟
′ (𝑡) = 𝑓2,𝑟 (𝑡, 𝑥𝑟(𝑡), 𝑥𝑟(𝑡)) ,

𝑥𝑟
′ (𝑡) = 𝑓1,𝑟 (𝑡, 𝑥𝑟(𝑡), 𝑥𝑟(𝑡)) ,

                                                                                                     (1.5) 

Subject to the initial condition 

{
𝑥𝑟(𝑡0) = 𝑥𝑟

0 ,

𝑥𝑟(𝑡0) = 𝑥𝑟
0
 ,
                                                                                                                                 (1.6) 

Step (ii): ensure that the solution 𝑥𝑟(𝑡), 𝑥𝑟(𝑡) and its derivative [𝑥𝑟
′ (𝑡), 𝑥𝑟

′
(𝑡)]are valid level 

sets for each other r∊ [0, 1], 
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Step (iii): use equation 𝑢(𝑠) = sup {𝑟: 𝑢(𝑟) ≤ 𝑠 ≤ 𝑢(𝑟)} to construct a (1.1) solution 𝑥(𝑡) 

such that [𝑥(𝑡)]𝑟 = [𝑥𝑟(𝑡), 𝑥𝑟(𝑡)] for each r∊ [0, 1]. 

Sometimes we can not decompose the membership function of the solution [𝑥(𝑡)]𝑟 as a 

function define on R for each 𝑡 ∊ [𝑡0, 𝑡0 + 𝑎] Then from (1.3) we stop the solution in term of 

r-cut representation. 

 

Basic idea of Homotopy analysis method (HAM)  

Homotopy analysis method is used to solve differential equation. To achieve our goal we 

consider the nonlinear differential equation  

𝑁[𝑥(𝑡)] = 0, 𝑡 ≥ 𝑡0,                                                                                                                      (1.7) 

where N is a nonlinear differential operator and 𝑥(𝑡) is an unknown function of the independent 

variable 𝑡. 

Liao create the Zeroth order deformation equation  

(1 − 𝑞)ℒ[𝛷(𝑡; 𝑞) − 𝑥0(𝑡)] = 𝑞ћ𝐻(𝑡)𝑁[𝛷(𝑡; 𝑞)] ,                                                                        (1.8) 

where  

q∊ [0, 1] →embedding parameter, 

ћ ≠ 0 → auxiliary parameter, 

H (t) ≠0 → auxiliary function, 

N → nonlinear differential operator, 

𝛷(𝑡; 𝑞) → unknown function, 

𝑥0(𝑡) → Initial guess of x (t) which satisfy the initial condition, 

ℒ → auxiliary linear operator with the property, 

ℒ [𝑓(𝑡)]  = 0 when 𝑓(𝑡)  = 0.                                                                                                          (1.9) 

It should be emphasized that one has a great freedom to choose the initial guess x0(t), the 

auxiliary linear operator ℒ, auxiliary parameter ћ and the auxiliary function 𝐻(𝑡). According 

to the property (1.7) and the suitable initial condition when q=0 we have  

𝛷(𝑡; 𝑞) = 𝑥0(𝑡),                                                                                                                    (1.10) 

and when q=1, since ћ ≠ 0 and H (t) ≠0, the zeroth-order deformation equation (1.8) is 

equivalent to equation (1.7), hence 

𝛷(𝑡; 1) = 𝑥(𝑡).                                                                                                                     (1.11) 

Thus according to equation (1.10) and (1.11), as q increasing from 0 to 1, the solution 𝛷(𝑡; 𝑞) 

various continuously from the initial approximation 𝑥0(𝑡) to the exact solution 𝑥(𝑡). 

Define the 𝑚𝑡ℎ- order deformation derivative  
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𝑥𝑚(𝑡) =
1

𝑚!

𝜕𝑚𝛷(𝑡; 𝑞)

𝜕𝑞𝑚
  ,                                                                                                                (1.12) 

expanding 𝛷(𝑡; 𝑞) in a Taylor series with respect to the embedding parameter q, 

by using equation (1.10) and (1.12) we have  

𝛷(𝑡; 𝑞) = 𝑥0(𝑡) + ∑ 𝑥𝑚(𝑡)𝑞
𝑚∞

𝑚=1  .                                                                                          (1.13) 

Assume that the auxiliary parameter ћ, the auxiliary function H (t), the initial 

approximation 𝑥0(𝑡), and the auxiliary linear operator £ are properly chosen so that the series 

(1.13) of 𝛷(𝑡; 𝑞) converges at q=1. Then we have these assumption the series solution 

𝑥(𝑡) = 𝑥0(𝑡) + ∑ 𝑥𝑚(𝑡)
∞
𝑚=1 . 

Define the vector  

𝑥⃗𝑛(𝑡) = {𝑥0(𝑡), 𝑥1(𝑡), … , 𝑥𝑛(𝑡)}. 

Differentiating equation (1.8) m-times with respect to embedding parameter q, and then setting 

q=0 and finally dividing them by m! We have, using equation  

eq. (1.12), the so mth-order deformation equation  

ℒ[𝑥𝑚(𝑡) − 𝜒𝑚𝑥𝑚−1(𝑡)] = ћ𝐻(𝑡)𝕽𝒎(𝑥⃗𝑚−1(𝑡)) ,                                                              (1.14) 

where m = 1,2,… , n, 𝜒𝑚 = {
0 ,𝑚 ≤ 1,
1 , 𝑚 > 1,

 and  

𝕽𝒌(𝑥⃗𝑘−1(𝑡)) =
1

(𝑚−1)!

𝜕𝑚−1𝑁[𝛷(𝑡;𝑞)]

𝜕𝑝𝑚−1
|
𝑞=0

.                                                                           (1.15) 

For given any nonlinear operator N, the term 𝕽𝒎(𝑥⃗𝑚−1(𝑡)) can be easily expressed by eqs. 

(1.15) and (1.18). Thus we can gain 𝑥0(𝑡), 𝑥1(𝑡), … , 𝑥𝑛(𝑡) by means of solving the linear high-

order deformation eqs. (1.14) and (17) one after the other in order. The mth order approximation 

of x (t) is given by 𝑥(𝑡) = ∑ 𝑥𝑘(𝑡)
𝑚−1
𝑘=1 . 

