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Abstract

Many algebraic and geometrical constructions from different field of mathematics such as
Algebra, Analysis, Topology, Algebraic Topology, Differential Topology, Differentiable
Manifolds and so on can be obtained as Adams completion or cocompletion with respect to
chosen sets of morphisms in suitable categories. Cayley’s Theorem, ascending central series
and descending central series are well known facts in the area of group theory. It is shown
how these concepts are identified with Adams completion. We obtain a Whitehead-like
tower of a module by considering a suitable set of morphisms in the corresponding homotopy
category (that is, category of right modules and homotopy module homomorphisms) whose
different stages are the Adams cocompletion of the module. Indeed, the work is carried out
in a general framework by considering a Serre class of abelian groups. Theminimal model of
a simply connected differential graded algebra is obtained as the Adams cocompletion with
respect to the suitably chosen set of morphisms in the category of 1-connected differential
graded algebras overQ and differential graded algebra homomorphisms. Also with the help
of Kopylov and Timofeev result, the relationship between a graph and Adams cocompletion
is established.

Keywords: Grothendieck universe; Category of fractions; Adams completion; Adams
cocompletion; Limit; Cayley’s theorem; Ascending central series; Descending central
series;Homotopy theory of modules;Differential graded algebra;Minimal model;Graph.
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Chapter 0

Introduction

Categorical methods of speaking and thinking are turning out to be more widespread in
mathematics because they characterize mathematical structure and its ideas in terms of
a collection of objects and of arrows (familiar as morphisms). Different authors have
depicted the contemplations of complete object and of completion of objects [1] in various
categorical or precategorical contexts. In 1973, Adams gave a lucid and compelling analysis
of localization and completion and also set up an elegant axiomatic treatment of localization
and completion in the framework of category theory and proposed a vast generalization of
the existing constructions.

At first the perception of Adams completion, which emerged from a categorical
completion process in relation to problems of stability, was introduced by Adams [2–4].
Though the characterization and properties were categorical, the most prominent difficulty
in order to deal with it from the categorical viewpoint was due to its topological bounds
and set theoretical aspect. At the very beginning, this concept was defined only for some
admissible categories and generalized homology or cohomology theories [5–7]. Later on,
the same idea was approached broadly by Deleanu, Frei and Hilton [8] because of which it
was very convenient to work with an arbitrary category and it’s chosen set of morphisms.
In addition, they have also suggested the dualization of Adams completion, known to be the
Adams cocompletion.

In category theory, the idea of localization [4, 9] is a tool for developing another
category from a given one which can be described as follows: a category may have a
certain class of morphisms which are not all invertible, despite they ought to be invertible.
For instance, one may consider weak homotopy equivalences in the homotopy category of
topological spaces: some weak homotopy equivalences are homotopy equivalences and
subsequently isomorphisms, yet not every one of them are [10]; on the other hand, two
weakly homotopy equivalent spaces behave in completely the same way concerning the
properties examined by maps from or to appropriately pleasant spaces and subsequently
ought to be ethically isomorphic. So localization of the original category can be framed for
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Introduction

a given class of morphisms in a category, which is another category ensuring all ethically
invertible morphisms to be invertible, while approximating the original category as nearly
as could be expected under the circumstances. A category of fractions is a localization
that is developed using a calculus of fractions and its construction is described precisely in
[11, 12] which plays a very crucial role in illustrating Adams completion and cocompletion.

Numerous constructions (both algebraic and geometric) from the various fields of
mathematics can be demonstrated in terms of Adams completion and cocompletion. The
principle part of this thesis is to exhibit some remarkable developments from Algebra,
Module Theory, Rational Homotopy Theory and Graph Theory as Adams completion or
cocompletion.

Chapter 1 serves as the foundation for the study of the subsequent chapters. It includes
some categorical preliminaries like category of fractions, calculus of left (right) fractions,
Adams completion (cocompletion). It also includes some results on the existence of Adams
completion and cocompletion and their couniversal properties proved by Deleanu, Frei and
Hilton, Behera and Nanda etc,.

Cayley’s Theorem (named after the British mathematician Arthur Cayley) allows us
to know that abstract groups are not distinct from permutation groups. Or maybe, the
perspective is distinctive. It basically states that every group is isomorphic to a group of
permutation. In Chapter 2, this permutation group is deduced to be the Adams completion
of the given group.

