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Abstract

Model predictive control (MPC) solves a quadratic optimization problem to generate

control law in each step. The usual methods of solution for quadratic optimization problem

are interior point method, active set method etc. But most of the techniques are computa-

tionally heavy to perform the job in small amount of time. So a method is required where

on-line computation is less. In multi-parametric quadratic programming (mp-QP) method

an off-line computation is done a prior and a binary search tree is prepared. The on-line

computation mainly involves a search through the binary-tree.

The mp-QP is suitable for the class of optimization problem, where the objective func-

tion is to minimize or maximize a performance criterion subject to a given set of constraints

where some of the parameter vary between lower and upper bounds. Also mp-QP is suit-

able for multi-objective optimization, where multi criteria problems can be reformulated as

multi-parametric programming problems and a parametrized optimal solution is obtained.

Multi-parametric programming is a technique for obtaining: (i) the objective and opti-

mization variable as functions of the varying parameters and (ii) the regions in the space of

the parameters where these functions are valid. The newly developed convex optimization

solver CVXGEN is utilized successfully for off-line calculations which involves of dividing

the parameter space into different polyhedral regions. In each one, the objective function

has a constant value. The process involves another kind of optimization problem. For CVX-

GEN, worst case solving time is in milliseconds, even for a large problem. Thus, the use of

CVXGEN minimizes the off-line calculation in mp-QP technique.

In this work, an input constraint MPC problem is chosen from existing literature. The

problem is solved for both two step prediction and three step prediction cases. The paramet-

ric space is calculated using CVXGEN SDPT3 solver(a MATLAB software for semidefinite

quadratic linear programming) for both the cases. The control input and states are ploted

for both the MPC problems, and the results are compared.
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C H A P T E R 1

Introduction

1.1 Overview

Optimization problems arises in a different engineering fields. The optimization prob-

lem involved in most of the cases in a quadratic form. The usual solution method of this

problems is interior point methods, active set methods and linear programming methods.

Recently multi parametric quadratic programming method is developed by A Bemporad

to solve the quadratic optimization problems. This methods consists of two parts (i)off-

line (ii)on-line and it is found to be usually faster than the conventional method. Multi-

parametric programming is an approach for solving constrained optimization problems by

computing a parameter dependent solution. It has appeared as a optimistic tool that is

particularly suited for applications that need to solve optimization problems rapidly such

as in model predictive control (MPC), where the value of the parameter becomes appar-

ent on-line and the optimal control problem needs to be solved in a small fraction of the

sampling period. Applications of mp programming nave also been reported for solving

scheduling problems, process design and energy management in presence of uncertainties.

The basic idea in the multi-parametric approach is to decompose the parameter space into

separate regions, each region is define a set of optimal active constraints in the parameter

space [1]. The parameter dependent solution can then be easily deduced using the nec-

essary condition for optimality or its corresponding parametric sensitivity. Depending on

the type of optimization problems, Mp-programming problems are classified as mp-linear
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programming, mp-quadratic programming, mp-nonlinear programming, and mp-mixed

integer nonlinear programming [2].

All approaches reported in the literature for solving multi-parametric programming

problems involve two basic steps: (i) determination of the optimal solution as a parame-

ter dependent function, valid over a certain region in the parameter space and (ii) explo-

ration of the reaming parameter space. In this thesis we developed a algorithm which is

define the control action which is give the input to the process [3]. In this work, we will

focus on strictly convex multi-parametric quadratic programming problems which are re-

lated to linear MPC problems with a quadratic cost function. In general the solution has

the form of a piecewise affine function over a polyhedral partition of the parameter space

in to so called critical regions, where each region corresponds to a set of optimal active

constraints [4] [5] [6]. Parametric programming is based on the sensitivity analysis theory,

distinguishing from the latter in the targets. Sensitivity analysis provides solutions in the

neighbourhood of the nominal value of the varying parameters, whereas parametric pro-

gramming provides a complete map of the optimal solution in the space of the varying

parameters [7].

However, these widely recognized open and the closed-loop optimal control imple-

mentations involve significant on-line computations, while the control or operational ac-

tion they provide only known implicitly via the solution of an optimization problem. A

parametric optimization-based approach for moving off-line these rigorous calculations has

been proposed in [8]; aiming to make optimization techniques applicable to a wider range

of systems. The schematic description of this attractive alternative and the contrast with the

traditional on-line optimization technique is shown in Fig (1.1). The key principle of this

technique is that it derives off-line, before any actual process implementation occurs, the ex-

plicit mapping of the optimal decisions in the space of the plant uncertainty variations and

the plant current conditions using multi-parametric programming algorithms. Thus, on-

line optimization reduces to simple function evaluations for identifying the optimal control

action. Another important advantage is that the resulting parametric control law or opera-

tional policy consists of explicit closed-form expressions that can provide precious insight

into the closed-loop system features.
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Figure 1.1: Online optimization vs. off-line parametric programming approach.

Furthermore, this novel parametric programming approach features the following ad-

vantages:

• It is not limited to steady state or discrete time dynamic systems. Thus, it portrays

accurately transient plant evolution.

• It addresses directly the presence of path constraints, (e.g.,upper limits on the riser

temperature in the motivating FCC example) that have to be satisfied over the com-

plete time domain and not merely at particular time points.

• The closed-loop feedback controller derived from this technique has been developed

to the extent of dealing efficiently with the presence of unpredicted or unmodeled

uncertainties.

• In the presence of nonvanishing disturbances, a robust tracking controller has been

designed using parametric optimization techniques.

• The explicit control law has also been designed for hybrid systems (e.g., plants that

inter-mix logical discontinuous decisions with the continuous plant operation such as
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the possible switch in our motivating example between the partial and the complete

combustion mode).

The solution of the linear MPC optimization problem, with a quadratic objective and

linear output and input constraints, by using multi-parametric programming techniques

and specifically multi-parametric quadratic programming, provides a complete map of the

optimal control as a function of the states and the characteristic partitions of the state space

where this solution is feasible [9]. In that way the solution of the MPC problem is obtained

as piecewise affine feedback control law. The on-line computational effort is small since the

on-line optimization problem is solved off-line and no optimizer is ever called on-line [7].

In contrast, the on-line optimization problem is reduced to a mere function evaluation prob-

lem; when the measurements of the state are obtained and the corresponding region and

control action are obtained by evaluation of a number of linear inequalities and a linear

affine function, respectively. This is known as the on-line optimization via off-line paramet-

ric optimization concept.

1.2 Literature Review

A new approach for solving quadratic problems which is derived from linear MPC

problem giving off-line piece-wise affine explicit solution [3] [5]. Multi-parametric pro-

gramming is a term for solving an optimization problem for a range of parameter values.

In multi-parametric programs, in which a vector of parameters is considered [6] [4]. Multi-

parametric LP (mp-LP) is treated in [1], mp-LP in connection with MPC based on linear pro-

gramming is investigated in [10]. Multi-parametric mixed-integer linear programming [1]

for obtaining explicit solutions to hybrid MPC. The mp-LP algorithm [11] and mp-QP al-

gorithm presented in this paper are similar but while [12] uses simplex steps to solve the

mp-LP .

Convex optimization is widely used because it has a number of applications, e.g. con-

trol, circuit design and networking [13]. Such problems can be solved reliably and effi-

ciently with well developed methods and tools [7], [13]. Parser solvers like CVX [9] and

YALMIP [13] accepts a convex optimization problem specified in high-level language but

their solve times are in the scale of seconds or minutes, which makes them unable for use in

real-time systems. They also require extensive libraries and have large footprints. However

in the development phase of algorithms or methods based on convex optimization, they

can be a good choice as run-time and footprint are usually not great concern at any early
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stage (no real-time requirements).

Control Allocation is an important part of ship control systems, flight control systems

and other over actuated mechanical control application [14] [15]. In this paper, demon-

strated the use of the algorithm on ship control and dicussion of the control performance

with the constraints control allocation. The general formulation allow several extensions

compared to the mp-QP methods, since constraints limits and certain criterion parameters

may be taken as parameters to the problem such that the control action may be reconfig-

ured in the real-time. Considers how mpQP can be used for constrained control alloca-

tion in overactuated marine vessels, aircraft or other mechanical systems. In its simplest

form, this is a static problem which is well suited for solution via parametric program-

ming as the problem size is small and on-line numerical solvers are undesirable, primarily

due to safety reasons [16]. The constrained control allocation problem is formulated as an

mpQP and solved, giving a solution well suited for real-time implementation. Examples

on over-actuated F-18 aircraft show clear improvements both in terms of on-line efficiency

and optimality compared to methods from the existing literature. Experimental results for

a scale model of a model ship are included. Even if I am not the first author of [17], I chose

to include these results in the thesis as I contributed within formulating the problem as a

parametric program and with the implementation/experiments.