It should be emphasized that the so-called mth order deformation equations (1.14) is linear.  
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CHAPTER 2-SIR MODEL 

Model -The problem of spreading of a non-fatal disease in a population which is assume to 

have a constant size over the period of the epidemic is considered. 

At time t suppose the population consist of 

{

𝑥(𝑡) → 𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑙𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 ,                                        

𝑦(𝑡) → 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑚𝑒𝑎𝑛𝑠 𝑤ℎ𝑜 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠 ,                      

𝑧(𝑡) → 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑤ℎ𝑜 ℎ𝑎𝑣𝑒 𝑖𝑚𝑚𝑢𝑛𝑒 𝑎𝑛𝑑.                                      

 

Assume there is a steady rate constant between susceptible and infected and that a constant 

proportion of these constant result in transmission. Then in time 𝛿t,𝑥 of the susceptible 

become infected. 

𝛿𝑥 = −𝛽𝑥𝑦𝛿𝑡                                                                                                                                    (2.1) 

And β is a positive constant. If 𝛾 > 0 is a rate at which current infective become isolated, then 

𝛿𝑦 = 𝛽𝑥𝑦𝛿𝑡 − 𝛾𝑦𝛿𝑡.                                                                                                                         (2.2) 

The number of new isolated 𝛿𝑧 is given by 

𝛿𝑧 = 𝛾𝑦𝛿𝑡.                                                                                                                                       (2.3) 

Now let 𝛿𝑡 → ∞. Then the following system determine the progress of the disease. 

The classic SIR epidemic model is given by the following system of nonlinear ordinary 

differential equation:  

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= −𝛽𝑥𝑦       

𝑑𝑦

𝑑𝑡
= 𝛽𝑥𝑦 − 𝛾𝑦

𝑑𝑧

𝑑𝑡
= 𝛾𝑦             

                                                                                                                             (2.4) 

with initial condition, 

𝑥(0) = 𝑁1, 𝑦(0) = 𝑁2, 𝑧(0) = 𝑁3. 

and mth-order deformation equation 

𝕽𝒌(𝑥⃗𝑘−1(𝑡)) =
1

(𝑘−1)!

𝜕𝑘−1𝑁[𝛷(𝑡;𝑝)]

𝜕𝑞𝑘−1
|
𝑝=0

.                                                                                 (2.5) 

Now applying the inverse of the operator 

𝑑(.)

𝑑𝑡
→ ∫ (. )𝑑𝑡

𝑡

0
 to each equation in the system (2.4) we will get, 

{
 
 

 
 𝑥(𝑡) = 𝑥(0) − ∫ 𝛽𝑥(𝑡)𝑦(𝑡)𝑑𝑡

𝑡

0
 ,                  

𝑦(𝑡) = 𝑦(0) + ∫ [𝛽𝑥(𝑡)𝑦(𝑡) − 𝛾𝑦(𝑡)]𝑑𝑡
𝑡

0
,

𝑧(𝑡) = 𝑧(0) + ∫ 𝛾𝑦(𝑡)𝑑𝑡
𝑡

0
 .                          

                                                                                   (2.6) 
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After applying zeroth order on equation (2.5) 

{
 
 

 
 (1 − 𝑝)(𝑋(𝑡, 𝑝) − 𝑥0(𝑡)) = ћ𝑝 (𝑋(𝑡, 𝑝) − 𝑥(0) + ∫ 𝛽𝑥(𝑡)𝑦(𝑡)𝑑𝑡

𝑡

0
)    ,              

(1 − 𝑝)(𝑌(𝑡, 𝑝) − 𝑦0(𝑡)) = ћ𝑝 (𝑌(𝑡, 𝑝) − 𝑦(0) + ∫ [𝛽𝑥(𝑡)𝑦(𝑡) − 𝛾𝑦(𝑡)]𝑑𝑡
𝑡

0
) ,

(1 − 𝑝)(𝑍(𝑡, 𝑝) − 𝑧0(𝑡)) = ћ𝑝 (𝑍(𝑡, 𝑝) − 𝑧(0) − ∫ 𝛾𝑦(𝑡)𝑑𝑡
𝑡

0
) ,                           

              (2.7) 

and replacing  𝑝 = 0 and 𝑝 = 1 we will get respectively 

{

𝑋(𝑡, 0) = 𝑥0(𝑡)

𝑌(𝑡, 0) = 𝑦0(𝑡)

𝑍(𝑡, 0) = 𝑧0(𝑡)

         {

𝑋(𝑡, 1) = 𝑥(𝑡),
𝑌(𝑡, 1) = 𝑦(𝑡),

𝑍(𝑡, 1) = 𝑧(𝑡).

 

According to given Taylor series with respect to q 

𝛷(𝑡, 𝑞) = 𝑥0(𝑡) + ∑ 𝑥𝑚(𝑡)𝑞
𝑚∞

𝑚=1 , 

Based on above series the value of 𝑋, 𝑌, 𝑍 will become , 

{

𝑋(𝑡, 𝑝) = 𝑥0(𝑡) + ∑ 𝑥𝑘(𝑡)𝑝
𝑘∞

𝑘=1 ,

𝑌(𝑡, 𝑝) = 𝑥0(𝑡) + ∑ 𝑦𝑚(𝑡)𝑝
𝑘∞

𝑘=1 ,

𝑍(𝑡, 𝑝) = 𝑧0(𝑡) + ∑ 𝑧𝑚(𝑡)𝑝
𝑘∞

𝑘=1 .

