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ABSTRACT 

 

Chaos is a recent but well-established phenomenon. In this report work has been done in the period 

of July,2014 to April,2015.The main work done in this paper is to study various techniques to find 

whether any system is chaotic or not. We have tested these systems chaotic behavior with respect 

to different parameter values. Work basically is done using MATLAB programming. The Matlab 

codes have been used is given in the ‘Matlab codes’ section. Mathieu Oscillator and Logistic 

equation are used as systems to study. 
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Chaos theory 

Chaos basically means disorder. Change and time are the basic building block of chaos 

theory. A system is an assemble of interacting parts. Now system changes with time. Such 

as the weather, market prices anything can be a system. Now what will be the qualitative 

long-term behavior of a changing system. The presence of chaos means the long-term 

prediction is worthless. It generally represents irregular behavior over time. The value at 

present largely depends on the previous value. Chaos may not appear easy but its origin 

may be very simple. I have given a very simple equation to show how a simple equation 

can show a very complex behavior. 

𝑋𝑛+1 = 2.5 − 𝑋𝑛
2 

Input Value(𝑋𝑛)        New Value(𝑋𝑛+1) 

1 1.5 

1.5 0.25 

0.25                                      2.43 

Etc  

This gives a widely fluctuating values. Thus, a chaotic system looks unarranged but it is 

deterministic. The above equation is quite simple but its behavior is not. Chaotic systems 

carry out certain laws or equations. The chaotic behavior can come out of a single variable. 

Now a system can alter with time or distance. Depending on that chaos is categorised in 

two broad class one is temporal chaos and another is spatial chaos. Chaos is seen only in 

deterministic non-linear dynamical systems. 

Nonlinear is something which is not linear. The simple example of a nonlinear system is 

freezing of water. Up to zero degree, nothing occurs but unexpectedly at zero degree the 

water freezes to ice. To study the nonlinear systems we have to inspect three things 
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● long-term behavior 

●response to small stimuli 

●persistence of local pulses 

A dynamical system is something which changes with time. There are two types of 

dynamical systems one is conservative where no energy is lost and another is dissipative 

where the system has friction, the system releases energy and comes near to limiting 

condition .chaos occurs in these cases. Chaos theory is a multidisciplinary subject. It is 

seen in mathematics, physics, biology, chemistry, geology, medicine, physiology, 

ecology, atmospheric science, oceanology, astronomy, solar science etc. The main 

reasons for chaos to occur are these 

● An increase in the control factor to a high value. Even if normal ecosystem does not go 

chaotic but they can if human interfere. 

● The nonlinear interaction of two or more systems can cause chaos. Single pendulum is 

not chaotic but double pendulum can show chaotic behavior 

● The aftermath of environmental noise can cause chaos to occur. 

Mathieu equation 

Parametric oscillators are those in which we can get oscillation just changing some 

parameter values. Just like while riding a swing we can control the oscillation just by 

standing up and sitting down at particular positions of the oscillation. Oscillator is a 

differential equation which have bounded solution. Being periodic is not necessary. We 

will be looking for aperiodic motion. We can derive Mathieu equation by considering a 

pendulum with a thin rod oscillates in a vertical motion 

𝑋′′ = −𝜔0
2(1 + acos⁡(𝜔𝑡))𝑠𝑖𝑛𝑋 

       Considering friction the real Mathieu equation will be 

𝑋′′ = −2∆𝑋′ − 𝜔0
2(1 + acos(𝜔𝑡))𝑠𝑖𝑛𝑋 
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This equation can be approximated to many physical systems. Thus studying this equation 

can be real helpful to study many real life phenomenon. That’s why we have considered 

the friction also. 

The equation above is an example of a non-autonomous system. We make it autonomous 

by proposing Z=⁡𝜔t. So equation can be reconstructed as  

𝑋′ = 𝑌 

𝑌′ = −2∆𝑌 − 𝜔0
2(1 + acos⁡(𝑍))𝑠𝑖𝑛𝑋 

𝑍′ = 𝜔 

Mathematically we can treat Z as a new variable although the equation physically still is 

non-autonomous. Now there are four parameters(∆,𝜔0, 𝜔, 𝑎). 

Among them, only a and 𝜔 controls the excitation. We have tried to see whether the system 

is chaotic for what ‘a’ values .The rest of the parameters are kept constant. 

𝜔0 = 1, ∆= 0.5, 𝜔 = 2 

 

Mathieu equation is a very complex equation with all these cosine, sine terms. So to make 

things less scary we have chosen these three parameter values constant for all the 

calculations. Now we will try to use the techniques described above to find chaos. 