1.3 Motivation

Model Predictive Control (MPC) has during the last 20 years been introduced as a highly

successful control method in the process industries and chemical industries. The main rea-

son for this success is the inherent characteristics and ability to handle constraints in com-

plex multi-variable systems. Constraints appear in some form in most control applications

and optimal performance is often obtained by operating on the constraints. In the process

industries the slow processes allow real-time optimization relying on computationally de-

manding numerical software, while reliable low-level control takes care of fast or safety

critical parts of the process. During the last few years there has been a renewed interest in

multi-parametric programming within the control application. This is due to the possibil-

ity of stating constrained MPC problems as multi-parametric programs, which has allowed

computationally efficient explicit solutions to problems which previously required compu-

tationally demanding real-time optimization. This thesis will treat theoretical and practical

results within multi-parametric programming and its use within control applications.
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1.4 Objectives

The following objective needed to specified to satisfied for better operation

• Generate the control action, which is give to the process system that should be piece-

wise affine function.

• Develop an efficient algorithm to determine its parameters. The controller inherits all

the stability and performance properties of model predictive control(MPC) but can be

implemented without any involved on-line computations.

• Code should be simple enough to be verifiable (or at least understandable by produc-

tion engineers) and also it is easy to convert to C or C+ code.

• When the code is executed that should take minimum time to execute. Worst-case

execution time must be (tightly) estimated for embedding the controller in a real-time

platform.Require simple/cheap hardware (microcontroller, microprocessor) and little

memory to store problem data and code.

• Study the properties of the polyhedral partition of the state space where the cost func-

tion is feasible and induced by the multi-parametric piece-wise linear solution and

propose a new mp-QP solver.

• Compared to existing algorithms,our approach adopts a different exploration strat-

egy for subdividing the parameter space, avoiding unnecessary partitioning and QP

proble solving.

1.5 CVXGEN

Part of this thesis is using and testing the new CVXGEN convex optimization solver

which is released in 2010 by Jacob Mattingley and Stephen Boyd [13]. Testing this solver

and comparing it with others is interesting because it is state-of-the-art and its applications

may be used for both prototyping and real-time use.

Convex optimization is widely used because it has a number of applications, e.g. con-

trol, circuit design and networking []. Such problems can be solved reliably and efficiently

with well developed methods and tools [7] [13]. Parser solvers like CVX [8] and YALMIP [7]

accepts a convex optimization problem specified in high-level language but their solve

times are in the scale of seconds or minutes, which makes them unable for use in real-time
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systems. They also require extensive libraries and have large footprints. However in the

development phase of algorithms or methods based on convex optimization, they can be

a good choice as run-time and footprint are usually not af great concern at any early stage

(no real-time requirements).

Conventionally, the step form a general purpose parser solver to a specialized high-

speed solver requires significant development time, extensive modelling and specialist knowl-

edge of optimization and numerical algorithms. The work is also often done by hand, lim-

iting their applications. CVXGEN is a software tool that automatically generates C-code

that compiles into a convex optimization solver from a high level language specification.

The C-code of the customized solvers is completely standard, standalone and extremely ef-

ficient because key structural properties of the QP problem are exploited. This leads to code

with only static data structures which is almost branch-free with deterministic execution on

pipeline processor architectures. The generated solvers are very reliable and robust [13] but

also fast compared to parser solvers. With solve times in microseconds or milliseconds, the

generated solves lend themselves to implementation in real-time applications with opera-

tion speeds in Hz or KHz. CVXGENs footprint is also simple, generating a flat, library-free

solver.

Figure 1.2: General purpose parser solver structure. Turns a single problem in-
stance into a single optimal point.

The CVXGEN solver is currently available through a web interface on the projects web

page http://www.cvxgen.com . An optimization problem specification can be entered

through a MATLAB- like programming language on the web interface. Syntax specifies

can be found in CVXGENs documentation [18]. The problem is entered through a fixed

and structured setup, specifying problem dimensions, parameters variables, cost function

and constraints.

The custom C solver is automatically generated on the web interface by the click of a

button. After compilation it is available for download as a zipped archive. In addition to

C code, a MATLAB interface is also available, making the custom solver available for e.g.

prototyping and initial testing in the MATLAB environment. The MATLAB version will be

utilized in the thesis.
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Figure 1.3: Automatic code generator solver structure. Provides optimal points for
many different problem instances.

The downloaded solver is used by calling a pre-made function, with the problem in-

stances specific parameters as function input. Solver settings can also be entered when

calling the solver. After the call the solver solves the convex optimization problem with

respect to the instance parameters and outputs the globally optimal variables. CVXGEN

lends itself naturally to MPC problems, see [13] for a detailed overview.

1.6 Contribution and Outline

The idea of viewing an optimal control problem as a parametric program, introduced

new areas of use for control schemes such as RHC. The main contributions of this thesis are

within both theoretical and practical issues in the intersection between multi-parametric

programming and constrained optimal control problems.

The chapter 3 is based on the papers [3] and parts of [1]. The main contribution of this

thesis is the mpQP solver [3]. A strictly convex mpQP problem formulation is considered.

The algorithm can be classified as an active set mpQP solver, and bears a closer resemblance

to the simplex method based algorithm of (Gal 1995) than the geometric mpQP solver of [1]

does. The main advantage of the method is the increased execution speed compared to

other methods. Conditions are established under which the active set in a critical region

can be obtained by adding or removing an element from the active set in a neighbour-

ing critical region. The cases where these conditions are violated are handled. In particu-

lar, some results are given on how to handle degeneracies. The effect on input trajectory

parametrization on explicit RHC solutions is also considered.This chapter is also based on
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the papers [6] [5], and considers how a PWL control law can be represented for efficient and

reliable on-line implementation, by using a balanced binary search tree. The objective is to

create a tree which has advantageous properties both in terms of execution time and mem-

ory requirements. An algorithm to construct such a tree is presented. It is proved that the

height of such a tree is a logarithmic function of the number of regions in the PWL control

law. The method has shown good results on practical problems. Moreover, a technique to

obtain an approximation to a PWL control law in the form of a binary search tree is given.

The chapter 4 is a reprint of [14], which considers how mpQP can be used for con-

strained control allocation in overactuated marine vessels, aircraft or other mechanical sys-

tems. In its simplest form, this is a static problem which is well suited for solution via

parametric programming as the problem size is small and on-line numerical solvers are un-

desirable, primarily due to safety reasons. The constrained control allocation problem is

formulated as an mpQP and solved, giving a solution well suited for real-time implemen-

tation. Examples on over-actuated F-18 aircraft show clear improvements both in terms of

on-line efficiency and optimality compared to methods from the existing literature. Exper-

imental results for a scale model of a model ship are included. Even if I am not the first

author of [17], I chose to include these results in the thesis as I contributed within formulat-

ing the problem as a parametric program and with the implementation/experiments.





C H A P T E R 2

Multi-parametric Programming

2.1 Introduction

Uncertainty and variability, typically characterized by varying parameters, are inherent

characteristics of any process system, it is not at all surprising then that process models, the

means for translating process-related phenomena to some descriptive form (quantitative

or qualitative) also involve elements of uncertainty. These varying parameters can be, for

example, attributed to fluctuations in resources, technical characteristics, market require-

ments and prices, which can affect the feasibility and economics of a project. While the

representation of the uncertainty is itself an important modelling question, the potential

effect of variability on process decisions regarding process design and operations consti-

tutes another challenging problem. Obviously the two problems are closely related: if an

optimal decision is totally insensitive to the presence of uncertainty; acquiring a model for

the description of the uncertainty is not really necessary. In this context, devising suitable

mathematical techniques and algorithms through the application of which one could anal-

yse and quantify if, how, what type of, and by how much, uncertainty affects decisions,

becomes a major research goal.

Multi-parametric programming is a technique for solving any optimization problem,

where the objective is to minimize or maximize a performance criterion subject to a given

set of constraints and where some of the parameters vary between specified lower and up-

per bounds. The main characteristic of multi-parametric programming is its ability to ob-



12 Multi-parametric Programming

tain (i) the objective and optimization variable as functions of the varying parameters, and

(ii) the regions in the space of the parameters where these functions are valid.Another im-

portant area of application of parametric programming is in multi-objective optimization,

where multi-criteria problems can be reformulated as parametric programming problems

and different (usually conflicting) optimal solutions, i.e., Pareto sets can be obtained as para-

metric solutions [2] [19].The advantage of using multi-parametric programming to address

these problems is that for problems pertaining to plant operations, such as for process plan-

ning, scheduling, and control, one can obtain a complete map of all the optimal solutions.