                                                                                                      (2.8) 

If 𝑝 = 1 the using equation (2.6) we will get 

{

𝑋(𝑡, 1) = 𝑥(𝑡) + ∑ 𝑥𝑘(𝑡),
∞
𝑘=1                                                                                      

𝑦(𝑡, 1) = 𝑦0(𝑡) + ∑ 𝑦𝑘(𝑡)
∞
𝑘=1 ,                                                                                   

𝑧(𝑡, 1) = 𝑧0(𝑡) + ∑ 𝑧𝑘(𝑡).                                                                                    
∞
𝑘=1

                    (2.9)  

Define the vectors 

{

𝑥⃗𝑘 = {𝑥0(𝑡), 𝑥1(𝑡), … , 𝑥𝑘(𝑡)}

𝑦⃗𝑘 = {𝑦0(𝑡), 𝑦1(𝑡),… , 𝑦𝑘(𝑡)}

𝑧𝑘 = {𝑧0(𝑡), 𝑧1(𝑡),… , 𝑧𝑘(𝑡)}

                                                                                                  (2.10) 

so kth deformation equation will become 

{

ℒ[𝑥𝑘 − 𝜒𝑘𝑥𝑘−1(𝑡)] = ћℜ𝑘(𝑥⃗𝑘−1),

ℒ[𝑦𝑘 − 𝜒𝑘𝑦𝑘−1(𝑡)] = ћℜ𝑘(𝑦⃗𝑘−1),

ℒ[𝑧𝑘 − 𝜒𝑘𝑧𝑘−1(𝑡)] = ћℜ𝑘(𝑧𝑘−1).

                                                                                            (2.11) 

from the equation (2.5) and (2.6) we have 

{
 
 
 
 

 
 
 
 
ℜ𝑘(𝑥⃗𝑘−1) = 𝑥𝑘−1(𝑡) + ∫𝛽 [∑𝑥𝑖(𝑡)

𝑘−1

𝑖=1

𝑦𝑘−1−𝑖(𝑡)] 𝑑𝑡 − (𝑥0(𝑡) − 𝜒𝑘𝑥0(𝑡)),

𝑡

0

                   (2.12)     

ℜ𝑘(𝑦⃗𝑘−1) = 𝑦𝑘−1(𝑡) + ∫[𝛽 (∑𝑥𝑖(𝑡)

𝑘−1

𝑖=1

𝑦𝑘−1−𝑖(𝑡)) − 𝛾𝑦𝑘−1(𝑡)] 𝑑𝑡 − (𝑦0(𝑡) − 𝜒𝑘𝑦0(𝑡)),

𝑡

0

     

ℜ𝑘(𝑧𝑘−1) = 𝑧𝑘−1(𝑡) + ∫𝛾𝑦𝑘−1(𝑡)𝑑𝑡 − (𝑧0(𝑡) − 𝜒𝑘𝑧0(𝑡))

𝑡

0

.                                                            
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Considering equation (2.7), (2.13), (2.14) and the value of χ we can find the recursive 

expression. 

{
 
 

 
 𝑥𝑘 = 𝜒𝑘𝑥𝑘−1(𝑡) + ћ (𝑥𝑘−1(𝑡) + ∫ [𝛽 ∑ 𝑥𝑖(𝑡)𝑦𝑘−1−𝑖(𝑡)𝑑𝑡

𝑘−1
𝑖=0 − (𝑥0(𝑡) − 𝜒𝑘(𝑥0(𝑡))]

𝑡

0
),                      

𝑦𝑘 = 𝜒𝑘𝑦𝑘−1(𝑡) + ћ(𝑦𝑘−1(𝑡) − ∫  [𝛽 ∑ 𝑥𝑖(𝑡)𝑦𝑘−1−𝑖(𝑡) − 𝑦𝑘−1(𝑡)
𝑘−1
𝑖=0 ]𝑑𝑡

𝑡

0
                                              

−(𝑦0(𝑡) − 𝜒𝑘(𝑦0(𝑡))),

𝑧𝑘 = 𝜒𝑘𝑧𝑘−1(𝑡) + ћ (𝑧𝑘−1(𝑡) − ∫ 𝛾 𝑦𝑘−1(𝑡)𝑑𝑡 − (𝑧0(𝑡) − 𝜒𝑘(𝑧0(𝑡))
𝑡

0
).                                                

 

 

Example 

For numerical example here are the following values let: 𝑁1 = 20 , Initial population of x(t) , 

who are susceptible, 𝑁2 = 15 , Initial population of y(t) , who are infective, 𝑁3 = 10 , Initial 

population of z(t) , who are immune, 𝛽 = 0.01, Rate of change of susceptible to infective 

population, 𝛾 = 0.02, Rate of change of infective to immune population. 
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Fig describe the relation between X and t which continuously decreasing since the uninfected 

cell gradually decreasing and similarly the infected cell that is y gradually increasing and here 

z means who are immune to the disease that is also gradually increasing from time to time in 

fig 3. 
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CHAPTER 3- HIV-MODEL 

Model → Uninfected cell die at rate 𝑎𝑛 and uninfected cells with free virus produce the infected 

cell at a rate 𝛽𝑛𝑣.In equation (3.1) infected cell die at a rate 𝑏𝑖 and free virus is produced from 

infected cell at a rate 𝑘𝑖 and die at a rate 𝛿𝑣. The variable 𝑧 denotes the magnitude of the CTL 

(cytotoxic T lymphocyte) and CTL decay at a rate 𝑑𝑧 and infected cell are killed by CTL at 

rate 𝑐𝑖𝑧.Now consider the all the variable as a fuzzy variable and the fuzzy form of equation 

no (3.1). Let us consider the Novak may model in which I have included one more term, 

{
 
 
 

 
 
 
𝑑𝑛

𝑑𝑡
= 𝑟 − 𝑎𝑛 − 𝛽𝑛𝑣 ,

𝑑𝑖

𝑑𝑡
= 𝛽𝑛𝑣 − 𝑏𝑖 ,          

𝑑𝑣
𝑑𝑡
= 𝑘𝑖 − 𝛿𝑣 ,             

𝑑𝑧
𝑑𝑡
= 𝑐𝑖𝑧 − 𝑑𝑧 ,           

                                                                                                                    (3.1) 

where 

𝑛 → 𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙, 

𝑖 → 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙, 

𝑣 → 𝑛𝑜. 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑣𝑖𝑟𝑢𝑠 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒, 

𝑧 → 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐶𝑇𝐿(𝑐𝑦𝑡𝑜𝑡𝑜𝑥𝑖𝑐 𝑇 𝑙𝑦𝑚𝑝ℎ𝑜𝑐𝑦𝑡𝑒) . 