METHODS FOR DETECTION OF CHAOS 

Chaos is a well-established phenomenon but characterizing the chaos is still under scrutiny. 

There are several techniques that we use to find whether any system is chaotic or not. We 

have used three techniques here. 

●Lyapunov Exponents 

●Dense Filled phase space 

●Poincare Section 

We will use a particular system called Mathieu Oscillator. Using above approaches, we will 

shot to find if there is chaos for any parameter value. 
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Lyapunov Exponents 

Lyapunov exponent is the most useful technique to characterize chaos. If we consider two 

close trajectories in the phase space then we see that in the radial direction they converge 

with time, while in the direction along the cycle they neither converge nor diverge. The 

convergence/divergence properties of nearby trajectories are characterised by the 

Lyapunov exponents. Suppose we start with a discrete dynamical system 

𝑋𝑛+1 = 𝑓(𝑋𝑛) 

The Lyapunov exponents can be constructed as 

𝑏(𝑋0) =
𝑙𝑖𝑚

𝑁 → ∞

𝑙𝑖𝑚

∈→ 0
(
1

𝑁
𝑙𝑜𝑔

𝑓𝑁(𝑋0+∈) − 𝑓𝑁(𝑋0)

∈
) 

=
𝑙𝑖𝑚

𝑁 → ∞
(
1

𝑁
𝑙𝑜𝑔

𝑑𝑓𝑁(𝑋0)

𝑑𝑋0
) 

We can say two trajectories in phase space with a separation of |𝛿𝑋0|at time t=0, will have 

a separation of   |𝛿𝑋𝑡|at t=t given by 

|𝛿𝑋𝑡| = 𝑒𝑏𝑡|𝛿𝑋0| 

Since, the rate of divergence of trajectories can be different in different directions in the 

phase space, the number of Lyapunov exponents is equal to the dimensionality of phase 

space.So we want to calculate the maximal Lyapunov exponent (MLE). If the phase space 

is solid, a positive MLE would mean that the prognosis of the system is impossible. The 

system is then labelled to be delicately dependent on initial conditions or chaotic. 

 

The Lyapunov exponents represent the expanding and contracting nature of the different 

directions in phase space. The sum of Lyapunov exponents is negative for dissipative 

systems. Whereas positive Lyapunov means nearby trajectories are exponentially 

diverging. For a bound phase space if we get a positive LE that means we have chaos. 
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First we have calculated the LE for simple logistic equation just to understand how things 

work. The equation is  

𝑋𝑡+1′ = 𝑟 ∗ 𝑋𝑡(1 − 𝑋𝑡) 

 

This simply gives the information about population growth. Where r is Malthusian 

constant. Xt is the population at time t and Xt’ is the population growth with respect to time. 

This equation was first discovered to study the population growth of bacteria. But this 

logistic equation is very powerful. Apart from its application in population growth it can 

also be applied to neural networks, medicine, economics and to many other streams. 

Here (Fig1) we can see the Lyapunov exponents remain negative for r<3.6. At r=3.6, it 

becomes zero. It indicated the period doubling and appearance of chaos. For r>3.6 period 

doubling  sequentially happens. This indicates strongly that there is chaos. 
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Fig 1.LE for logistic equation.r>3.6 can be chaotic 

 

Now using the algorithm which is given in [2] we have calculated Lyapunov exponents for 

Mathieu equation. The graph has been plotted between Maximal Lyapunov Exponent 

(MLE) and system parameter a. 
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Fig2: The initial points for all the runs is [0,0.2,2].Each of LEs are taken after 200units of run 

Here (Fig 2) we can see that we get MLE for a>3.2. Hence we should get chaos only above 

this a value whereas for a value less than 3.2 we should get a limit cycle if we plot the 

phase space diagram. Here the value of ‘a’ for which we get the highest MLE is 3.6. 

Now we  plot the phase space for a<3.2. We get a limit cycle for a=2.5. (Fig 3). Limit 

cycles are crutial phenomenon. This occurs only in non-linear systems. A limit cycle can 

be stable, unstable and half stable. This is a stable limit cycle because trajectories are 

converging towards each other. That means it can have self-sustained oscillation for each 

value of ‘a’ up to 3.2. This means energy dissipated in one cycle will balance the energy 

fill in another cycle. Thus the oscillation will continue without any external force. Later we 

will plot the Poincare section for a=2.7 and see if we really get a limit cycle or not. If the 

Poincare section only produces two points it would mean that we had a limit cycle. 