In mathematics, basically in the area of Group Theory, the ascending and descending
central series (the upper and lower central series respectively) are the most relevant
examples of characteristic series which provide a deep understanding to the structure of the
group. Chapter 3 is dedicated for relating these two series of a given group with the Adams
completion.

In chapter 4, we have recalled the homotopy theory (more specifically the injective
homotopy theory) of modules, initially introduced by Peter Hilton [13] and later extensively
studied by C. J. Su [14–16]. In [17], Behera and Nanda have obtained the Cartan-Whitehead
decomposition of a 0-connected based CW -complex with the help of a suitable set of
morphisms whose different stages are precisely the Adams cocompletion; we have used
their techniques to study the decomposition of a module. In this chapter, using the
injective theory and by considering a Serre class of abelian groups, we have obtained the
Cartan-Whitehead-like decomposition of a module.
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In 1960, Sullivan proposed the concept of rational homotopy theory; this study depends
only on the rational homotopy type of a space or the rational homotopy class of a map. In
fact, in rational homotopy theory Sullivan introduced the idea of minimal model [18, 19].
Chapter 5 characterizes the minimal model of a simply connected differential graded
algebra in terms of Adams cocompletion with respect to a chosen set of morphisms in the
category of 1-connected differential graded algebras over Q and differential graded algebra
homomorphisms.

Recently, graph theory has developed itself as one of the most rapidly growing areas of
mathematics. Given any graph G there exists a connected graph H , the center of which is
isomorphic to G is an eminent result stated by Kopylov and Timofeev [20]. In Chapter 6,
we demonstrate that the center of H is the Adams cocompletion of the given graph G.



Chapter 1

Preliminaries

This chapter is the foundation for the study of the subsequent chapters. It includes the
definitions such as category of fractions, calculus of left (right) fractions, Adams completion
(cocompletion) etc., and some results on the existence of global Adams completion
(cocompletion) of an object in a category C with respect to a chosen family of morphisms
S in C . Also a characterization of Adams completion (cocompletion) in terms of its
couniversal property proved by Deleanu, Frei and Hilton is recalled. A stronger version
of this result proved by Behera and Nanda [21] is also recalled. Behera and Nanda’s result
[21] shows that the canonical map from an object to its Adams completion is an element of
the set of morphisms under very moderate assumption.

1.1 Category of fractions

In this section we recall the definition of category of fractions and some other definitions
relevant to it.

Definition 1.1.1. [12] A Grothendieck universe (or simply universe) is a collection U of
sets such that the following axioms are satisfied:

U(1): A ∈ U =⇒ A ⊂ U .
U(2): A ∈ U and B ∈ U =⇒ {A,B} ∈ U .
U(3): A ∈ U =⇒ P (A) ∈ U (the power set of A is an element of U ).
U(4): If J ∈ U and if f : J → U is a map, then

∪
j∈J
f(j) ∈ U .

From these conditions one can reach at the following conclusions:
• If A ∈ U , then every subset of A is also an element of U .
• For any two sets A and B which are elements of U , the sets A × B and BA (the set
of all maps of A into B) are also in U .
• If J and Aj for each j ∈ J are elements of U , the product

∏
j∈J
Aj is an element of U .

The above discussion merges into a solitary sentence, that is, each of the constructions of set
theory is carried out with elements of U .

We require the fact that each set is a component of a universe. So for the rest of our study
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Chapter 1 Preliminaries

we fix a universe U containing the set of natural numbers N (and hence Z, Q, R, C). In the
sequel, if we ever work with any universe other than U , then we will indicate explicitly.

Definition 1.1.2. [12] A category C is said to be small (more precisely, small-U category),
if the following conditions hold:

S(1): The objects of C form a set which is an element of U .
S(2): For every pair (X,Y ) of objects of C , the set HomC (X,Y ) is also an element

of U .

Definition 1.1.3. [12] Let C be any arbitrary category and S a set of morphisms of C . A
category of fractions of C with respect to S is a category denoted by C [S−1] together with
a functor

FS : C → C [S−1]

having the following properties:
CF(1): For each s ∈ S, FS(s) is an isomorphism in C [S−1].
CF(2): FS is universal with respect to this property : if G : C → D is a functor such

that G(s) is an isomorphism in D , for each s ∈ S, then there exists a unique
functor H : C [S−1] → D such that G = HFS . Thus we have the following
commutative diagram:

C

D

C [S−1]
FS

G
H

The construction of category of fractions has been described explicitly in [12]. Also it
has been observed that both the category C [S−1] and C have same objects. Using the notion
of calculus of left (right) fractions, category of fractions has been characterized in a very
nice way [11, 12].