Hence, as the operating conditions vary, one does not have to re-optimize for the new set

of conditions, since the optimal solution is already available as a function of the operating

conditions.Depending on the type of optimization problems, Mp-programming problems

are classified as four types. These are

(i)Multi-parametric Linear Programming

(ii)Multi-parametric Quadratic Programming

(iii)Multi-parametric Nonlinear Programming

(iv)Multi-parametric Mixed Integer Programming

2.2 Multi-parametric Linear Programming

When the cost function is linear and the computation of the optimal PWA function,

mapping the measured state to the control input, can then be posed as the multi-parametric

linear programming(MpLP).

Consider the following multiparametric linear programming(MpLP) problem

V ∗(x) = min
z
cT z (2.1)

s.t. Az = b+ sx (2.2)

z ≥ 0 (2.3)

where z ∈ Rn is the optimization variable, x ∈ Rn is the vector of parameters and c ∈ Rn,

A ∈ Rm×n, b ∈ Rm, and S ∈ Rm×p are data.If x is fixed and (2.1)-(2.2) is considered an LP,

a standard way of characterizing the optimal solution is in the form of an optimal basis B.

A basis is a set of indices to the z-vector, such that zi = 0 for all i /∈ B.According to the

Fundamental Theorem of Linear Programming, if there exists an optimal solution to (2.1)-

(2.2), at least one optimal solution is given by an optimal basis. Let N denote the non-basic
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variables, that is, N = {1, ..., q} \B. Let AB and AN be the columns of A according to B and

N , respectively, and zB and zN similarly be the corresponding elements of z. Since zN = 0,

we have that ABzB = b+Sx . As we have assumed that there is no degeneracy present, AB

has full rank. Then,

z∗B(x) = (AB)−1(b+ Sx) (2.4)

is the optimal solution whenever B is the optimal basis. Moreover, the value function is

given by

V ∗(x) = cTB(AB)−1(b+ Sx) (2.5)

where cB consists of the elements corresponding to B. This means that given an optimal

basisB, one can for every x such thatB is an optimal basis, characterize the optimal solution

z∗and value function V ∗ as linear functions of the parameter vector x.What remains is then

to characterize the region in the parameter space in which B is the optimal basis. Such

a region is commonly referred to as a critical region (CR). This is done by enforcing the

inequality constraints (2.3). By substituting (2.4) into (2.3), one obtains

0 ≤ (AB)−1 (b+ sx) (2.6)

which is a polyhedral set in the parameter space, characterizing every xfor which the basis

B is optimal.

2.3 Multiparametric Quadratic Programming

Consider the convex quadratic mathematical program dependent on a parameter x:

V ∗(x) = min
z

1

2
zTHz (2.7)

s.t Gz ≤W + Sx (2.8)

where z ∈ Rs is the vector of optimization variables, x ∈ Rn is the vector of parameters,

and H ∈ Rs×s, G ∈ Rq×s, W ∈ Rq, and S ∈ Rq×n are matrices. Here, it is supposed that

H � 0, which leads to a strictly convex multi-parametric quadratic programming (mp-QP)

problem (2.7)-(2.8). The case when the multi-parametric programming problem (2.7)-(2.8)

is only convex, i.e. H � 0.

Let X be a polytopic set of parameters, defined byX = {x ∈ Rn |Ax ≤ b}. In parametric

programming, it is of interest to characterize the solution of the mp-QP problem (2.7)-(2.8)
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for the set X .The solution of an mp-QP problem is a triple (V ∗(x),Z∗(x),Xf ),where the set

of feasible parameters, V ∗ (x) is the optimal value function, and z∗ (x) is the optimizer func-

tion. It is assumed that Xf is closed and V ∗ (x) is finite for every x ∈ Xf .

An algorithm has been developed, which expresses the solution z∗(x) and the optimal

value V ∗(x) of themp-QP problem (2.7)-(2.8) as an explicit function of the parameters x,

and the analytical properties of these functions have been characterized. In particular it has

been proved that the solution z∗(x) is a continuous piecewise linear function of x in the

following sense.

Definition 1.1. A function z(x) : X 7→ Rs, whereX ⊆ Rn is a polyhedral set, is piecewise

linear if it is possible to partition X into convex polyhedral regions,CRi, and z(x) = Kix+

hi,∀x ∈ CRi. Piecewise quadraticity is defined analogously by letting z(x) be a quadratic

function xTQix+Kix+ hi.

2.4 Multiparametric Nonlinear Programming

Consider the nonlinear mathematical program dependent on a parameter x appearing

in the objective function and in the constraints:

V ∗ (x) = min
z
f(z, x) (2.9)

s.t g(z, x) ≤ 0 (2.10)

where z ∈ Rn is the vector of optimization variables, x ∈ Rn is the vector of parameters, f

is the objective function, and g is the constraints function. In (2.9), it is supposed that the

minimum exists. It should be noted that the problem (2.9)-(2.10) includes only inequality

constraints, and we remark that equality constraints can be incorporated with a straightfor-

ward modification since they are always included in the optimal active set.

Let X be a closed polytopic set of parameters, defined by X = {x ∈ Rn |Ax ≤ b}. In

multi-parametric programming, it is of interest to characterize the solution or solutions of

the mp-NLP problem (2.9)-(2.10)for the set X . The solution of an mp-NLP problem is a

triple (V ∗(x),Z∗(x),Xf ),where the set of feasible parameters Xf is the set of all x ∈ X for

which the problem (2.9)-(2.10) admits a solution, i.e.

Xf = {x ∈ X |g(z, x) ≤ 0} (2.11)

the optimal value function V ∗ : Xf → R associates with every x ∈ X the corresponding
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optimal value of the problem (2.9)-(2.10).the optimal set Z∗(x) associates to each parameter

x ∈ X the corresponding set of optimizers Z∗(x) = {z ∈ Rs |f(z, x) = V ∗(x)} of problem

(2.9)-(2.10). If Z∗(x) is a singleton for all x ∈ X , then z∗(x) , Z∗(x) is called the optimizer

function.

2.5 Multiparametric Mixed Integer Programming

Multiparametric mixed integer linear programming (mp-MILP) problems involving (i)

0-1 integer variables, and, (ii) more than one parameter, bounded between lower and upper

bounds, present on the right hand side (RHS) of constraints.The solution is approached

by decomposing the mp-MILP into two subproblems and then iterating between them. The

first subproblem is obtained by fixing integer variables, resulting in a multiparametric linear

programming (mp-LP) problem, whereas the second subproblem is formulated as a mixed

integer linear programming (MILP) problem by relaxing the parameters as variables.

A method for solving mpMILP problems is suggested in where the authors develop

a branch and bound (B & B) based method to solve the problem. The approach is based

upon solving one mpLP at each node of the B & B tree, and as in standard B & B methods,

complete enumeration of the integer variables is avoided by maintaining upper bounds

on the value function. Another solution strategy was developed, in which a geometric

approach is followed to avoid solution of the mpLPs at the nodes of the B & B tree.

Consider an mp-MILP problem of the following form:

V ∗(x) = min
z
cT z (2.12)

s.t. Az ≤ b+ Sx (2.13)

where z ∈ Rn is the optimization variable, x ∈ Rn is the vector of parameters and c ∈ Rs×s,
A ∈ Rq×s, b ∈ Rq, and S ∈ Rq×n are matrices. The mpMILP is solved by decomposing

the problem into mpLP and an MILP subproblems, and propagating through the param-

eter space in a geometrical fashion.This geometric approach has the advantage of being

relatively simple to implement, and has been successfully applied for other problems than

mpMILP. If the cost function (2.12) had been a quadratic function in z and x, the problem

would have been a multiparametric mixed integer QP (mpMIQP). As exemplified in this ge-

ometric approach can, if used to solve an mpMIQP, lead to non-convex regions, and would

require non-convex optimization problems to be solved, which of course is undesirable.
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2.6 Notation

The notation of the thesis is consistent with the following exception: The notation in the

mpQP problem formulation is different in Chapter 3 and Chapter 5. In Chapter 2 the mpQP

is defined as

V ∗(x) = min
z

1

2
zTHz (2.14)

s.t Gz ≤W + Sx (2.15)

where z is the optimization variable and x is the parameter vector. In Chapter 5 the mpQP

is defined as

V ∗(x) = min
z

1

2
zTHz + xTF T z + cT z (2.16)

s.t. Aiz = bi + Six, i ∈ ε (2.17)

Aiz ≤ bi + Six, i ∈ κ (2.18)

where z is the optimization variable and x is the parameter vector. The reason for this

change of notation is that the paper which Chapter 3 is based on takes the point of view

from MPC, in which z is commonly used as the system state, which is also the parameter

vector. Chapter 5 takes a more mathematical point of view, and the notation used is similar

to what is common when formulating a mathematical program.