 Initial conditions of the fuzzy model. 

𝑛̃ (850,1000,1150) 

𝑖̃ (3,5,7) 

𝑣̃ (6750,7000,7250) 

𝑧̃ (1500,1300,1250) 

 

Now fuzzy model form of the above equation will be, 

{
 
 
 

 
 
 
𝑑𝑛̃

𝑑𝑡
= 𝑟 − 𝑎𝑛̃ − 𝛽𝑛̃𝑣̃,

𝑑𝑖̃

𝑑𝑡
= 𝛽𝑛̃𝑣̃ − 𝑏𝑖̃,          

𝑑𝑣̃
𝑑𝑡

= 𝑘𝑖̃ − 𝛿𝑣̃,             

𝑑𝑧̃
𝑑𝑡
= 𝑐𝑖̃𝑧̃ − 𝑑𝑧̃.           

                                                                                                                    (3.2) 

Now consider the theorem (1.1) and let 𝑓 be a fuzzy function where  
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[𝑓(𝑥)]𝛼 = [𝑓𝛼(𝑥), 𝑓
𝛼
]. 

So by using above previous theorem the system of fuzzy differentiable equations changes to 

the two crisp differential equation as follows, 

 

{
 
 
 
 

 
 
 
 
𝑑𝑛

𝛼

𝑑𝑡
= 𝑟 − 𝑎𝑛𝛼 − 𝛽𝑛𝛼𝑣𝛼,

𝑑𝑖
𝛼

𝑑𝑡
= 𝛽𝑛

𝛼
𝑣
𝛼
− 𝑏𝑖𝛼 ,        

𝑑𝑣
𝛼

𝑑𝑡
= 𝑘𝑖

𝛼
− 𝛿𝑣𝛼,              

𝑑𝑧
𝛼

𝑑𝑡
= 𝑐𝑖

𝛼
𝑧
𝛼
− 𝑑𝑧𝛼 .         

                                                                                                       (3.2. 𝑎) 

and 

{
 
 
 

 
 
 
𝑑𝑛𝛼

𝑑𝑡
= 𝑟 − 𝑎𝑛

𝛼
− 𝛽𝑛

𝛼
𝑣
𝛼
,

𝑑𝑖𝛼

𝑑𝑡
= 𝛽𝑛𝛼𝑣𝛼 − 𝑏𝑖

𝛼
,         

𝑑𝑣𝛼

𝑑𝑡
= 𝑘𝑖𝛼 − 𝛿𝑣

𝛼
,        

𝑑𝑧𝛼

𝑑𝑡
= 𝑐𝑖𝛼𝑧𝛼 − 𝑑𝑧

𝛼
.   
       

                                                                                                       (3.2. 𝑏) 

Or 

{
 
 
 
 

 
 
 
 
𝑑𝑛

𝛼

𝑑𝑡
= 𝑟 − 𝑎𝑛

𝛼
− 𝛽𝑛

𝛼
𝑣
𝛼
,

𝑑𝑖
𝛼

𝑑𝑡
= 𝛽𝑛𝛼𝑣𝛼 − 𝑏𝑖

𝛼
,        

𝑑𝑣
𝛼

𝑑𝑡
= 𝑘𝑖𝛼 − 𝛿𝑣

𝛼
,             

𝑑𝑧
𝛼

𝑑𝑡
= 𝑐𝑖𝛼𝑧𝛼 − 𝑑𝑧

𝛼
.         

                                                                                                        (3.3. 𝑎) 

and 

{
 
 
 

 
 
 
𝑑𝑛𝛼

𝑑𝑡
= 𝑟 − 𝑎𝑛𝛼 − 𝛽𝑛𝛼𝑣𝛼 ,

𝑑𝑖𝛼

𝑑𝑡
= 𝛽𝑛

𝛼
𝑣
𝛼
− 𝑏𝑖𝛼 ,          

𝑑𝑣𝛼

𝑑𝑡
= 𝑘𝑖

𝛼
− 𝛿𝑣𝛼,              

𝑑𝑧𝛼

𝑑𝑡
= 𝑐𝑖

𝛼
𝑧
𝛼
− 𝑑𝑧𝛼.          

                                                                                                        (3.3. 𝑏) 

 

Now according to Zeroth order deformation equation  

(1 − 𝑝)ℒ[𝛷(𝑡; 𝑝) − 𝑣0
0(𝑡)] = 𝑝ћ𝐻(𝑡)𝑁[𝑣(𝑡)], 
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and applying inverse operator i.e. 

𝑑(. )

𝑑𝑡
= ∫ (. )

𝑡

0

𝑑𝑡, 

then the equations (3.3. 𝑎)𝑎𝑛𝑑 (3.3. 𝑏) will become, 

{
 
 
 

 
 
 𝑛

𝛼
(𝑡) = 𝑛

𝛼
(0) + ∫ (𝑟 − 𝑎𝑛𝛼(𝑡) − 𝛽𝑛𝛼(𝑡)𝑣𝛼(𝑡)𝑑𝑡),

𝑡

0

𝑖
𝛼
(𝑡) = 𝑖

𝛼
(0) + ∫ (𝛽𝑛𝛼(𝑡)𝑣𝛼(𝑡) − 𝑏𝑖

𝛼
(𝑡))

𝑡

0

𝑑𝑡.        

𝑣
𝛼
(𝑡) = 𝑣

𝛼
(0) + ∫ (𝑘𝑖𝛼(𝑡) − 𝛿𝑣

𝛼
(𝑡)) 𝑑𝑡,                    

𝑡

0

𝑧
𝛼
(𝑡) = 𝑧

𝛼
(0) + ∫ (𝑐𝑖𝛼(𝑡)𝑧𝛼(𝑡) − 𝑑𝑧

𝛼
(𝑡)) 𝑑𝑡.

