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ABSTRACT

First time introduced in the year 1999, the balancing numbers are extensively studied. Each

balancing number is associated with a Lucas-balancing number and are useful in the compu-

tation of balancing numbers of higher order. In this report, we study the sums of k-balancing

numbers with indexes in an arithmetic sequence, say an+ r for fixed integers a and r . Also

an infinite family of Pell’s equations of degree n≥2 are discussed.
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Chapter 0

Introduction

The concept of Fibonacci numbers was first discovered by the famous Italian mathematician
Leonardo Fibonacci. The Fibonacci series was derived from the solution to a problem about
rabbits.They can be obtained by the recursive formula [11,12],

Fn+1 = Fn +Fn−1 for n≥ 2,

with initial values F1 = 1, F2 = 1. Falcon and Plaza [9] studied k-Fibonacci numbers with in-
dices in an arithmetic progression. For any integer number k ≥ 1 the kth Fibonacci sequences,
say {Fk,n}n∈N is defined by the recurrence relation

Fk,n+1 = kFk,n +Fk,n−1 for n≥ 1,

with initial values Fk,0 = 0, Fk,1 = 1.

In the year 1999 Behera and Panda introduced the concept of balancing numbers. Balancing
numbers n and balancers r are solutions of the Diophantine equation [3,4,8],

1+2+ . . .+(n−1) = (n+1)+(n+2)+ . . .+(n+ r).

6, 35 and 204 are balancing numbers with balancer 2, 14 and 84 respectively.

They also proved that the recurrence relation for balancing numbers is

Bn+1 = 6Bn−Bn−1 for n≥ 2,

where Bn is the nth balancing number with B1 = 1 and B2 = 6. It has already been proved that n
is a balancing number if and only if n2 is a triangular number, that is 8n2 +1 is a perfect square.
If n is a balancing number, Cn =

√
8n2 +1 is called a Lucas-balancing number [3,4,8].

The recurrence relation for Lucas-balancing numbers is same as that of balancing numbers,
i.e,

Cn+1 = 6Cn−Cn−1 for n≥ 2,

where Cn is the nth Lucas-balancing number with C1 = 3 and C2 = 17.



Another famous mathematician Liptai, later showed that the only balancing number in the
sequence of Fibonacci numbers is 1. Moreover The closed form of both balancing and Lucas-
balancing numbers are respectively given by

Bn =
αn−β n

α−β
and Cn =

αn +β n

2
.

The recurrence relation for balancing and Lucas-balancing are popularly known as Binets for-
mulas for balancing and Lucas-balancing numbers [3,8]. This paper is a combination of three
major results which uses a great deal of the above concepts and the resulting derivations.

1



Chapter 1

Preliminaries

In this chapter, include some known definitions which are frequently used in this work.

1.1 Recurrence Relation

A recurrence relation is an equation that defines a sequence recursively; where each term of the
sequence is defined as a function of the preceding terms [5,11].

1.2 Triangular Numbers

A number of the form n(n+1)/2 where n∈Z+ is known as a triangular number.The trian-
gular number n(n+1)/2 represents the area of a right angled triangle with base n+ 1 and
perpendicular n. It is well known that n∈Z+ is a "Triangular Number" if and only if 8n+1 is
a perfect square [5,11,12].

1.3 Fibonacci Sequence

The Fibonacci sequence [11,12] is defined recursively as F1 = 1, F2 = 1 and

Fn+1 = Fn +Fn−1 for n≥ 2.

1.4 Lucas Sequence

The Lucas sequence [11,12] is defined recursively as L1 = 1, L2 = 3 and

Ln+1 = Ln +Ln−1 for n≥ 2.

1.5 Binet Formula

While solving a recurrence relation as a difference equation, the nth term of the sequence is
obtained in closed form, which is a formula containing conjugate surds of irrational numbers is



known as the Binet formula for the particular sequence. These surds are obtained from the auxil-
iary equation of the recurrence relation for the recursive sequence under consideration [8,11,12].
Binet formula for Fibonacci and Lucas sequence are respectively

Fn =
σ1

n−σ2
n

σ1−σ2
and Ln = σ1

n +σ2
n,

where σ1 =
1+
√

5
2 and σ2 =

1−
√

5
2 .