C H A P T E R 3

An Algorithm for mp-QP and Explicit

MPC solutions

3.1 Introduction

Our motivation for investigating multi-parametric quadratic programming (mp-QP)

comes from linear model predictive control (MPC). This generates to a class of control algo-

rithms that compute a manipulated variable trajectory from a linear process model to min-

imize a quadratic performance index subject to linear constraints on a prediction horizon.

The first control input is then applied to the process. At the next sample, measurements

are used to update the optimization problem and the optimization is repeated. In this way,

this becomes a closed loop approach. There has been some limitation to which processes

MPC could be used on due to the computationally expensive on-line optimization which

was required. There has recently been derived explicit solutions to the constrained MPC

problem, which could increase the area of use for this kind of controllers. Explicit solutions

to MPC problems are not mainly intended to replace traditional implicit MPC, but rather

to extend its area of use. MPC functionality can with this be applied to applications with

sampling rates in the micro-second range, using low cost embedded hardware. Software

complexity and reliability is also improved, allowing the approach to be used on safety

critical applications.
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In this work we present an algorithm for the solution of multi-parametric linear and

quadratic programming problems.With linear constraints and linear or convex quadratic

objective functions, the optimal solution of these optimization problems is given by a con-

ditional piecewise linear function of the varying parameters. This function results from

first-order estimations of the analytical non-linear optimal function [20]. The core idea

of the algorithm is to approximate the analytical non-linear function by affine functions,

whose validity is confined to regions of feasibility and optimality. Therefore, the space of

parameters is systematically characterized into different regions where the optimal solution

is an affine function of the parameters. The solution obtained is convex and continuous.

Examples are presented to illustrate the algorithm and to enhance its potential in real-life

applications [18].

3.2 Model Predictive Control

Model Predictive Control(MPC) is a control algorithm based on solving a finite hori-

zon open-loop optimization problem at each sampling instant. Such controller rely on an

internal dynamic model of the process used to predict the behaviour of the system. The

system to be controlled is usually described by one or more ordinary differential equations.

Because MPC is a discrete algorithm, the ordinary differential equations are usually con-

verted to discrete difference equations. The MPC objective cost function is often on the

form

V (k) =
i∑
t=1

Q (t) (x̂ (k + t |k )− r (k + t |k ))2 +R (t) (û (k + t |k ))2 (3.1)

Where x̂ is the estimation state. r is the reference trajectory. û is the optimal control sequence

and i is the predictive horizon length. The first term in V (k) represents that the state x

should track the reference r. The various states are weighed with Q(t) to reflect relative

tracking importance between states. The second term in the cost function will penalize

the use of control input u, with weighing vectors R(t). The main advantage of MPC is its

ability to handle constraints. Both input constraints (bounds on u), like the saturation of

an actuator and state constraints (bounds on x), like keeping the level of a fluid between

bounds, can be handled with ease.

The system model is initialized with the most recent sample of the states and the con-

troller uses the combination of these and the internal model to optimize the objective cost

function such that the cost is minimized and all constraints are honoured. The controller
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will only use the first step of the calculated control sequence as plant input. This optimiza-

tion based approach is the main difference from conventional control strategies, where a

precomputed control law is usually applied for each sample time. The basic of MPC are

displayed in figure (3.1).

Figure 3.1: A discrete MPC scheme

An explanation of figure (3.1). At time k the current plant state is sampled. The cost

function is minimized while honouring constraints, leading to a optimal control strategy

for the horizon interval [k, k + i]. The predicted optimal output is the blue line which

converges towards the red reference, like reflected in the cost function (3.1). The optimal

control input is shown in orange.

The control strategy explores state trajectories emanating form the sampled starting

point and finds the one minimizing cost. Only the first control step is applied to the plant

and the plant state is then sampled again and the same procedure is repeated, giving a

new control step and a new predicted state path. Because the horizon keeps beeing pushed

forward, MPC is sometimes called receding horizon control (RHC).

The way MPC handles constraints allows for plant operation closer to the optimal work-

ing point. It has been widely applied in the chemical and petroleum industries because ac-
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counting for constraints is especially important in the these applications. The MPC strategy

is also expected to behave well in a control allocation perspective, because of its predictive

nature and ability to handle actuator dynamics. Given an estimate of the control allocated

craft’s future trajectory, it enables the craft to utilize actuators with different time constants

to their full extent. This also opens possibilities to restrict the use of costly actuators when

not necessary. This cost can be either connected to e.g. a power/fuel consumption or radar

cross section concern. For a detailed description of Model Predictive Control. see []

3.3 Using MP-QP method for two predictive state

3.3.1 From Linear MPC to an MpQP Problem

Consider the linear time variant system

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3.2)

Where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input vector. A ∈ Rn×n, B ∈ Rn×m

and C ∈ Rl×n are system matrix, input and output matrix respectively.For current x(t), the

MPC solves the optimization problem

min
U

J(U, x(t)) = xTt+Ny |tPxt+Ny |t +

Ny−1∑
k=0

xTt+k|tQxt+k|t + uTt+kRut+k

 (3.3)

s.t ymin ≤ yt+k|t ≤ ymax k = 1, ....., Nc

umin ≤ ut+k ≤ umax k = 0, .....Nc − 1

xt|t = x(t)

xt+k+1|t = Axt+k|t +But+k k ≥ 0

yt+k|t = Cxt+k|t k ≥ 0

ut+k = Kxt+k|t Nc ≤ k ≤ Ny

Where xt+k|t refer as the predictive state vector at the t + k and k = 0, 1. We assume that

R = RT > 0, Q = QT > 0, P = P T > 0 and U∗ =
{
u∗t , ......u

∗
t+k−1

}
. Nu, Ny and Nc are the

input, output, and constraint horizon respectively, such that Ny ≥ Nu and Nc ≤ Ny − 1 and



3.3 Using MP-QP method for two predictive state 21

K is a stabilizing state feedback gain is solved repetitively.

Introducing the following equation, which is derived from (3.2)

xt+k|t = Akx(t) +
k−1∑
j=0

AjBut+k−1−j (3.4)

And put the equation(3.4) in (3.3) and the results in the following quadratic programming

or QP problem

V ∗(xt) = min
U

{
1

2
UTHU + xTt FU +

1

2
xTt Y xt

}
GU ≤W + Sxt

(3.5)

Where H = HT � 0 and H ,F ,Y ,G,W and E are obtained from Q, R.

Before we applying multi-parametric quadratic programming method in (3.5), we have

to consider the following linear transformation

z = U +H−1F Txt (3.6)

The QP problem (3.5) is then formulated to the following multi-parametric quadratic pro-

gramming (mp-QP) problem:

Vz(xt) = min
z

1

2
zTHz

s.t. Gz ≤W + Sxt

(3.7)

where z ∈ Rs is the vector of optimization variable, xt is the vector of parameters, S =

E +GH−1F T and Vz(xt) = V (xt)− 1
2x

T
t (Y −FH−1F T )xt. In the transformed problem, the

parameter vector xt appears only on the rhs of the constraints.

In order to start solving the mp-QP problem, an initial vector x0 inside the polyhedral

set X of parameters is needed, such that the QP problem (3.7) is feasible for x = x0. A good

choice for x0 is the center of the largest ball contained in X for which a feasible z exists. So

determined by solving the LP problem:

max
x,z,ε

(ε)

s.t. T ix+ ε
∥∥T i∥∥ ≤ Zi

Gz − Sx ≤W

(3.8)
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where x0 will be the Chebychev center of X when the QP problem (3.7) is feasible for such

an x0. If ε ≤ 0 then the QP problem (3.7) is infeasible for all x in the interior ofX . Otherwise,

we fix x = x0 and solve the QP problem (3.7), in order to obtain the corresponding optimal

solution z0. That solution is unique, because H � 0, and therefore uniquely determines a

set of active constraints G̃z0 = S̃x0 + W̃ out of the constraints in QP problem (3.7).