𝑡

0
         

                                                     (3.4. 𝑎) 

And similarly for lower cut, 

{
 
 
 
 

 
 
 
 𝑛𝛼(𝑡) = 𝑛𝛼(0) + ∫ (𝑟 − 𝑎𝑛

𝛼
(𝑡) − 𝛽𝑛

𝛼
(𝑡)𝑣

𝛼
(𝑡)) 𝑑𝑡,

𝑡

0

𝑖𝛼(𝑡) = 𝑖𝛼(0) + ∫ (𝛽𝑛
𝛼
(𝑡)𝑣

𝛼
(𝑡) − 𝑏𝑖𝛼(𝑡))

𝑡

0

𝑑𝑡,           

𝑣𝛼(𝑡) = 𝑣𝛼(0) + ∫ (𝑘𝑖
𝛼
(𝑡) − 𝛿𝑣𝛼(𝑡)) 𝑑𝑡,

𝑡

0
                     

𝑧𝛼(𝑡) = 𝑧𝛼(0) + ∫ (𝑐𝑖
𝛼
(𝑡)𝑧

𝛼
(𝑡) − 𝑑𝑧𝛼(𝑡)) 𝑑𝑡

𝑡

0
.            

                                                    (3.4. 𝑏) 

Applying zeroth order deformation equation on above equation we will get the following 

equation in which ℒ is the linear part and N is the nonlinear part 

{
 
 
 
 

 
 
 
 (1 − 𝑝)[𝑛

𝛼
(𝑡, 𝑝) − 𝑛0

𝛼
(𝑡)] = 𝑝ћ (𝑛

𝛼
(𝑡, 𝑝) − 𝑛

𝛼
(0) − ∫ (𝑟 − 𝑎𝑛𝛼(𝑡) − 𝛽𝑛𝛼(𝑡)𝑣𝛼(𝑡)𝑑𝑡)

𝑡

0
) ,

(1 − 𝑝) [𝑖
𝛼
(𝑡, 𝑝) − 𝑖0

𝛼
(𝑡)] = 𝑝ћ (𝑖

𝛼
(𝑡, 𝑝) − 𝑖

𝛼
(0) − ∫ (𝛽𝑛𝛼(𝑡)𝑣𝛼(𝑡) − 𝑏𝑖

𝛼
(𝑡))

𝑡

0
𝑑𝑡),         

(1 − 𝑝)[𝑣
𝛼
(𝑡, 𝑝) − 𝑣0

𝛼
(𝑡)] = 𝑝ћ(𝑣

𝛼
(𝑡, 𝑝) − 𝑣

𝛼
(0) − ∫ (𝑘𝑖𝛼(𝑡) − 𝛿𝑣

𝛼
(𝑡)) 𝑑𝑡

𝑡

0

),              

(1 − 𝑝)[𝑧
𝛼
(𝑡, 𝑝) − 𝑧0

𝛼
(𝑡)] = 𝑝ћ(𝑧

𝛼
(𝑡, 𝑝) − 𝑧

𝛼
(0) − ∫ (𝑐𝑖𝛼(𝑡)𝑧𝛼(𝑡) − 𝑑𝑧

𝛼
(𝑡)) 𝑑𝑡

𝑡

0

).    

  

   (3.5. 𝑎)       

 

{
 
 
 

 
 
 (1 − 𝑝)[𝑛

𝛼(𝑡, 𝑝) − 𝑛0
𝛼(𝑡)] = 𝑝ћ (𝑛𝛼(𝑡, 𝑝) − 𝑛𝛼(0) − ∫ (𝑟 − 𝑎𝑛

𝛼
(𝑡) − 𝛽𝑛

𝛼
(𝑡)𝑣

𝛼
(𝑡)) 𝑑𝑡

𝑡

0
) ,

(1 − 𝑝)[𝑖𝛼(𝑡, 𝑝) − 𝑖0
𝛼(𝑡)] = 𝑝ћ (𝑖𝛼(𝑡, 𝑝) − 𝑖𝛼(0) − ∫ (𝛽𝑛

𝛼
(𝑡)𝑣

𝛼
(𝑡) − 𝑏𝑖𝛼(𝑡))

𝑡

0
𝑑𝑡),             

                                                  

(1 − 𝑝)[𝑣𝛼(𝑡, 𝑝) − 𝑣0
𝛼(𝑡)] = 𝑝ћ(𝑣𝛼(𝑡, 𝑝) − 𝑣𝛼(0) − ∫ (𝑘𝑖

𝛼
(𝑡) − 𝛿𝑣𝛼(𝑡)) 𝑑𝑡

𝑡

0

),                                                                    

(1 − 𝑝)[𝑧𝛼(𝑡, 𝑝) − 𝑧0
𝛼(𝑡)] = 𝑝ћ(𝑧𝛼(𝑡, 𝑝) − 𝑧𝛼(0) − ∫ (𝑐𝑖

𝛼
(𝑡)𝑧

𝛼
(𝑡) − 𝑑𝑧𝛼(𝑡)) 𝑑𝑡

𝑡

0

).                                                            

      

(3.5. 𝑏)   
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 Substituting the value of 𝑝 = 0 we will get the following result, 

{
 
 

 
 𝑛

𝛼
(𝑡, 0) = 𝑛0

𝛼
(𝑡),

𝑖
𝛼
(𝑡, 0) = 𝑖0

𝛼
(𝑡),

𝑣
𝛼
(𝑡, 0) = 𝑣0

𝛼
(𝑡),

𝑧
𝛼
(𝑡, 0) = 𝑧0

𝛼
(𝑡).

                                                                                                                        (3.6. 𝑎) 

and 

{
 
 

 
 𝑛

𝛼(𝑡, 0) = 𝑛0
𝛼(𝑡),

𝑖𝛼(𝑡, 0) = 𝑖0
𝛼(𝑡),

𝑣𝛼(𝑡, 0) = 𝑣0
𝛼(𝑡),

𝑧𝛼(𝑡, 0) = 𝑧0
𝛼(𝑡).