1.6 Pell Sequence

The Pell sequence are defined recursively as [11,12],

Pn+1 = 2Pn +Pn−1 for n≥ 2,

where P1 = 1 and P2 = 2.

1.7 Associated Pell Sequence

The associated Pell sequence is also determined from the same recurrence relation as that of
Pell numbers as [11,12],

Qn+1 = 2Qn +Qn−1 for n≥ 2,

where Q1 = 1 and Q2 = 3.

1.8 Balancing Sequence

The solutions n and r of the Diophantine equation [3,4,8],

1+2+ . . .+(n−1) = (n+1)+(n+2)+ . . .+(n+ r)

are called balancing numbers and balancers respectively.

The recurrence relation for balancing sequence is

Bn+1 = 6Bn−Bn−1 for n≥ 2,

where Bn is the nth balancing number with B1 = 1 and B2 = 6. n is a balancing number if and
only if n2 is a triangular number, that is 8n2 +1 is a perfect square.

1.9 Lucas-balancing Sequence

If n is a balancing number, Cn =
√

8n2 +1 is called a Lucas-balancing number [3,4,8].
The recurrence relation for Lucas-balancing sequence is

Cn+1 = 6Cn−Cn−1 for n≥ 2,

where Cn is the nth Lucas-balancing number with C1 = 3 and C2 = 17.

3



Chapter 2

On k-balancing numbers

2.1 Introduction

The Fibonacci numbers are defined by the recurrence relation [11,12],

Fn+1 = Fn +Fn−1 for n≥ 2, (2.1.1)

where Fn is the nth Fibonacci number with F1 = 1 and F2 = 1. In [9], Falcon and Plaza general-
ized the definition of Fibonacci numbers and defined k-Fibonacci numbers as follows:

Definition 2.1.1. For any integer number k ≥ 1 the kth Fibonacci sequences, say {Fk,n}n∈N is
defined by the recurrence relation [9],

Fk,n+1 = kFk,n +Fk,n−1 for n≥ 1, (2.1.2)

where Fk,0 = 0, and Fk,1 = 1.

When k = 1 the kth Fibonacci sequence reduces to Fibonacci sequence. while for k = 2, it
reduces to Pell’s sequence. In [9], Falcon and Plaza studied k-Fibonacci numbers with indices
in an arithmetic progression. In this chapter, we define kth balancing numbers and consider the
sums of k-balancing numbers with indices in an arithmetic sequence, say an+ r for fixed inte-
gers a and r. This enables us to give several formulas for the sums of such numbers.

Definition 2.1.2. For any integer number k ≥ 1, we define the kth Balancing sequence as say
{Bk,n}n∈N is defined by the recurrence relation

Bk,n+1 = 6kBk,n−Bk,n−1 for n≥ 1, (2.1.3)

where Bk,0 = 0, Bk,1 = 1.

2.2 Some properties of the k-Fibonacci and k-balancing numbers

The Binet formula for k-Fibonacci numbers [9] is

Fk,n =
σ1

n−σ2
n

σ1−σ2
,

4



where σ1 =
k+
√

k2+4
2 and σ2 =

k−
√

k2+4
2 .

The following important formulas available in [9], can be proved using the Binet formula.
They are needed to prove results of the subsequent sections. For n, m≥0.

1. Catalan’s identity: Fk,n−rFk,n+r−F2
k,n = (−1)n+1+rF2

k,r.

2. Simson’s identity: Fk,n−1Fk,n+1−F2
k,n = (−1)n.

3. D’Ocagne’s identity: Fk,mFk,n+1−Fk,m+1Fk,n = (−1)nFk,m−n.

4. Convolution product: Fk,n+1Fk,m +Fk,nFk,m−1 = Fk,n+m.

5. For all integers n≥ 1, αn +β n = Fk,n+1 +Fk,n−1.

6. Fk,a(n+2)+r = (Fk,a−1 +Fk,a+1)Fk,a(n+1)+r− (−1)aFk,an+r.

It is easy to see that the Binet formula for k-balancing numbers is

Bk,n =
αn−β n

α−β
,

where α = 3k+
√

9k2−1 and β = 3k−
√

9k2−1.