1.2 Calculus of left (right) fractions

The concept of calculus of left and right fractions have great importance in constructing
category of fractions. We recall the definitions and some related results.

Definition 1.2.1. [12] A family of morphisms S in the category C is said to admit a calculus
of left fractions if

(a) S is closed under finite compositions and contains identities of C ,
(b) any diagram

5



Chapter 1 Preliminaries

X

Z

Y
f

s

in C with s ∈ S can be completed to a diagram

X

Z

Y

W

f

s

g

t

with t ∈ S and tf = gs,
(c) given

X Y Z W
s t

f

g

with s ∈ S and fs = gs, there is a morphism t : Z →W in S such that tf = tg.

The following theorem yields very useful criteria for S to admit a calculus of left
fractions.

Theorem 1.2.2. ([8], Theorem 1.3, p.67) Let S be a closed family of morphisms of C

satisfying
(a) if uv ∈ S and v ∈ S, then u ∈ S,
(b) every diagram

•

•

•
f

s

in C with s ∈ S can be embedded in a weak push-out diagram

•

•

•

•

f

s

g

t

6



Chapter 1 Preliminaries

with t ∈ S.
Then S admits a calculus of left fractions.

The concept of calculus of right fractions is obtained simply by the dualization of calculus
of left fractions.

Definition 1.2.3. [12] A family of morphisms S in a category C is said to admit a calculus
of right fractions if

(a) S is closed under finite compositions and contains identities of C ,
(b) any diagram

X

Z Y

f

s

in C with s ∈ S can be completed to a diagram

W

Z

X

Y

t

g f

s

with t ∈ S and ft = sg,
(c) given

W X Y Z
st

f

g

with s ∈ S and sf = sg, there is a morphism t : W → X in S such that ft = gt.

In the context of family of morphisms S admitting a calculus of right fractions, the analog
of Theorem 1.2.2 imitates instantly by duality.

Theorem 1.2.4. ([8], Theorem 1.3∗, p.70) Let S be a closed family of morphisms of C

satisfying
(a) if vu ∈ S and v ∈ S, then u ∈ S,
(b) any diagram

•

• •

f

s

7



Chapter 1 Preliminaries

in C with s ∈ S can be embedded in a weak pull-back diagram

•

•

•

•

t

g f

s

with t ∈ S.
Then S admits a calculus of right fractions.

The following result will be required in sequel.

Theorem 1.2.5. ([22], Proposition, p.425) Let C be a small U -category and S a set of
morphisms of C that admits a calculus of left (right) fractions. Then C [S−1] is a small
U -category.

1.3 Adams completion and cocompletion

In this section we do reminiscence the abstract definitions of Adams completion and
cocompletion.

Definition 1.3.1. [8] Let C be an arbitrary category and S a set of morphisms of C . Let
C [S−1] denote the category of fractions of C with respect to S and

F : C → C [S−1]

be the canonical functor. Let S denote the category of sets and functions. Then for a given
object Y of C ,

C [S−1](−, Y ) : C → S

defines a contravariant functor. If this functor is representable by an object YS of C , i.e.,

C [S−1](−, Y ) ∼= C (−, YS),

then YS is called the (generalized) Adams completion of Y with respect to the set of
morphisms S or simply the S-completion of Y . We shall often refer to YS as the completion
of Y .

The idea of Adams cocompletion can be simply obtained by the dualization.

Definition 1.3.2. [8] Let C be an arbitrary category and S a set of morphisms of C . Let
C [S−1] denote the category of fractions of C with respect to S and

F : C → C [S−1]

8



Chapter 1 Preliminaries

be the canonical functor. Let S denote the category of sets and functions. Then for a given
object Y of C ,

C [S−1](Y,−) : C → S

defines a covariant functor. If this functor is representable by an object YS of C , i.e.,

C [S−1](Y,−) ∼= C (YS,−),

then YS is called the (generalized) Adams cocompletion of Y with respect to the set of
morphisms S or simply the S-cocompletion of Y . We shall often refer to YS as the
cocompletion of Y .