 



 

13 
 

 

Fig3:The initial point for run [0,0.2,2].Run for 2000 units of time 

Dense Filled Phase Space 

Another diagnostic tool to detect chaos is dense filled phase space. This is called ergodic 

theory. If we plot the phase space diagram of a system and we get compact graphs for large 

time run then we can say we have deterministic dynamics. We have plotted here the phase 

space diagram of Mathieu equation. 

 

Fig4:Trajectory starting at [0,0.2,2] with a=3.5,Time simulation 500 units 
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Firstly solving the equations we get an attractor. Then we can see the transition from fig4 

to fig5 how densely the phase space fills for larger time run. 

 

 

Fig5:Theintial point for run is [0,0.2,2]. a=3.5 Run for 5000 units of time 

            We can conclude that we have chaos for a=3.5. 
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Fig6:Theintial point for run is [0,0.2,2].a=3.5 Run for 50000 units of time 

 

 

POINCARE MAP 

We treat higher dimensional autonomous nonlinear dynamical systems with Poincare section. 

Autonomous systems are those for which potential is time independent. To apply Poincare section 

we need 

●3D phase space 

●A plane in phase space through which orbits repeatedly pass 

●An array of solutions for particle orbits 

Poincare section reduces the dimensionality of phase space. That’s why we need minimum 3D 

phase space. Chaos occurs in 3D phase space .Suppose we have trajectories in three dimension 

then if we want to take the Poincare section we will take a plane which will cut through the path 
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and this plane will be called Poincare section. So it basically is the intersection of orbits in a 

surface. In Poincare section we use a trigger to note down the coordinates of the path. This trigger 

may be vanishing of one coordinate or a hyperspace cutting through the trajectories. 

Let M be a (n-1) dimensional surface which is transverse to the trajectories of any dynamical 

systems.X0 be a point on the surface M at time t=0. The trajectory will come to that surface again 

at X1 at any later time t=t1. Now if we define a mapping S from M to M. 

X1=S(X0) 

And after n+1 iterations 

Xn+1=S(Xn) 

Then map S is called Poincare map. 

 

Fig7:Poincare section for a=2.7 
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Fig8:Poincare section for a=3.5 

 

We have calculated Poincare section for Mathieu equation. One(fig6) is calculated for a=2.7.As 

expected before we get only very few points in the Poincare section. That means it is a limit cycle 

regime. We have seen earlier for a=2.7 we get a limit cycle in phase space. Another (Fig8) is 

calculated for a=3.5.Here we get densely filled points. It is a strong indication of the presence of 

chaos. 
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Bifurcation Theory 

Bifurcation is a critical theory to analyse systems qualitative and quantitative behavior with respect 

to any parameter value. Bifurcation means the qualitative change of any system with respect to 

any control parameter. Where we get a linear instability we get bifurcation. So if there is a change 

in the trajectory structure of the solution with respect to the parameter value bifurcation occurs. 

We have calculated bifurcation first of a simple logistic system then for single Mathieu oscillator. 

It is a very time taking process to plot bifurcation diagram as there are humongous number of 

points we have plotted against each parameter value 

 

 

Fig9:Bifurcation for the logistic map. 

Here we have plotted points which are lying on the stable orbits. So for r=3.2 we have two such 

points. Here what happens is called period doubling. In period doubling what happens is suddenly 

the period of the system becomes double of its previous value as the system parameter is slightly 
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changed. It means a new limit cycle is born with a double period. Now if it continues to happen 

sequentially then we can say the system slowly becomes chaotic. So period doubling is a path to 

chaos .Now for r=3.5 there are 4 such points .For r=3.6 there 8 such points and it continues like 

this. For r greater than 3.9 we see many points are there and from there the system is entering into 

the chaotic region. 

We have also plotted the bifurcation diagram for Mathieu oscillator. Here also period doubling 

happens. For a=3.2 and then slowly it enters into the region of chaos. This kind of bifurcation is 

called period doubling bifurcation. 

 

Fig10:bifurcation for Mathieu oscillator 
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RESULTS 

 

We have got excellent results in this paper. All methods to detect chaos was successfully tested. 