3.3.2 Background on MpQP

Theorem 3.1. [21] Let z0 ∈ Rn be a vector of parameters and (z0, λ0) be a KKT pair for (3.7), where

λ0 = λ0(x0) is a vector of nonnegative Lagrange multipliers, λ, and z0 = z(x0) is feasible in (3.7).

Also assume that the (i) linear independence constraint satisfaction and (ii) strict complementary

slackness conditions hold. Then, there exists in the neighbourhood of x0 a unique, once continuously

differentiable function [z(x), λ(x)] where z(x) is a unique isolated minimizer for (3.7) and

(
dz(x)
dx

dλ(x)
dλ

)
= −(M0)

−1N0 (3.9)

where

M0 =


H GT1

−λ1G1 −V1
. . .

GTq

0
...

. . .
...

−λpGq 0 · · · −Vq


N0 =

(
Y λ1G1 · · · λpGp

)T
where Gi denotes the ith row of G, Si denotes the ith row of S, Vi = Giz0 −Wi − Six0, Wi

denotes the ith row of W , and Y is a null matrix of dimension (s× n).

The optimization variable z(x) can then be obtained as an affine function of the state xt
by exploiting the first-order KarushKuhn Tucker (KKT) conditions for (3.7).

Theorem 3.2. [21] Let x be a vector of parameters and assume that assumptions (i) linear inde-

pendence constraint satisfaction and (ii) strict complementary slackness conditions hold. Then, the

optimal z and the associated Lagrange multipliers λ are affine functions of x.

The first-order KKT conditions for the mp-QP (3.7) are given by

Hz +GTλ = 0 (3.10)
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λi (Giz −Wi − Six) = 0, i = 1, · · · , q (3.11)

λ ≥ 0 (3.12)

H is invertible (3.10) is written as

z = −H−1GTλ (3.13)

Let
^

λ and λ̃ denote the Lagrange multipliers corresponding to inactive and active con-

straints, respectively. For inactive constraints,
^

λ = 0. For active constraints,

G̃z − W̃ − S̃x = 0 (3.14)

where G̃, W̃ , S̃ correspond to the set of active constraints. From (3.10)-(3.13),

λ̃ = −
(
G̃H−1G̃T

)−1 (
W̃ + S̃x

)
(3.15)

Note that
(
G̃H−1G̃T

)−1
exists because of the linear independence constraint satisfaction

assumption. Thus λ is an affine function of x. We can substitute (3.15) into (3.11) to obtain

z = H−1G̃T
(
G̃H−1G̃T

)−1 (
W̃ + S̃x

)
(3.16)

and note that z is also an affine function of x.

An interesting observation, resulting from Theorems 1 and 2, is given in the next Theo-

rem.

Theorem 3.3. [21] Let x0 be a vector of parameter values and (z0, λ0) a KKT pair, where λ0 =

λ(x0) is a vector of non-negative Lagrange multipliers, λ, and z0 = z(x0) is feasible in (3.7). Also

assume that (i) linear independence constraint qualification and (ii) strict complementary slackness

conditions hold. Then,

[
z (x)

λ (x)

]
= −(M0)

−1N0 (x− x0) +

[
z0

λo

]
(3.17)
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where

M0 =


H GT1

−λ1G1 −V1
. . .

GTq

0
...

. . .
...

−λpGq 0 · · · −Vq


N0 =

(
Y λ1G1 · · · λpGp

)T
where Gi denotes the ith row of G, Si denotes the ith row of S, Vi = Giz0 −Wi − Six0, Wi

denotes the ith row of W , and Y is a null matrix of dimension (s× n).

The solution z0,λ0 are derived from Theorems 2 and 3 for a specific vector of parameters

x0. We can obtain the solution z(x),λ (x) for any parameter vector x from (3.17). Therefore

the optimization variable z and the control law U are linear, piece-wise affine functions of

the state x,z(x) and U(x). In this way the sequence of control law is obtain as an explicit

function of the parameter x.

The set of x where solution (3.17) remains optimal is defined as the critical region (CR0)

and can be obtained as follows. Let (CRR) represent the set of inequalities obtained (i)

by substituting z(x) into the inactive constraints in (3.7), and (ii) from the positivity of the

Lagrange multipliers corresponding to the active constraints, as follows:

CRR =
{^

Gz (x) ≤
^

W +
^

Sx(t), λ̃(x) ≥ 0
}

(3.18)

then by removing the redundancy inequalities from (CRR), we got the (CR0) as follows:

CR0 = ∆
{
CRR

}
(3.19)

Where ∆ is an operator which removes the redundancy constraints. Then we representation

of (CR0) in the x-space and represents the largest set x ∈ X such that the combination of

the active constraints at the minimizer remains unchanged. Once the critical region (CR0)

has been defined, then the rest of the region CRrest = X − CR0 has to be explored and

new critical regions generated. The Theorem 3.4 define the how to explored the rest of the

space. Within the closed polyhedral regions CR0 in Xf the solution z(x) is affine (3.16).

The boundary between two regions belongs to both closed regions because the optimum is

unique the solution must be continuous across the boundary.

An algorithm for the solution of an mp-QP of the form given in (3.7) to calculate U as
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an affine function of x and characterize X by a set of polyhedral regions, CRs, is summa-

rized in algorithm. The optimal control sequence U∗(x), once z(x) is obtained by (3.17), is

obtained from (3.6).

U∗ (x) = z (x)−H−1F Tx (3.20)

Finally, the feedback control law

ut = [I 0 0 .. . 0] U∗ (xt) (3.21)

is applied to the process system.

Algorithm 1 (mp-QP solver)

Step 1. For a given space of x solve (3.7) by treating x as a free variable and obtain [x0].

Step 2. In (3.7) fix x = x0 and solve (3.7) to obtain [z0, λ0].

Step 3. Obtain [z(x), λ(x)] from 3.17.

Step 4. Define CRR as given in (3.18).

Step 5. From CRR remove redundant inequalities and define the region of optimality CR0 as
given in (3.19).

Step 6. Define the rest of the region, CRrest = X − CR0.

Step 7. If no more regions to explore, go to the next step, otherwise go to Step 1.

Step 8. Collect all the solutions and unify a convex combination of the regions having the
same solution to obtain a compact representation.

The next Theorem define the how to explored the rest of the space.

Theorem 3.4. Let X ∈ Rn be a polyhedron, and CR0 = {x ∈ X |Ax ≤ b} a polyhedral subset of

X , CR0 6= φ. Also let

Ri =

{
x ∈ X

∣∣∣∣∣ Aix > bi

Ajx ≤ bj ,∀j < i

}
, i = 1, · · · ,m (3.22)

where m = dim(b), and let CRrest ,
m⋃
i=1

Ri. Then (i)CRrest ∪ CR0 = X , (ii)CR0 ∩ Ri = φ

,Ri ∩Rj = φ,∀j 6= i, i.e.
{
CR0, R1, · · · , Rm

}
is a partition of X .
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Figure 3.2: (a) Partition of CRrest , X\CR0; (b) partition of CRrest step 1; (c)
partition of CRrest step 2; (d) final partition of CRrest

Theorem 3.5. For the mp-QP problem (3.7), the set of feasible parameters Xf ⊆ X is convex, the

optimal solution, z(x) : Xf 7→ Rs is continuous and piecewise affine, and the optimal objective

function Vz(x) : Xf 7→ R is continuous, convex, and piecewise quadratic.

Proof: Consider the parameter x1, x2 ∈ Xf and Vz (x1), Vz (x2) are the optimal value.

Let z1, z2 be the minimizers parameter. Here we have to proof convexity of Xf and Vz (x).

Define the equation zα , αz1 + (1− α) z2, xα , αx1 + (1− α)x2. By feasibility, the con-

straints are Gz1 ≤ W + Sx1, Gz2 ≤ W + Sx2 satisfy the minimizer parameter z1,z2. These

inequalities can be linearly combined to obtain Gzα ≤W + Sxα and therefore zα is feasible

for the optimization problem (3.7) where xt = xα. Since a feasible solution z(xα) exists at

xα, an optimal solution exists at xα and hence Xf is convex. The optimal solution at xα will

be less than or equal to the feasible solution, i.e

Vz (xα) ≤ 1

2
zTαHzα



3.4 Numerical Example for two state predictive 27

and hence

Vz(xα)−1

2

[
αzT1 Hz1 + (1− α)zT2 Hz2

]
≤ 1

2
zTαHzα −

1

2

[
αzT1 Hz1 + (1− α)zT2 Hz2

]

=
1

2

[
α2zT1 Hz1 + (1− α)2zT2 Hz2 + 2α(1− α)zT2 Hz1 − αzT1 Hz1 − (1− α)zT2 Hz2

]
= −1

2
α(1− α)(z1 − z2)TH(z1 − z2) ≤ 0

i.e.