For n, m≥0, by using The Binet formula, we can easily get the following new formulas.

1. Catalan’s identity: B2
k,n−Bk,n−rBk,n+r = B2

k,r.

2. Simson’s identity: B2
k,n−Bk,n−1Bk,n+1 = 1.

3. D’Ocagne’s identity: Bk,mBk,n+1−Bk,m+1Bk,n = B2
k,m−n.

4. Convolution product: Bk,n+1Bk,m−Bk,nBk,m−1 = Bk,n+m.

2.3 On the k-balancing numbers with indices of the form an+ r

Lemma 2.3.1. For a given natural number n(n≥1),

α
n +β

n = Bk,n+1−Bk,n−1. (2.3.1)

Proof. By applying Binet formula and taking αβ = 1.

Bk,n+1−Bk,n−1 =
αn+1−β n+1−αn−1 +β n−1

α−β

=
αn(α−α−1)−β n(β −β−1)

α−β

=
αn(α−β )+β n(α−β )

α−β

= α
n +β

n.

5



Lemma 2.3.2. For natural numbers n and r,

Bk,a(n+2)+r = (Bk,a+1−Bk,a−1)Bk,a(n+1)+r−Bk,an+r. (2.3.2)

Proof. By using the above Lemma 2.3.1 and Binet formula we can prove;

(Bk,a+1−Bk,a−1)Bk,a(n+1)+r = (αa +β
a)
(αan+a+r−β an+a+r)

α−β

=
αa(n+2)+r−β a(n+2)+r +αan+r−β an+r

α−β

= Bk,a(n+2)+r +Bk,an+r.

2.4 Generating function of the sequence {Bk,an+r}

Let fa,r(k,x) be the generating function of the Fibonacci sequence {Fk,an+r} with 0≤r≤ a−1,
Then the following result was proved in [9]

fa,r(k,x) =
Fk,r +(−1)rFk,a−rx
1−Lk,ax+(−1)ax2 . (2.4.1)

Theorem 2.4.1. The generating function ga,r(k,x) of the sequence {Bk,an+r} with 0≤r≤ a−1,
is

fa,r(k,x) =
Bk,r−Bk,r−ax

1−2Ck,ax+ x2 . (2.4.2)

Proof.

(1−2Ck,ax+ x2) fa,r(k,x)

= (1−2Ck,ax+ x2)(Bk,r +Bk,a+rx+Bk,2a+rx2 + . . .)

= Bk,r +(Bk,a+r−2Ck,aBk,r)x+(Bk,2a+r−2Ck,aBk,a+r +Bk,r)x2

+(Bk,3a+r−2Ck,aBk,2a+r +Bk,a+r)x3 + . . . .

= Bk,r +(Bk,a+r−2Ck,aBk,r)x+

[
∑
n≥2

Bk,a(n+2)+r−2Ck,aBk,a(n+1)+r +Bk,an+r

]

= Bk,r +(Bk,a+r−2Ck,aBk,r)x+

[
∑
n≥2
−Bk,an+r +Bk,an+r

]
= Bk,r +(Bk,a+r−2Ck,aBk,r)x

= Bk,r−Bk,r−ax.

Hence, the generating function for the initial power series is

fa,r(k,x) =
Bk,r−Bk,r−ax

1−2Ck,ax+ x2 .

6



2.4.1 Particular cases

The generating functions of the sequences {Bk,an+r} for different values of the parameter
a and r are

(1) a = 1 and r = 0 : f1,0(k,x) = x
1−6kx+x2 .

(2) a = 2 : (i)r = 0 : f2,0(k,x) = 6kx
1−36k2x+2x+x2 . (ii)r = 1 : f2,1(k,x) = 1+x

1−2x(18k2−1)+x2 .