                                                                                                                        (3.6. 𝑏) 

Now substituting the value of 𝑝 = 1 we will get  

{
 
 

 
 𝑛

𝛼
(𝑡, 1) − 𝑛

𝛼
(𝑡),

𝑖
𝛼
(𝑡, 1) − 𝑖

𝛼
(𝑡),

𝑣
𝛼
(𝑡, 1) − 𝑣

𝛼
(𝑡),

𝑧
𝛼
(𝑡, 1) − 𝑧

𝛼
(𝑡).

                                                                                                                         (3.7. 𝑎) 

𝑎𝑛𝑑  

{
 
 

 
 𝑛

𝛼(𝑡, 1) − 𝑛𝛼(𝑡),

𝑖𝛼(𝑡, 1) − 𝑖𝛼(𝑡),

𝑣𝛼(𝑡, 1) − 𝑣𝛼(𝑡),

𝑧𝛼(𝑡, 1) − 𝑧𝛼(𝑡).

                                                                                                                         (3.7. 𝑏) 

Now we know the Taylor series and apply with respect to q 

𝑄(𝑡, 𝑞) = 𝑥0(𝑡) + ∑ 𝑥𝑚(𝑡)𝑞
𝑚∞

𝑚=1  , 

𝑥𝑚(𝑡) =
𝜕𝑚𝑄(𝑡, 𝑞)

𝜕𝑞𝑚
    𝑎𝑡 𝑞 = 0, 

and according to above Taylor equation we will apply in equation (3.7.a) and (3.7.b) we will 

get following equation 

{
 
 

 
 
𝑛
𝛼
(𝑡, 𝑝) = 𝑛0

𝛼
(𝑡) + ∑𝑛𝑘

𝛼
(𝑡)𝑝𝑘,

𝑖
𝛼
(𝑡, 1) = 𝑖0

𝛼
(𝑡) + ∑ 𝑖𝑘

𝛼
(𝑡)𝑝𝑘 ,

   

𝑣
𝛼
(𝑡, 1) = 𝑣0

𝛼
(𝑡) +∑𝑣𝑘

𝛼
(𝑡)𝑝𝑘,

𝑧
𝛼
(𝑡, 1) = 𝑧0

𝛼
(𝑡) +∑𝑧𝑘

𝛼
(𝑡)𝑝𝑘 .

                                                                                             (3.8. 𝑎) 

and the other equation will be 
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{
 
 

 
 
𝑛𝛼(𝑡, 1) = 𝑛0

𝛼(𝑡) + ∑𝑛𝑘
𝛼(𝑡)𝑝𝑘,

𝑖𝛼(𝑡, 1) = 𝑖0
𝛼(𝑡) + ∑ 𝑖𝑘

𝛼(𝑡)𝑝𝑘 ,
   

𝑣𝛼(𝑡, 1) = 𝑣0
𝛼(𝑡) +∑𝑣𝑘

𝛼(𝑡)𝑝𝑘,

𝑧𝛼(𝑡, 1) = 𝑧0
𝛼(𝑡) +∑𝑧𝑘

𝛼(𝑡)𝑝𝑘 ,

                                                                                            (3.8. 𝑏) 

On the basis of Taylor equation equations (3.8.a) and (3.8.b) will become 

{
 
 
 
 

 
 
 
 𝑛0

𝛼𝑘
(𝑡) =

𝜕𝑘𝑛
𝛼
(𝑡, 𝑝)

𝜕𝑝𝑘
,

𝑖0
𝛼𝑘
(𝑡) =

𝜕𝑘𝑖
𝛼
(𝑡, 𝑝)

𝜕𝑝𝑘
,

𝑣0
𝛼𝑘
(𝑡) =

𝜕𝑘𝑣
𝛼
(𝑡, 𝑝)

𝜕𝑝𝑘
,

𝑧0
𝛼𝑘
(𝑡) =

𝜕𝑘𝑧
𝛼
(𝑡, 𝑝)

𝜕𝑝𝑘
.

                                                                                                                 (3.9. 𝑎) 

and 

{
 
 
 
 

 
 
 
 𝑛0

𝛼𝑘(𝑡) =
𝜕𝑘𝑛𝛼(𝑡, 𝑝)

𝜕𝑝𝑘
,

𝑖0
𝛼𝑘(𝑡) =

𝜕𝑘𝑛𝛼(𝑡, 𝑝)

𝜕𝑝𝑘
,

𝑣0
𝛼𝑘(𝑡) =

𝜕𝑘𝑛𝛼(𝑡, 𝑝)

𝜕𝑝𝑘
,

𝑧0
𝛼𝑘(𝑡) =

𝜕𝑘𝑛𝛼(𝑡, 𝑝)

𝜕𝑝𝑘
.

                                                                                                                  (3.9. 𝑏) 

from equation of (3.9.a) and (3.9.b) we will get 

{
 
 

 
 𝑛𝑘

𝛼
(𝑡) = 𝑛0

𝛼𝑘
(𝑡),

𝑖𝑘
𝛼
(𝑡) = 𝑖0

𝛼𝑘
(𝑡),

𝑣𝑘
𝛼
(𝑡) = 𝑣0

𝛼𝑘
(𝑡),

𝑧𝑘
𝛼
(𝑡) = 𝑧0

𝛼𝑘
(𝑡).

                                                                                                                        (3.10. 𝑎) 

and 

{
 
 

 
 
𝑛𝑘
𝛼(𝑡) = 𝑛0

𝛼𝑘(𝑡),

𝑖𝑘
𝛼(𝑡) = 𝑖0

𝛼𝑘(𝑡),

𝑣𝑘
𝛼(𝑡) = 𝑣0

𝛼𝑘(𝑡),

𝑧𝑘
𝛼(𝑡) = 𝑧0

𝛼𝑘(𝑡).