Vz (αx1 + (1− α)x2) ≤ αVz (x1) + (1− α)Vz (x2)

for all x1, x2 ∈ X . Where α ∈ [0, 1], which proves the convexity of Vz(x) on Xf .

3.4 Numerical Example for two state predictive

Consider the state space representation

xt+1 =

[
0.7326 −0.0861

0.1722 0.9909

]
xt +

[
0.0609

0.0064

]
ut

yt =
[
0 1.4142

]
xt

Figure 3.3: State diagram of closed-loop MPC

The constrains on input are −2 ≤ ut ≤ 2. The corresponding optimization problem for
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Figure 3.4: optimal control(u) diagram of closed-loop MPC

Figure 3.5: State space partition and closed-loop MPC trajectories diagram

regulating to the origin is given

min
ut,ut+1

x’t+2|txt+2|t +
1∑

k=0

x’t+k|txt+k|t + 0.01u2
t+k

s.t. − 2 ≤ ut+k ≤ 2, k = 0, 1

Where P solves the Lyapunov equation P = AtPA+Q

P =

[
3.0485 −2.5055

−2.5055 12.9916

]
Q =

[
1 0

0 0

]
R = 0.01

Nu = Ny = Nc = 2
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Table 3.1: Parametric solution of the numerical example for two state predictive

Region No Region control law

1


−5.9302 −6.8985

5.9302 6.8985

−1.5347 6.8272

1.5347 −6.8272

x ≤


2.000

2.000

2.000

2.000


[
−5.9302 −6.8985

]
x

2


−3.4121 4.6433

3.4121 −4.6433

0.1044 0.1215

x ≤


2.6331

1.3669

−0.0352

 2.000

3


−3.4121 4.6433

3.4121 −4.6433

−0.1044 −0.1215

x ≤


1.3669

2.6331

−0.0352

 -2.000

4


−6.4235 −4.7040

6.4235 4.7040

0.0274 −0.1220

x ≤


2.6429

1.3571

−0.0357

 [
−6.4159 −4.6953

]
x− 0.6423

5


−6.4235 −4.7040

6.4235 4.7040

−0.0274 0.1220

x ≤


1.3571

2.6429

−0.0357

 [
−6.4159 −4.6953

]
x+ 0.6423

6

[
0.1259 0.0922

0.0679 −0.0924

]
x ≤

[
−0.0518

−0.0524

]
2.000

7

[
0.1259 0.0922

−0.0679 0.0924

]
x ≤

[
−0.0266

−0.0272

]
2.000

8

[
−0.1259 −0.0922

0.0679 −0.0924

]
x ≤

[
−0.0266

−0.0272

]
-2.000

9

[
−0.1259 −0.0922

−0.0679 0.0924

]
x ≤

[
−0.0518

−0.0524

]
-2.000
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The MPC problem convert to mp-QP form

H =

[
0.0196 0.0063

0.0063 0.0199

]
F =

[
0.1259 0.0679

0.0922 −0.0924

]
G =


1

−1

0

0

0

0

1

− 1



W =


2

2

2

2

 E =


0 0

0 0

0 0

0 0

 S =


5.9302 6.8985

−5.9302 −6.8985

1.5347 −6.8272

−1.5347 6.8272


The solution of the mp-QP problem, as computed by using the algorithm and is depicted

in figure. To illustrate how on-line optimization reduces to a function evaluation.The solu-

tion of the linear MPC optimization problem, with a quadratic objective and linear output

and input constraints, by using multi-parametric programming techniques and specifically

multi-parametric quadratic programming, provides a complete map of the optimal control

as a function of the states and the characteristic partitions of the state space where this so-

lution is feasible.

In that way the solution of the MPC problem is obtained as piecewise affine feedback

control law. The on-line computational effort is small since the on-line optimization prob-

lem is solved off-line and no optimizer is ever called on-line. In contrast, the on-line op-

timization problem is reduced to a mere function evaluation problem; when the measure-

ments of the state are obtained and the corresponding region and control action are obtained

by evaluation of a number of linear inequalities and a linear affine function, respectively.

This is known as the on-line optimization via off-line parametric optimization concept.

3.5 Numerical Example for three state predictive

Consider the state space representation

xt+1 =

[
0.7326 −0.0861

0.1722 0.9909

]
xt +

[
0.0609

0.0064

]
ut

yt =
[
0 1.4142

]
xt
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Figure 3.6: State diagram of closed-loop MPC

Figure 3.7: optimal control (u) diagram of closed-loop MPC

The constrains on input are −2 ≤ ut ≤ 2. The corresponding optimization problem for

regulating to the origin is given

min
ut,ut+1

x’t+2|txt+2|t +
1∑

k=0

x’t+k|txt+k|t + 0.01u2
t+k

s.t. − 2 ≤ ut+k ≤ 2, k = 0, 1, 2

Where P solves the Lyapunov equation P = AtPA+Q

P =

[
3.0485 −2.5055

−2.5055 12.9916

]
Q =

[
1 0

0 0

]
R = 0.01

Nu = Ny = Nc = 3
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Table 3.2: Parametric solution of the numerical example for three state predictive

Region No Region control law

1


−1.3901 −11.8477

−1.3165 7.0156

1.3901 11.8477

1.3165 −7.0156

x ≤


2.000

2.000

2.000

2.000


[
−1.3901 −11.8477

]
x

2

[
0.0353 0.2421

−0.0304 0.0999

]
x ≤

[
−0.0382

−0.0329

]
2.000

3

[
0.0304 −0.0999

−0.0353 −0.2421

]
x ≤

[
−0.0329

−0.0382

]
-2.000

4


−1.5447 5.0709

1.5447 −5.0709

−0.0253 −0.2585

x ≤


1.6717

2.3283

−0.0436

 -2.000

5


−1.5806 −10.8327

1.5806 10.8327

−0.0253 0.1349

x ≤


1.7106

2.2894

−0.0385

 [
−1.1996 −12.8627

]
x− 0.2893

6


−1.5806 −10.8327

1.5806 10.8327

0.0253 −0.1349

x ≤

−2.2893

−1.7107

−0.0385

 [
−1.1996 −12.8627

]
x+ 0.2893

7


−1.5447 5.0709

1.5447 −5.0709

0.0303 0.2585

x ≤

−2.3283

−1.6717

−0.0436

 2.000
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The MPC problem convert to mp-QP form

H =


0.0227 0.0083 0.0035

0.0083 0.0196 0.0063

0.0035 0.0063 0.0199

 F =

[
0.0399 0.1081 0.0339

0.2455 0.0804 −0.0973

]

G =



1

0

0

1

0

0

0

−1

0

0

1

0

0

0

−1

0

0

−1


W =



2

2

2

2

2

2


E =



0

0

0

0

0

0

0

0

0

0

0

0


S =



1.3901 11.8477

0.4504 0.1340

1.3165 −7.0156

−1.3901 −11.8477

−0.4504 −0.1340

−1.3165 7.0156



Figure 3.8: State space partition and closed-loop MPC trajectories diagram

The solution of the mp-QP problem, as computed by using the algorithm and despicted

in fig.3.8.In this case the control law for each region are different. There has no common

control law any two regions and each regions are convex set.

3.6 Conclusion

We have proposed a new approach for solving mp-QP problems giving off-line piece-

wise affine explicit solutions to MPC control problems. The method is based on the ex-

ploitation of direct relations between neighbouring polyhedral regions and combinations

of active constraints, and we believe that our contribution significantly advances the field
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of explicit MPC control, both theoretically and practically, as examples have indicated large

improvements of computational efficiency over existing mp-QP algorithms.



C H A P T E R 4

Control allocation via mpQP method

4.1 Introduction

Control allocation design for system with effector redundancy is challenging since mul-

tiple combinations of the available control effectors can generate the same desired control.

In addition to this, actuator constraints should be consider in account. Adding a control al-

location module essentially splits the control design into two separate parts : a control law

for generating the desired control variables and the control allocation part for the distribu-

tion of control power. This has many benefits, some listed in [22] include easy reconfigu-

ration in case of actuator change, separated regulation tuning, and lastly that the control

allocation method can be arbitrary. Because of this last fact there exists a lot of different

control allocation methods, ranging from simple to complex.