(3) a = 3 : (i)r = 0 : f3,0(k,x) = 36k2x−x
1−2x(108k3−9k)+x2 . (ii)r = 1 : f3,1(k,x) = 1+6kx

1−2x(108k3−9k)+x2 .

2.5 Sum of k-balancing numbers of kind an+ r

The following Fibonacci results are available in [9],

n

∑
i=0

Fk,ai+r =
Fk,a(n+1)+r− (−1)aFk,an+r− (−1)rFk,a−r−Fk,r

Fk,a+1 +Fk,a−1− (−1)a−1
. (2.5.1)

Theorem 2.5.1. Sum of k-balancing numbers of kind an+ r
n

∑
i=0

Bk,ai+r =
Bk,an+r−Bk,a(n+1)+r +Bk,a−r +Bk,r

2−Bk,a+1 +Bk,a−1
. (2.5.2)

Proof. By using Binet formula, we get
n

∑
i=0

Bk,ai+r =
n

∑
i=0

αai+r−β ai+r

α−β

=
1

α−β

[
n

∑
i=0

α
ai+r−

n

∑
i=0

β
ai+r

]

=
1

α−β

[
αan+r+a−αr

αa−1
− β an+r+a−β r

β a−1

]
=

1
α−β

[
αan+r−β an+r−αan+r+a +β an+r+a +αa−r−β a−r +αr−β r

2− (αa +β a)

]
=

Bk,an+r−Bk,a(n+1)+r +Bk,a−r +Bk,r

2−Bk,a+1 +Bk,a−1
.

2.6 Particular cases

2.6.1 Case-1

Sum of odd k-balancing numbers, If a = 2p+1 then Eq.(2.5.2) is
n

∑
i=0

Bk,(2p+1)i+r =
Bk,(2p+1)n+r−Bk,(2p+1)(n+1)+r +Bk,(2p+1)−r +Bk,r

2−Bk,2p+2 +Bk,2p
. (2.6.1)

7



Examples

(1) If p = 0 then a = 1,r = 0 and ∑
n
i=0 Bk,i =

Bk,n−Bk,(n+1)+Bk,1

2−Bk,2
=

Bk,n−Bk,(n+1)+1
2−6k .

(a) For k = 1, the formula for classical balancing sequence,

n

∑
i=0

Bi =
Bn−Bn+1 +1

2−6k
=

Bn+1−Bn−1
4

.

(b) For k = 2, the formula for the Pell’s sequence is ∑
n
i=0 Pi =

Pn−Pn+1+1
2−6k = Pn+1−Pn−1

10 .

(2) If p = 1 and a = 3, then ∑
n
i=0 Bk,3i+r =

Bk,3n+r−Bk,3(n+1)+r+Bk,3−r+Bk,r

2−216k3+18k .

(a)r = 0 : ∑
n
i=0 Bk,3i =

Bk,3n−Bk,3(n+1)+36k2−1
2−216k3+18k ; for k = 1,

the formula for classical balancing sequence is ∑
n
i=0 B3i =

B3n−B3n+3+35
196 .

(b)r = 1 : ∑
n
i=0 Bk,3i+1 =

Bk,3n+1−Bk,3n+4+6k+1
2−216k3+18k ; for k = 1,

the formula for classical balancing sequence is ∑
n
i=0 B3i+1 =

B3n+1−B3n+4+7
196 .

(c)r = 2 : ∑
n
i=0 Bk,3i+2 =

Bk,3n+2−Bk,3n+5+6k+1
2−216k3+18k ; f ork = 1,

the formula for classical balancing sequence is ∑
n
i=0 B3i+2 =

B3n+2−B3n+5+7
196 .

(3) If p = 2 and a = 5, then ∑
n
i=0 Bk,5i+r =

Bk,5n+r−Bk,5(n+1)+r+Bk,5−r+Bk,r

2−7776k5+1080k3−30k .

