Interference cancellation and Resource Allocation approaches for Device-to-Device Communications

Chithra, R (2016) Interference cancellation and Resource Allocation approaches for Device-to-Device Communications. PhD thesis.

[img]
Preview
PDF
6Mb

Abstract

Network assisted Device-to-Device (D2D) communication as an underlay to cellular spectrum has attracted much attention in mobile network standards for local area connectivity as a means to improve the cellular spectrum utilization and to reduce the energy consumption of User Equipments (UEs). The D2D communication uses resources of the underlying mobile network which results in different interference scenarios. These include interference from cellular to D2D link, D2D to cellular link and interference among D2D links when multiple D2D links share common resources. In this thesis, an orthogonal precoding interference cancellation method is initially presented to reduce the cellular to D2D and D2D to cellular interferences when the cellular channel resources are being shared by a single D2D link. Three different scenarios have been considered when establishing a D2D communication along with a Base Station-to-UE communication. The proposed method is analytically evaluated in comparison with the conventional precoding matrix allocation method in terms of ergodic capacity. This method is then extended for a cluster based multi-link D2D scenario where interference between D2D pairs also exists in addition to the other two interference scenarios. In this work, cluster denotes a group of devices locally communicating through multi-link D2D communications sharing the same radio resources of the Cluster Head. Performance of the proposed method is evaluated and compared for different resource sharing modes. The analyses illustrate the importance of cluster head in each cluster to save the battery life of devices in that cluster. The outage probability is considered as a performance evaluation matrix for guaranteeing QoS constrain of communication links. Hence, the mathematical expressions for outage probability of the proposed method for single-link and multi-link D2D communications are presented and compared with an existing interference cancellation technique. To execute the cluster based interference cancellation approach, a three-step resource allocation scheme is then proposed. It first performs a mode selection procedure to choose the transmission mode of each UEs. Then a clustering scheme is developed to group the links that can share a common resource to improve the spectral efficiency. For the selection of suitable cellular UEs for each cluster whose resource can be shared, a cluster head selection algorithm is also developed. Maximal residual energy and minimal transmit power have been considered as parameters for the cluster head selection scheme. Finally, the expression for maximum number of links that the radio resource of shared UE can support is analytically derived. The performance of the proposed scheme is evaluated using a WINNER II A1 indoor office model. The performance of D2D communication practically gets limited due to large distance and/or poor channel conditions between the D2D transmitter and receiver. To overcome these issues, a relay-assisted D2D communication is introduced in this thesis where a device relaying is an additional transmission mode along with the existing cellular and D2D transmission modes. A transmission mode assignment algorithm based on the Hungarian algorithm is then proposed to improve the overall system throughput. The proposed algorithm tries to solve two problems: a suitable transmission mode selection for each scheduled transmissions and a device selection for relaying communication between user equipments in the relay transmission mode. Simulation results showed that our proposed algorithm improves the system performance in terms of the overall system throughput and D2D data rate in comparison with traditional D2D communication schemes.

Item Type:Thesis (PhD)
Uncontrolled Keywords:D2D communication, Orthogonal Precoding (OP), OMP, CMP
Subjects:Engineering and Technology > Electronics and Communication Engineering > Wireless Communications
Divisions: Engineering and Technology > Department of Electronics and Communication Engineering
ID Code:8018
Deposited By:Mr. Sanat Kumar Behera
Deposited On:18 Jul 2016 16:17
Last Modified:18 Jul 2016 16:17
Supervisor(s):Patra, S K and Bestak, I R

Repository Staff Only: item control page