We have seen that Mathieu acts as a chaotic for its parameter value ‘a’  greater than 3.2. For 

logistic equation we got chaos for ’r’ greater than 3.6.We also have found an essential relation 

between bifurcation and Lyapunov Exponents. For what value of parameter we get a peak in the 

Lyapunov Exponents we get a period doubling in the bifurcation diagram. For logistic equation 

at r=3.2 we get period doubling in the bifurcation diagram and a peak in the LE diagram. At 

r=3.5 we get four such points. So it is a significant discovery. 
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MATLAB CODES 

TO SOLVE MATHIEU EQUATION 

 

% The object of this code is to find the 

graph of a chaotic SINGLE Mathieu 

% Oscillator 

function SOL=single_mathieu(t,X) 

    x=X(1);y=X(2);z=X(3); 

    lambda= 0.5; 

    omega=2; 

    a=3.5; 

    SOL(1)=y; 

    SOL(2)=-2*lambda*y-(1+a*cos(z))*sin(x); 

    SOL(3)=omega; 
 

    SOL=SOL'; 

end 
 

POINCARE SECTION 

 

% This finds the Poincare Map for 3D phase 

space. The section is always a 

% Plane 

% everything vector should row 

% count is the number of intersections 

% pts is the vector of points 

% xout, yout and zout are the points in the 

phase space. 

% S is the function handler for the plane. 

% p0 is a point on the plane and n is the 

vector normal to plane like [1 0 
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% 0] is i_cap if the plane is parallel to 

yz plane. 

% plt is a vector. Suppose the section is 

x=2, plt=[2 3] i.e. the plane 

% parallel to it 

function 

[count,pts]=poincareSec(xout,yout,zout,S,n,

p0,plt) 

    close all; 

    hold on; 

    count=0; 

% Round the numbers to 4 digits 

    xout=roundArray(xout,4); 

    yout=roundArray(yout,4); 

    zout=roundArray(zout,4); 

    pts=[]; 

for j=1:length(xout)-1 

if(S([xout(j) yout(j) 

zout(j)])<0&&S([xout(j+1) yout(j+1) 

zout(j+1)])>0) 

% Have a line drawn between the two points. 

This is not the 

% worst of interpolations if you have many 

points. 

            x1=[xout(j) yout(j) 

zout(j)];x2=[xout(j+1) yout(j+1) 

zout(j+1)]; 

            l=x2-x1; 

            l0=x2; 
 

            d=dot((p0-l0),n)/dot(l,n); 

            p=d*l+l0; 
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            plot(p(plt(1)),p(plt(2)),'r'); 

            pts=[pts;p(plt(1)),p(plt(2))]; 

            count=count+1; hold on; 

%pause(.5); % Keep this if you like to see 

a movie 

end 

end 
 

   hold off;  

end 
 

function ret=roundArray(x,digs) 

        ret=round(x*(10^digs))/(10^digs); 
 

end 
 

LYAPUNOV EXPONENTS 

 

for i = 3000:4000 

    r(i) = 0.001*i; 

for j = 1:499 

            x(j+1) = r(i)* x(j)* (1-x(j)); 

end 

        y(1) = x(500); 

for j = 1:9999 

            y(j+1) = r(i)* y(j)* (1-y(j)); 

            l(j+1) = log(abs(r(i)-

2*r(i)*y(j+1))); 

end 

        lav(i) = sum(l)/10000; 

end 
 

plot(r,lav,'-') 
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xlim([3 4]) 

xlabel('r') 

ylabel('le') 
 

BIFURCATION CODE 

LOGISTICS 

 

x(1) = 0.5; 
 

for i = 0:800 

    r = 0.005*i; 

    a(200*i+1:200*(i+1)) = r; 

for j = 1:249 

            x(j+1) = r* x(j)* (1-x(j)); 

end 

for k = 1:200 
 

            b(200*i+k) = x(k+50); 

end 

end 
 

plot(a,b,'.') 

xlabel('r') 

ylabel('x_n') 
 

MATHIEU EQUATION 

clc;close all; clear; 

global a; 
 

a_arr=linspace(2,4,250); 

L_arr=zeros(0,length(a_arr)); 
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step_s=599; %change this to see if it turns 

out well. 

for i=1:length(a_arr) 

    a=a_arr(i); 
 

    [~,L]=ode45(@single_mathieu_bifurc,[0 

1500],[0,0.2,2]); 

%fprintf('%d\n',i); 
 

    size_temp=size(L(end-

600:step_s:end,1)); 

    a_arr2(1:size_temp)=a_arr(i); 

    L_arr(1:size_temp)=L(end-

600:step_s:end,1); 
 

    plot (a_arr2,L_arr,'.'); 

    hold on; 

%L_arr(1,400*(i-1)+1:400)=L(end-399:end,1); 

%this will plot bifurcation at x 
 

%clear t L; 

end 

%plot (a_arr2,L_arr); 
 

 