(a)r = 0 : ∑
n
i=0 Bk,5i =

Bk,5n−Bk,5n+5+Bk,5
2−7776k5+1080k3−30k .

2.6.2 Case-2

Sum formula for even k-balancing numbers: If a = 2p then Eq.(2.5.2) is

n

∑
i=0

Bk,2pi+r =
Bk,2pn+r−Bk,2p(n+1)+r +Bk,2p−r +Bk,r

2−Bk,2p+1 +Bk,2p−1
. (2.6.2)

For Example :

(1) If p = 1 then a = 2 then ∑
n
i=0 Bk,2i+r =

Bk,2n+r−Bk,2(n+1)+r+Bk,2−r+Bk,r

4−36k2 .

(a)r = 0 : ∑
n
i=0 Bk,2i =

Bk,2n−Bk,2(n+1)+6k

4−36k2 ; f or k = 1,

the formula for classical balancing sequence is ∑
n
i=0 B2i =

B2n+2−B2n−6
32 .

(b)r = 1 : ∑
n
i=0 Bk,2i+1 =

Bk,2n+1−Bk,2n+3+2
4−36k2 ; f or k = 1,

8



the formula for classical balancing sequence is ∑
n
i=0 B2i+1 =

B2n+3−B2n+1−2
32 .

(2) If p = 2 then a = 4 then ∑
n
i=0 Bk,4i+r =

Bk,4n+r−Bk,4(n+1)+r+Bk,4−r+Bk,r

144k2−1296k4 .

(a)r = 0 : ∑
n
i=0 Bk,4i =

Bk,4n−Bk,4n+4+216k3−12k
144k2−1296k4 .

(b)r = 1 : ∑
n
i=0 Bk,4i+1 =

Bk,4n+1−Bk,4n+5−36k2+2
144k2−1296k4 .

The following Fibonacci results are available in [9].The sum of k-Fibonacci numbers of order
an+ r is

n

∑
i=0

(−1)iFk,ai+r =
(−1)n+aFk,an+r +(−1)nFk,a(n+1)+r +(−1)r+1Fk,a−r +Fk,r

Fk,a+1 +Fk,a−1 +(−1)a +1
. (2.6.3)

Theorem 2.6.1. The alternating sum of k-balancing numbers of order an+ r is

n

∑
i=0

(−1)iBk,ai+r =
(−1)an+2aBk,an+r +(−1)an+2aBk,a(n+1)+r +(−1)aBk,a−r +Bk,r

2+(−1)a+1(Bk,a+1−Bk,a−1)
. (2.6.4)

Proof. Applying Binet formula, we get

n

∑
i=0

(−1)iBk,ai+r = (−1)i
n

∑
i=0

αai+r−β ai+r

α−β

=
(−1)i

α−β

[
n

∑
i=0

α
ai+r−

n

∑
i=0

β
ai+r

]

=
1

α−β

[
(−1)an+aαan+r+a−αr

(−1)aαa−1
− (−1)an+aβ an+r+a−β r

(−1)aβ a−1

]
=

(−1)an+2aBk,an+r +(−1)an+2aBk,a(n+1)+r +(−1)aBk,a−r +Bk,r

2+(−1)a+1(Bk,a+1−Bk,a−1)
.

For Example:

(1) a = 1 and r = 0 then, ∑
n
i=0(−1)iBk,i =

(−1)n+2Bk,n+(−1)n+2Bk,n+1−1
2+6k .

(2) a = 2 and r = 0 then, ∑
n
i=0(−1)iBk,2i =

Bk,2n+Bk,2n+2+6k
4−36k2 .

(3) a = 2 and r = 1 then, ∑
n
i=0(−1)iBk,2i+1 =

Bk,2n+1+Bk,2n+3+2
4−36k2 .

(4) a = 4 and r = 0 then, ∑
n
i=0(−1)iBk,4i =

Bk,4n+Bk,4n+4+(216k3−12k)
144k2−1296k4 .