Figure 4.1: Split control configuration

In the classic formulations of the constrained control allocation problem, the actuator
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dynamics are neglected [16]. This is done under the assumption that the actuator dynamics

are orders of magnitude faster than the aircraft dynamics, and can be ignored, or that all

dynamic phenomena are accounted for by the controller that commands the virtual control

to the control allocation module. In some cases this may be an unrealistic and inconvenient

assumption, i.e. when the actuator dynamics are limiting the control performance because

response times and different dynamic authorities of the actuators are not taken into account.

Control allocation plays a vital role in ship control systems [23], flight control systems

[17] and other over-actuated mechanical control applications [24]. The control allocation

module will send control signals to the individual actuators in order to produce the required

forces and moments commanded from a higher level control system or pilot during manual

operation.

Such over-actuated control allocation problems are naturally formulated as optimiza-

tion problems as one usually wants to take advantage of all available degrees of freedom in

order to minimize power consumption, drag, tear/wear and other costs related to the use of

control, subject to constraints such as actuator position limitations [14] [15]. Generally the

constrained optimization problems are hard to solve using state-of-theart iterative numer-

ical optimization software at a high sampling rate in a safety-critical real-time system with

limiting processing capacity and high demands for software reliability. The main disadvan-

tage are worst case computational complexity and software verification is a complicated

issue.

4.2 Basic over view of control allocation

To introduce the ideas behind control allocation, consider the system

ẋ = u1 + u2 (4.1)

Where x is a scalar state variable, and u1 and u2 are control input, x can be affected by two

actuators. Assume that to accelerate the object, the net force v = 1 is to be produced. There

are several ways to achieve this. We can choose to utilize only the first actuator and select

u1 = 1, u2 = 0, or to gang the actuators and use u1 = u2 = 0.5.

In linear control theory, there is a wide range of control design methods, like LQ design,

which perform control allocation and regulation in one step. Thus, the usefulness of control

allocation for linear systems is not so obvious. There are however other, more practical

reason to use a separate control allocation module, even for linear system. One benefit is
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that actuator constraints can be taken into account. If one or more actuator saturates, and

fail to produce its nominal control effect, another actuator may be used to make up the

difference.

Linear equation:

Consider first a linear dynamic system on state space form.

ẋ = Ax+Buu (4.2)

Where x ∈ Rn is the state vector, u ∈ Rm is the control input, A ∈ Rn×n and Bu ∈ Rn×n.

Assume that Bu has rank k < m. Then Bu has a null-space of dimension m− k in which we

can perturb the control input without affecting x. Thus, there are several choices of control

input that gives the same system dynamics. This is the type of redundancy that can be

resolved using control .

Since Bu is rank deficient it can be factorized as

Bu = BvB (4.3)

WhereBv ∈ Rn×k andB ∈ Rk×m both have rank k. Introducing the virtual control input

v = Bu

Where v ∈ Rk, we can rewrite the systems dynamics (4.2) as

ẋ = Ax+Bvv (4.4)

Now, control design can be performed in two steps, as outlined in the introduction.

Non-linear systems:

The same ideas can be used to deal with non-linear systems of the form

ẋ = f (x, g (x, u)) (4.5)

Where f : Rn × Rk → Rn and g : Rn × Rm → Rk where k < m. Introducing the virtual

control input

v = g(x, u) (4.6)
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where v ∈ Rk, we can rewrite (4.5) as

ẋ = f(x, u)

and again use a two-step control design. A special class of non-linear systems is systems of

the form

ẋ = f (x) + gu (x, u)

gu (x, u) = Bvg (x, u)

where Bv ∈ Rn×k and f and g are non-linear mappings as above. Again introducing

v = g(x, u) yields

ẋ = f (x) +Bvv

Note that these resulting dynamics are affine in v, which simplifies many non-linear design

methods like, for example, back-stepping.

Solving (4.6) for u, while considering the actuator constraints umin ≤ u ≤ umax, amounts

to performing constrained non-linear programming. Since control allocation is to be per-

formed in real time, this may not be computationally feasible. One way to resolve this

problem is to approximate (4.6) locally with an affine mapping. Linearising g around u0

yields

g (x, u) ≈ g (x, u0) +
∂g

∂u
(x, u0) . (u− u0) (4.7)

where (x) = ∂g
∂u (x, u0) Which leads to the linear control allocation problem

v̄ = B (x)u

where

v̄ = v − g (x, u0) +B (x)u0 (4.8)

and methods for linear control allocation can be used.

Direct allocation problem:

Given a matrix B, find a real number a and a vector u1 such that:

J = max
a

a

s.t. (B)u1 = av

umin ≤ u ≤ umax

(4.9)
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If a > 1, let u = u1
a . Otherwise let u = u1

An advantage of direct allocation includes the straight forwardness of the allocation

problem. No design variables must be selected, since the solution to the problem is deter-

mined by the control effectiveness matrix (B) and the constraints. When a > 1 no element

in u will be saturated. A method of implementing direct allocation is by using linear pro-

gramming.

The objective of direct control allocation is to find a control vector u which gives the best

approximation of v in the given direction. Thus direct control allocation weighs directional-

ity over moment generation, which is an important characteristic especially for applications

such as flight control. In a special case of the matrix B direct allocation provides a unique

solution to the problem. The condition for this property is that any q rows of B must be

linearly independent, where q is the number of rows in B. In flight control the case is most

often that the rows in B are three. In this case the three components of v in the model

reference control law is the accelerations in p, q and r as outputs are three rotational acceler-

ations. The columns of B represent the contributions of the various control surfaces to each

of the three rotational accelerations.

4.3 The control allocation problem

Let the consider commanded forces in (x, y, z) be denoted (τx, τy, τz) and the commanded

moments in roll, pitch and yaw be denoted (τ∅, τθ, τϕ). These are stacked in a vector of com-

manded generalized forces τ = (τx, τy, τz, τ∅, τθ, τϕ)T . Assume the system is equipped with

N linear actuators with control inputs ui. If each actuator is characterized by a monotonous

non-linearity, it is implicitly assumed that this non-linearity is inverted. The kinematics

then leads to a relationship between the controls u = (u1, u2, . . . . . . uN ) T and the general-

ized forces τ ∈ Rm of the following form

Bu = τ (4.10)

where B ∈ Rn×m. In many control allocation applications not all six components of τ

are specified. For example, in aerospace applications one is often only concerned with

the three body-axis moments, where as in dynamic position applications involving marine

surface vessels one is usually concerned only with the three horizontal plane components

τ = (τx, τy, τϕ).

When constraints are neglected, the common solution to the problem is the generalized
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inverse, defined as B+ = R−1BT
(
BR−1BT

)−1 assuming the configuration is non-singular

such that B has full rank.

u = B∗τ (4.11)

Which solves the least-squares problem

min
u
uTRu

s.t. Bu = τ
(4.12)

And R ∈ Rm×n, where R > 0 is a weighting matrix. The most important feature of this

approach is that it admits an explicit solution that is computationally efficient and easily

implemented. In order to improve robustness near singular configurations, some modifica-

tions are suggested in. It is, however, of interest to consider more advanced optimization

formulations that allows more general cost indices and in particular considers the presence

of constraints on u, as this will in general improve the performance.

umin ≤ u ≤ umax (4.13)

where umin, umax ∈ Rn. where the inequalities are to be considered element wise. When

taking constraints on u into consideration, one can in general identity two different objec-

tives for the control allocation.

First is control sufficiency. This means that there exists a feasible solution attains the

desired generalized force τ . In this case , to minimize some norm of u, to minimize the cost

of control

min
u
‖u‖

s.t. Bu = τ

umin ≤ u ≤ umax

(4.14)

The second is control deficiency. When a feasible u that solves (4.10) does not exist, the

difference Bu− τ should be minimized. The direct control allocation does this by finding a

addition that preserves the direction of the generalized force vector, alternatively a norm of

this difference is minimized

min
u
‖Bu− τ‖

s.t. umin ≤ u ≤ umax
(4.15)
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The two objectives (4.14) and (4.15) will be combined into a single optimization problem

similar to the mixed optimization problem formulated in

min
u

1

2

(
sTQs+ uTRu

)
(4.16)

s.t. Bu = τ + s (4.17)

umin ≤ u ≤ umax (4.18)

Where s is a vector of slack variables used to penalize Bu − τ . Note that by combining

the two objectives in this fashion the solution can have a nonzero and even when τεL. The

weighting matrix Q should be chosen much larger than R, to prioritize objective 2 to ob-

jective 1. Thus s = 0 whenever τεL. Note that one can off-line compute the largest value

of s for τεL from the explicit solution by solving a linear program (LP) for each polyhe-

dral region in the explicit solution. If this s is unacceptably large, one should increase the

weighting matrix Q.