                                                                                                                        (3.10. 𝑏) 

  

Using p=1 in equation in (8.1) and (8.b) we will get the following equation 



21 
 

 

{
 
 
 
 

 
 
 
 
𝑛
𝛼
(𝑡) = 𝑛0

𝛼
(𝑡) + ∑ 𝑛𝑘

𝛼
(𝑡),∞

𝑘=1

𝑖
𝛼
(𝑡) = 𝑛0

𝛼
(𝑡) + ∑ 𝑖𝑘

𝛼
(𝑡)∞

𝑘=1 ,

𝑣
𝛼
(𝑡) = 𝑛0

𝛼
(𝑡) +∑𝑣𝑘

𝛼
(𝑡)

∞

𝑘=1

,

𝑧
𝛼
(𝑡) = 𝑛0

𝛼
(𝑡) +∑𝑧𝑘

𝛼
(𝑡)

∞

𝑘=1

,

                                                                                                (3.11. 𝑎) 

and 

{
 
 
 

 
 
 
𝑛𝛼(𝑡) = 𝑛0

𝛼(𝑡) + ∑ 𝑛𝑘
𝛼(𝑡),∞

𝑘=1

𝑖𝛼(𝑡) = 𝑖0
𝛼(𝑡) + ∑ 𝑛𝑘

𝛼(𝑡),∞
𝑘=1  

𝑣𝛼(𝑡, 1) = 𝑣0
𝛼(𝑡) +∑𝑛𝑘

𝛼(𝑡),

∞

𝑘=1

𝑧𝛼(𝑡, 1) = 𝑧0
𝛼(𝑡) +∑𝑛𝑘

𝛼(𝑡)

∞

𝑘=1

.

                                                                                               (3.11. 𝑏) 

 

Vector Representation 

Define the vector for the upper cut, 

𝑛⃗⃗⃗𝑘
𝛼
= {𝑛0

𝛼
(𝑡), 𝑛1

𝛼
(𝑡), 𝑛2

𝛼
(𝑡) …………………𝑛𝑘

𝛼
(𝑡)}, 

𝑖⃗𝑘
𝛼
= {𝑖0

𝛼
(𝑡), 𝑖1

𝛼
(𝑡), 𝑖2

𝛼
(𝑡) ………………… 𝑖𝑘

𝛼
(𝑡)}, 

𝑣⃗⃗𝑘
𝛼
= {𝑣0

𝛼
(𝑡), 𝑣1

𝛼
(𝑡), 𝑣2

𝛼
(𝑡) …………………𝑣𝑘

𝛼
(𝑡)},                                                       (3.12.a) 

𝑧⃗⃗𝑘
𝛼
= {𝑧0

𝛼
(𝑡), 𝑧1

𝛼
(𝑡), 𝑧2

𝛼
(𝑡) …………………𝑧𝑘

𝛼
(𝑡)}, 

and for lower cut 

𝑛⃗⃗𝑘
𝛼 = {𝑛0

𝛼(𝑡), 𝑛1
𝛼(𝑡)𝑛2

𝛼(𝑡) ……………… . . 𝑛0
𝛼(𝑡)}, 

𝑖𝑘
𝛼 = {𝑖0

𝛼(𝑡), 𝑖1
𝛼(𝑡)𝑖2

𝛼(𝑡) …………………… 𝑖0
𝛼(𝑡)}, 

𝑣⃗𝑘
𝛼 = {𝑣0

𝛼(𝑡), 𝑣1
𝛼(𝑡)𝑣2

𝛼(𝑡)……………… . . 𝑣0
𝛼(𝑡)},                                                           (3.12.b) 

𝑧𝑘
𝛼 = {𝑧0

𝛼(𝑡), 𝑧1
𝛼(𝑡)𝑧2

𝛼(𝑡)……………… . . . 𝑧0
𝛼(𝑡)}. 

kth deformation equation for upper cut will be 

ℒ[𝑛𝑘
𝛼
(𝑡) − 𝜒𝑘𝑛𝑘−1

𝛼
(𝑡) = ћℜ𝑛𝑘(𝑛𝑘−1

𝛼
)], 

ℒ [𝑖𝑘
𝛼
(𝑡) − 𝜒𝑘𝑖𝑘−1

𝛼
(𝑡) = ћℜ𝑛𝑘(𝑖𝑘−1

𝛼
)],                                                                                      (3.13.a) 

ℒ[𝑣𝑘
𝛼
(𝑡) − 𝜒𝑘𝑣𝑘−1

𝛼
(𝑡) = ћℜ𝑛𝑘(𝑣𝑘−1

𝛼
)], 

ℒ[𝑧𝑘
𝛼
(𝑡) − 𝜒𝑘𝑧𝑘−1

𝛼
(𝑡) = ћℜ𝑛𝑘(𝑧𝑘−1

𝛼
)], 

and kth deformation equation for lower cut will be 
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ℒ[𝑛𝑘
𝛼(𝑡) − 𝜒𝑘𝑛𝑘−1

𝛼 (𝑡) = ћℜ𝑛𝑘(𝑛𝑘−1
𝛼 )], 

ℒ[𝑖𝑘
𝛼(𝑡) − 𝜒𝑘𝑖𝑘−1

𝛼 (𝑡) = ћℜ𝑛𝑘(𝑖𝑘−1
𝛼 )], 

ℒ[𝑣𝑘
𝛼(𝑡) − 𝜒𝑘𝑣𝑘−1

𝛼 (𝑡) = ћℜ𝑛𝑘(𝑣𝑘−1
𝛼 )],                                                                  (3.13.b) 

ℒ[𝑧𝑘
𝛼(𝑡) − 𝜒𝑘𝑧𝑘−1

𝛼 (𝑡) = ћℜ𝑛𝑘(𝑧𝑘−1
𝛼 )]. 