(5) a = 4 and r = 1 then, ∑
n
i=0(−1)iBk,4i+1 =

Bk,4n+1+Bk,4n+5+36k2

144k2−1296k4 .
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Chapter 3

Generalized balancing number and
Pell’s equations of higher degree

3.1 Introduction

Let d be a non-square positive integer. The Diophantine equation x2− dy2 = 1 is called the
Pell’s equation. It is well known that given the smallest positive solution (x0,y0), all solutions
(xn,yn) can be obtained from [11,12]

yn +
√

dxn = (x0 +
√

dy0)
n
. (3.1.1)

Observe that the Pell’s equation can be written in the form

det
(

x dy
y x

)
=±1. (3.1.2)

In a recent paper, [2] has generalized Pell’s equation to higher degree as follows.

Let A and B be non-zero integers then the second order linear recursive sequences
R = {Rn}∞

n=0 and V = {Vn}∞

n=0 are defined by the recursions

Rn = ARn−1 +BRn−2 and Vn = AVn−1 +BVn−2 for n≥ 2, (3.1.3)

R0 = 0, R1 = 1, V0 = 2 and V1 = A. If A = B = 1 then Rn = Fn and Vn = Ln, where Fn and Ln

denotes the nth Fibonacci and Lucas numbers respectively.

We define a generalized balancing sequence by the recursions

Rn = 6ARn−1−BRn−2 and Vn = 6AVn−1−BVn−2 for n≥ 2, (3.1.4)

while R0 = 0, R1 = 1, V0 = 1 and V1 = 3A. If A= B= 1 then Rn = Bn and Vn =Cn, where Bn and
Cn denotes the nth balancing and Lucas balancing numbers respectively.

The polynomial g(x) = x2− 6Ax+ B is said to be the characteristic polynomial of the
sequences R and V . The complex numbers α and β are the roots of g(x) = 0.
Then, the Binet’s formula are

Rn =
αn−β n

α−β
and Vn =

αn +β n

2
f or n≥ 0. (3.1.5)

10



The Pell’s equation x2−dy2 =±1(d∈Z) can be written as

det
(

x dy
y x

)
=±1.

The quasi-cyclic matrix is defined in [6,7,10] as

Qn = Qn(d;x1,x2,x3, . . . ,xn) =


x1 dxn dxn−1 · · · dx2
x2 x1 dxn · · · dx3
x3 x2 x1 · · · dx4
...

...
... · · ·

...
xn xn−1 xn−2 . . . x1

 , (3.1.6)

i.e, every entry of the upper triangular part(not including the main diagonal) of the cyclic matrix
of entries x1,x2,x3, . . . ,xn is multiplied by d. The equation

det(Qn) =±1,

i.e,

det


x1 dxn dxn−1 · · · dx2
x2 x1 dxn · · · dx3
x3 x2 x1 · · · dx4
...

...
... · · ·

...
xn xn−1 xn−2 . . . x1

=±1, (3.1.7)

is called Pell’s equation of degree n≥ 2.

If n = 3 then (3.1.7) has the form

x3
1 +dx3

2 +d2x3
3−3dx1x2x3 =±1.

3.2 The main results and their proofs

In a recent paper [6], for n≥ 2,

det(Qn(Ln;F2n−1F2n−2, . . . ,Fn) = 1 for n≥ 2, (3.2.1)

where Fn and Ln denotes Fibonacci and Lucas numbers respectively.

We consider a similar result for generalized balancing numbers.

Theorem 3.2.1. Let n≥ 2, then

det(Qn(2Cn;B2n−1B2n−2, . . . ,Bn) = 1, (3.2.2)

where Bn and Cn denotes balancing and Lucas balancing numbers respectively.

11



Proof. For n = 2, we have

det(Qn(2C2;B3,B2)) = det
(

35 204
6 35

)
= 1.

So, The result is true for n=2. We have to prove this result for n > 2, let

T =



1 −6 1 . . . 0 0
0 1 −6 . . . 0 0
0 0 1 . . . 0 0
...

... . . .
. . .

...
...