4.4 Control allocation problem using MPQP

The optimization problem (4.16)-(4.18) can for a given τ be considered as a QP. One

could, therefore consider solving this QP for every sample to obtain the optimal solution

to problem (4.16)-(4.18). when z =
(
uT , sT

)
and x = τ , it is straightforward to see that the

above optimization problem can be reformulated as follows:

min
z

1

2
zTHz (4.19)

s.t. G1z = W1 + S1x (4.20)

G2z = W2 + S2x (4.21)

when H = diag (R,Q), G1 = (B| − In×m), G2 = (In×m| 0n×m,−Im×m 0m×n), W1 = 0n×1,

W2 =
(
uTmax, u

T
min

)T , S1 = In×n and S2 = 02m. Where diag denotes a block-diagonal matrix

because Q > 0 and R > 0 implies H > 0, thus this defines a convex quadratic problem

in z parametrized by x. It has recently been found that the solution to such problems is a

continuous piece-wise linear function z∗(x) and it defined on an polyhedral partition of any

polyhedral domain in the parameter space.
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4.4.1 Multi-parametric Quadratic Programming

From [1], the mp-QP problem

Vz(xt) = min
z

1

2
zTHz

s.t. Gz ≤W + Sxt

(4.22)

This can be solved by applying the Karush-Kuhn-Tuker (KKT) conditions

Hz +GTλ = 0 (4.23)

λi (Giz −Wi − Six) = 0, i = 1, · · · , q (4.24)

λ ≥ 0 (4.25)

Superscript i on some matrix denotes the ith row. Considering H has full rank, (4.23) gives

z = −H−1GTλ (4.26)

Assume for the moment that we know which constraints are active at the optimum for a

given x, and let λ̃ be the Lagrange multipliers of the active constraints, λ̃ ≥ 0. We can

now form matrices G̃,W̃ and S̃ which contains the row Gi,W i and Si corresponding to the

active constraints. Consider that G̃ has full row rank, such that the rows of G̃ are linearly

independent. For the active constraints, (4.24) and (4.26) gives G̃z − W̃ − S̃x = 0, which

leads to

λ̃ = −
(
G̃H−1G̃T

)−1 (
W̃ + S̃x

)
(4.27)

Equation (4.27) can now be substituted into (4.26) to obtain

z = H−1G̃T
(
G̃H−1G̃T

)−1 (
W̃ + S̃x

)
(4.28)

We have now characterized the solution to (4.22) for a given optimal active set, and a fixed

x. However, as long as the active set remains optimal in a neighbourhood of x, the solution

(4.28) remains optimal, when z is viewed as a function of x. Next, we characterize the region

where this active set remains optimal. First, z must remain feasible

GH−1G̃T
(
G̃H−1G̃T

)−1 (
W̃ + S̃x

)
≤W + Sx (4.29)
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and also the Lagrange multipliers λ must remain non-negative

−
(
G̃H−1G̃T

)−1 (
W̃ + S̃x

)
≥ 0 (4.30)

The inequalities (4.29) and (4.30) describe a polyhedron in the parameter space. This region

is describe a polyhedron in the parameter space. This region is denoted as the critical region

CR0 corresponding to the given set of active constraints. This region is a convex polyhedral

set and represent set of parameters x such that the combination of active constraints at the

minimizer remains optimal.

An algorithm has been developed in [1] for constructing polyhedral partitions of the

parameter space that explicitly defines the PWL function z∗(x). Below, we give a simplified

description of the algorithm, while a more comprehensive description and analysis that also

covers degeneracy and infeasibility is found.

Algorithm 2 (off-line mp-QP solver)

Step 1. Initialize the list of unexplored active sets u with an arbitrary (but feasible) active set.
Initialize the first of explored active sets ε to be empty.

Step 2. Choose an arbitrary active set in u, compute the associated linear state feedback (4.28),
Lagrange multiplier (4.27) and polyhedral region CR0 defined by (4.29) and (4.30).
Remove the active set under consideration from u and add it to ε.

Step 3. If CR0 = φ, go to step 2, otherwise go to step 4.

Step 4. For each facet of the corresponding polyhedral representation determine the active
set in the neighbouring region as described in detail in (4.22). For each new active set
(i.e. not already in ε ∪ u), add it to u.

Step 5. If u is non-empty, go to step 2, otherwise terminate.
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Conclusion and Future Scope

5.1 Discussion and Conclusion

This thesis has treated theoretical and practical issues in the intersection between multi-

parametric programming and constrained optimal control. The purpose of this chapter is

to give a summary of the main conclusions that can be drawn from the work.

Using explicit solutions to RHC problems by multiparametric programming has clear

advantages but also a few drawbacks/limitations. Among the most important advantages

are

• The simple structure of the solution (PWL) leads to a real-time implementation which

can be made with a few lines in software. This is important in safety-critical applica-

tions, as the implementation can be easily verified.

• The implementation can be made on inexpensive hardware, as fixed point arithmetic

can be used. This is an important feature in mass-produced equipment, e.g. in the

automotive industry.

• The attainable sampling rates are high. This allows RHC functionality for fast (e.g.

mechanical) systems with constraints.

But there are also some disadvantages which limit the use of these methods:
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• The memory requirements are generally higher for explicit solutions than the case is

when using on-line optimization software. Even if some work has been made on sim-

plification/approximation of the explicit solutions, this remains the main limitation

for these methods.

• One advantage of the traditional way of using RHC, is that the controller may be eas-

ily modified to handle configuration changes, fault conditions etc. This advantage is

to some extent lost when using explicit solutions, as the off-line time to construct a

new controller may be large. To some extent such situations can be handled by intro-

ducing extra parameters into the multi-parametric program, or by a priori generating

several controllers for different modes of operation.

• The method is limited to fairly small problems, because memory requirements and

off-line computation times seems to increase more or less exponentially with problem

dimension.

The PWL control laws obtained from explicit RHC solutions increase rapidly in com-

plexity when the problem size grows. A natural question raised is How can a complex PWL

function be represented for efficient and reliable real-time implementation?. One possible

answer to this is the binary search tree structure suggested in Chapter 4. When creating

such a binary tree, the goal is a tree with low worst case evaluation time, and low mem-

ory requirements. An off-line algorithm is proposed, giving a tree with an evaluation time

which is logarithmic in the number of regions representing the PWL function. The method

is expected to increase the sampling rates to which complex PWL control can be applied.

The second application area treated in this thesis, is constrained control allocation in

over-actuated mechanical systems. This is an area particularly well suited for this kind of

solutions, as the problem sizes are relatively small, and real-time optimization is often ruled

out due to safety reasons. The method is compared to methods in the literature, showing

good results, both in terms of optimality of the solution and real-time computational re-

quirements.

5.2 Future Scope

Even if the last few years have given much development within the field of multi-

parametric programming within constrained optimal control, improvements can still be

made. Among the subjects touched in this thesis, one may consider the following:
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• Some work on approximate solutions to mpQPs has been reported in the literature.

An inherent feature of parametric program solutions seems, however, to be that the

exact solution is easier to characterize than an approximation. Future contributions in

this area would be important, as the main limitation of parametric program solutions

is the rapid growth of solution complexity with problem size.

• Our current implementation of the mpQP solver is made in Matlab. One possible way

of increasing the execution speed would be to implement the solver in some lower

level language, like C or Fortran. However, as more than 80 percent of the execution

time in the current implementation usually is spent on solving LPs (which already is

implemented in Fortran), the faster execution speed obtained by implementing the

solver in e.g. C would not be by orders of magnitude.

• Most of the LPs mentioned in the previous point are solved to remove redundant

hyperplanes from representations of polyhedra. This method of removing redundant

hyperplanes is easy to implement, but is sub-optimal with regard to execution speed.

Thus, replacing this method with a more efficient one may be the most promising way

of improving the mpQP solver in terms of execution speed.

• For instance, we consider using this kind of techniques for the automotive vehicle con-

trol problem in Chapter 4. This would separate this problem into a constrained control

allocation part and a dynamical control problem. The controller can then command

a yaw moment to the control allocation. We expect this to considerably decrease the

complexity of the resulting control system implementation.
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