Table 1. Parameters of the HIV model 

𝑟 = 7 𝑎 = 0.007 𝛽 = 42163 ∗ 1011 

𝑏 = 0.0999 𝑠 = 0.2 𝑘 = 90.67 

Solution 

Our final equation for upper cut will be 

𝑛𝑘
𝛼
(𝑡) = 𝜒𝑘𝑛𝑘−1(𝑡) + ћ(𝑛𝑘−1(𝑡))

+ ∫ (∑(𝑟 − 𝑎𝑛𝑖
𝛼(𝑡) − 𝛽𝑎𝑛𝑖

𝛼(𝑡)𝑣𝑘−2𝑖−1
𝛼 (𝑡))

𝑘−1

𝑖=1

)𝑑𝑡 − (𝑛0
𝛼
(𝑡) − 𝜒𝑘𝑛0

𝛼
(𝑡)),     

𝑡

0

 

𝑖𝑘
𝛼
(𝑡) = 𝜒𝑘𝑖𝑘−1(𝑡) + ћ (𝑖𝑘−1(𝑡))

+ ∫ (∑(𝛽𝑛𝑖
𝛼(𝑡)𝑣𝑘−2𝑖−1

𝛼 (𝑡)) − 𝑏𝑖𝑘−1−𝑖
𝛼

𝑘−1

𝑖=1

)𝑑𝑡                                                         
𝑡

0

− (𝑖0
𝛼
(𝑡) − 𝜒𝑘𝑖0

𝛼(𝑡)),       

𝑣𝑘
𝛼
(𝑡) = 𝜒𝑘𝑣𝑘−1

𝛼
(𝑡) + ћ𝑣𝑘−1

𝛼
(𝑡)

+ ∫ (∑(𝑘𝑖𝑘−1−𝑖
𝛼 (𝑡) − 𝛿𝑣𝑘−1−2𝑖

𝛼
(𝑡))

𝑘−1

𝑖=1

)𝑑𝑡 − (𝑣0
𝛼
(𝑡) − 𝜒𝑘𝑣0

𝛼
(𝑡)) ,

𝑡

0

                    

𝑧𝑘
𝛼
(𝑡) = 𝜒𝑘𝑧𝑘−1

𝛼
(𝑡) + ћ𝑧𝑘−1

𝛼
(𝑡)

+ ∫ (∑(𝑐𝑖𝑘−1−𝑖
𝛼 (𝑡)𝑧𝑘−1−3𝑖

𝛼 (𝑡) − 𝑑𝑧𝑘−1−3𝑖
𝛼

(𝑡))

𝑘−1

𝑖=1

)𝑑𝑡 − (𝑧0
𝛼
(𝑡) − 𝜒𝑘𝑧0

𝛼
(𝑡))

𝑡

0

. 

 

Table 4. α-cut of the initial conditions, 

 

𝑛
0
(0) 1000𝛼 + 1150(1 − 𝛼) 

𝑛0(0) 1000𝛼 + 850(1 − 𝛼) 

𝑖
0
(0) 5𝛼 + 6(1 − 𝛼) 

𝑖0(0) 5𝛼 + 4(1 − 𝛼) 
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𝑣
0
(0) 7000𝛼 + 7250(1 − 𝛼) 

𝑣0(0) 7000𝛼 + 6750(1 − 𝛼) 

𝑧
0
(0) 1500𝛼 + 1300(1 − 𝛼) 

𝑧0(0) 1500𝛼 + 1250(1 − 𝛼) 

 

Final solution for lower cut 

𝑛𝑘
𝛼(𝑡) = 𝜒𝑘𝑛𝑘−1(𝑡) + ћ (𝑛𝑘−1(𝑡))

+ ∫ (∑(𝑟 − 𝑎𝑛𝑖
𝛼
(𝑡) − 𝛽𝑎𝑛𝑖

𝛼
(𝑡)𝑣𝑘−2𝑖−1

𝛼
(𝑡))

𝑘−1

𝑖=1

)𝑑𝑡 − (𝑛0
𝛼(𝑡) − 𝜒𝑘𝑛0

𝛼(𝑡)) ,
𝑡

0

 

𝑖𝑘
𝛼(𝑡) = 𝜒𝑘𝑖𝑘−1(𝑡) + ћ (𝑖𝑘−1(𝑡))

+ ∫ (∑(𝛽𝑛𝑖
𝛼
(𝑡)𝑣𝑘−2𝑖−1

𝛼
(𝑡)) − 𝑏𝑖𝑘−1−𝑖

𝛼

𝑘−1

𝑖=1

)𝑑𝑡 − (𝑖0
𝛼(𝑡) − 𝜒𝑘𝑖0

𝛼(𝑡)) ,
𝑡

0

            

𝑣𝑘
𝛼(𝑡) = 𝜒𝑘𝑣𝑘−1

𝛼 (𝑡) + ћ𝑣𝑘−1
𝛼 (𝑡)

+ ∫ (∑(𝑘𝑖𝑘−1−𝑖
𝛼

(𝑡) − 𝛿𝑣𝑘−1−2𝑖
𝛼 (𝑡))

𝑘−1

𝑖=1

)𝑑𝑡 − (𝑣0
𝛼(𝑡) − 𝜒𝑘𝑣0

𝛼(𝑡)),                   
𝑡

0

 

𝑧𝑘
𝛼(𝑡) = 𝜒𝑘𝑧𝑘−1

𝛼 (𝑡) + ћ𝑧𝑘−1
𝛼 (𝑡)

+ ∫ (∑(𝑐𝑖𝑘−1−𝑖
𝛼

(𝑡)𝑧𝑘−1−3𝑖
𝛼

(𝑡) − 𝑑𝑧𝑘−1−3𝑖
𝛼 (𝑡))

𝑘−1

𝑖=1

)𝑑𝑡 − (𝑧0
𝛼(𝑡) − 𝜒𝑘𝑧0

𝛼(𝑡)) .
𝑡

0

 

 

Graph 

 

Fig 1 
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Fig 2 

Fig 1 and Fig 2 describe the relation between uninfected cell and infected cell with time .In 

fig1 describe the above bound and lower bound of the function which gradually increasing but 

in Fig 2 infected cell increasing with the time .  

 

Conclusion – Homotopy analysis method is known to be a powerful method for solving many 

functional equations such as ordinary, partial differential equations, integral equations and so 

many other equations. In this thesis, we used homotopy analysis method for solving a system 

of differential equation using Zeroth order deformation equation which play a very important 

role in relation between nonlinear equation to linear equation that are describe in SIR model 

for an epidemic disease and HIV model. Using the basic fundamental of ћ curve, we are able 

to find the area of convergence in the series solution. Numerical example also provided to show 

the simplicity and efficiency of the method.  
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