0 0 0 . . . 1 −6
0 0 0 . . . 0 1


. (3.2.3)

By multiplication of matrices and properties of balancing and Lucas balancing, we have

QnT =



B2n−1 −B2n−2 1 0 . . . 0
B2n−2 −B2n−3 0 1 . . . 0

B2n−3 −B2n−4 0 0
. . . 0

...
...

...
... . . . 1

Bn+1 −Bn 0 0 . . . 0
Bn −Bn−1 0 0 . . . 0


. (3.2.4)

Taking the determinant of both sides of (3.2.4) and det(T)=1, we have

det(Qn) = det(Qn)det(T ) = det(QnT )

= (−1)2n−4det



Bn+1 −Bn 0 0 . . . 0
Bn −Bn−1 0 0 . . . 0

B2n−1 −B2n−2
B2n−2 −B2n−3

...
... In−2

Bn+2 −Bn+1


= det

(
Bn+1 −Bn

Bn −Bn−1

)
det(In−2)

= (B2
n−Bn+1Bn−1)

= 1.

Thus, Theorem 3.2.1 is true.

Lemma 3.2.2. Let the sequences R and V be defined by (3.1.4) and α 6=β in (3.1.5), then

1. Rn+1Rn−1−R2
n =−Bn(n≥ 1),

2. 2VnRn = R2n(n≥ 0),

3. 2VnRn+1 = R2n+1 +B(n≥ 0),
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4. En
n = 2VnIn and En+1

n = 2VnEn(n≥ 3),

where En is defined as

En =


0 0 . . . 0 2Vn

1 0 . . . 0 0
0 1 . . . . . . . . . 0
...

... . . .
... 0

0 0 . . . 1 0

 . (3.2.5)

Proof. The first three properties of the Lemma are known or using (3.1.5), they can be prove
easily.For the proof of (4) Lemma (3.2.2) of consider the multiplication of matrices,

E2
n = En.En =



0 0 . . . 0 2Vn 0
0 0 . . . 0 0 2Vn

1 0 . . . 0 0 0
0 1 . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . 1 0 0


,

E3
n = E2

n .En =



0 0 . . . 0 2Vn 0 0
0 0 . . . 0 0 2Vn 0
0 0 . . . 0 0 0 2Vn

1 0 . . . 0 0 0 0
0 1 . . . 0 0 0 0
...

...
. . .

...
...

...
...

0 0 . . . 1 0 0 0


,

En
n =


2Vn 0 . . . 0 0
0 2Vn . . . 0 0
...

...
. . .

...
...

0 0 . . . 2Vn 0
0 0 . . . 0 2Vn

= 2VnIn,

hence, En+1
n = En

n .En = (2VnIn)En = 2VnEn.

Theorem 3.2.3. By using [2] for n≥ 2 we can show that

det(Qn(Vn;R2n−1,R2n−2, . . . ,Rn)) = Bn(n−1),

i.e, (x1,x2,x3, . . . ,xn) = (R2n−1,R2n−2, . . . ,Rn) is a solution of the generalized pell’s equation
of degree n,

det(Qn(Vn;x1,x2,x3, . . . ,xn)) = Bn(n−1).

Proof. For n = 2 we get that

det(Q2(2V2;R3,R2)) =

∣∣∣∣36A2−B 6A(36A2−2B)
6A 36A2−B

∣∣∣∣
= B2.
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If n > 2, let us consider the n×n matrices

Tn =



1 −6A B . . . 0 0
0 1 −6A . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −6A B
0 0 0 . . . 1 −6A
0 0 0 . . . 0 1


.

Qn = (Qn(2Vn;R2n−1,R2n−2, . . . ,Rn)) =


R2n−1 2VnRn . . . 2VnR2n−2
R2n−2 R2n−1 . . . 2VnR2n−3

...
...

. . .
...

Rn Rn+1 . . . R2n−1

 .

Then, by (3.1.4),(3.1.5) and (1)-(3) of Lemma 3.2.2, we can verify that

Qn.Tn =



R2n−1 −BR2n−2 B 0 . . . 0
R2n−2 −BR2n−3 0 B . . . 0

...
...

...
...

. . .
...

Rn+2 −BRn+1 0 0 . . . B
Rn+1 −BRn 0 0 . . . 0
Rn −BRn−1 0 0 . . . 0


.

Taking the determinant of Qn.Tn we get that

det(Qn.Tn) = (−1)2n+2(BR2
n−BRn+1Rn−1)det(BIn−2)

= (BR2
n−BRn+1Rn−1)Bn−2

= Bn−1(R2
n−Rn−1Rn+1)

= Bn(n−1).

Hence, Theorem 3.2.3 proved.

From [2] the inverse matrix is defined as:

Q−1
n (Vn;R2n−1,R2n−2, . . . ,Rn) = (−1)n−1B−n(BIn +AEn−E2

n ) f or n≥ 3.

Theorem 3.2.4. By using the above result we can show that for n≥ 3, the matrix
Qn(2Vn;R2n−1,R2n−2, . . . ,Rn) is invertible and it’s inverse matrix Q−1

n is as follows,

Q−1
n (2Vn;R2n−1,R2n−2, . . . ,Rn) = (−1)B−2(BIn−6AEn +E2

n ),

where In and En denotes the identity matrix of order n and En is defined by (3.2.5).

Proof. Theorem 3.2.3 implies that

Q−1
n (2Vn;R2n−1,R2n−2, . . . ,Rn) exists. It is easily verify that

Qn(2Vn;R2n−1,R2n−2, . . . ,Rn) = R2n−1In +R2n−2En +R2n−3E2
n + . . .+RnEn−1

n ,
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therefore we have to show that

3Qn(−1)B−2(BIn−6AEn +E2
n ) = In,

i.e,

(R2n−1In +R2n−2En +R2n−3E2
n + . . .+RnEn−1

n )(−1)B−2(BIn−6AEn +E2
n ) = In. (3.2.6)

By (3.1.4), the left hand side of (3.2.6) can be written as

(−1)B−2(BR2n−1In +BR2n−2En−6AR2n−1En−6ARnEn
n +Rn+1En

n +RnEn+1
n +On + . . .+On),

(3.2.7)
where On is the zero-matrix of order n.
Thus applying (3.1.4),(1)-(4)of Lemma 3.2.2 and (3.1.5), then (3.2.7) is equal to

(−1)B−2(BR2n−1In +(BR2n−2−6AR2n−1)En−12ARnVnIn +2Rn+1VnIn +2RnVnEn)

= (−1)B−2(BR2n−1In−2Bn−1VnIn)

= (−1)B−2BIn(R2n−1−2Rn−1Vn)

= (−1)B−1(−B)In.

= In.

Hence, Theorem 3.2.4 is proved.

Corollary 3.2.5.

(x1,x2, . . . ,xn) =

{
(−1,6A,−1,0, . . . ,0), i f B = 1,
(1,6A,−1,0, . . . ,0), i f B =−1,

is an other solution of the generalized Pell’s equation

det(Qn(2Vn;x1,x2, . . . ,xn)) = 1. (3.2.8)

Proof. By Theorem 3.2.4,

det(Qn(2Vn;R2n−1,R2n−2, . . . ,Rn)).det(Q−1
n (2Vn;R2n−1,R2n−2, . . . ,Rn)) = 1,

thus, if |B|= 1 then by Theorem 3.2.3,

det(Q−1
n (2Vn;R2n−1,R2n−2, . . . ,Rn)) = 1.
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Example:
Let B=1,then by Theorem 3.2.4,

Q−1
n (2Vn;R2n−1,R2n−2, . . . ,Rn) =−In +6AEn−E2

n

=


−1 0 . . . −2Qn 12AQn

6A −1 . . . 0 −2Qn

−1 6A . . . 0 0
...

...
. . .

...
...

0 0 . . . 6A −1

 ,

i.e, (x1,x2, . . . ,xn) = (−1,6A,−1,0, . . . ,0) is a solution of (3.2.8).
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