1.4 Existence theorems

We portray a few results on the presence of Adams completion and cocompletion. We
express Deleanu’s theorem [23] that under specific conditions, global Adams completion
of an object persistently exists.

Theorem 1.4.1. ([23], Theorem 1; [22], Theorem 1) Let C be a cocomplete small
U -category and S a set of morphisms of C that admits a calculus of left fractions. Suppose
that the following compatibility condition with coproduct is satisfied.

(C) If each si : Xi → Yi, i ∈ I is an element of S, where the index set I is an element
of U , then

∨
i∈I
si : ∨

i∈I
Xi → ∨

i∈I
Yi

is an element of S.
Then every objectX of C has an Adams completionXS with respect to the set of morphisms
S.

Reamrk 1.4.2. Deleanu’s theorem cited above has an additional condition to guarantee that
C [S

−1
] is again a smallU -category; in perspective of Theorem 1.2.5 the additional condition

is compensated.

The following theorem is an immediate consequence of the dualization of Theorem 1.4.1.

Theorem 1.4.3. ([22], Theorem 2) Let C be a complete small U -category and S a set
of morphisms of C that admits a calculus of right fractions. Suppose that the following
compatibility condition with product is satisfied.

(P) If each si : Xi → Yi, i ∈ I is an element of S, where the index set I is an element
of U , then

∧
i∈I
si : ∧

i∈I
Xi → ∧

i∈I
Yi

is an element of S.
Then every object X of C has an Adams cocompletion XS with respect to the set of
morphisms S.

9
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1.5 Couniversal property

The ideas of Adams completion and cocompletion can be described with the help of a
couniversal property which was developed by Deleanu, Frei and Hilton.

Definition 1.5.1. [8] Given a set S of morphisms of C , we define S̄, the saturation of S, as
the set of all morphisms u in C such that FS(u) is an isomorphism in C [S−1]. S is said to
be saturated if S = S̄.

The following theorem is evident.

Theorem 1.5.2. ([8], Proposition 1.1, p. 63) A family S of morphisms of C is saturated if
and only if there exists a functor F : C → D such that S is the collection of all morphisms
f such that F (f) is invertible.

Deleanu, Frei and Hilton have demonstrated that if the set of morphisms S is saturated
then the Adams completion of a space is described by a specific couniversal property.

Theorem 1.5.3. ([8], Theorem 1.2, p. 63) Let S be a saturated family of morphisms of C

admitting a calculus of left fractions. Then an object YS of C is the S-completion of the
object Y with respect to S if and only if there exists a morphism e : Y → YS in S which is
couniversal with respect to morphisms of S : given a morphism s : Y → Z in S there exists
a unique morphism t : Z → YS in S such that ts = e. In other words, the following diagram
is commutative:

Y

Z

YS
e

s
t

Theorem 1.5.3 can be dualized in the following way.

Theorem 1.5.4. ([8], Theorem 1.4, p. 68) Let S be a saturated family of morphisms of C

admitting a calculus of right fractions. Then an object YS of C is the S-cocompletion of the
object Y with respect to S if and only if there exists a morphism e : YS → Y in S which is
couniversal with respect to morphisms of S : given a morphism s : Z → Y in S there exists
a unique morphism t : YS → Z in S such that st = e. In other words, the following diagram
is commutative:

YS Y

Z

e

t s

10



Chapter 1 Preliminaries

In many case of interests, the set of morphisms S is not saturated. The result stated
below, is a more grounded adaptation of Deleanu, Frei and Hilton’s characterization of
Adams completion in terms of a couniversal property.

Theorem 1.5.5. ([21], Theorem 1.2, p.528) Let S be a set of morphisms of C admitting a
calculus of left fractions. Then an object YS of C is the S-completion of the object Y with
respect to S if and only if there exists a morphism e : Y → YS in S̄ which is couniversal
with respect to morphisms of S : given a morphism s : Y → Z in S there exists a unique
morphism t : Z → YS in S̄ such that ts = e. In other words, the following diagram is
commutative:

Y

Z

YS
e

s
t

Theorem 1.5.5 can be dualized in the following way.

Theorem 1.5.6. ([17], Proposition 1.1, p.224) Let S be a set of morphisms of C admitting
a calculus of right fractions. Then an object YS of C is the S-cocompletion of the object Y
with respect to S if and only if there exists a morphism e : YS → Y in S̄ which is couniversal
with respect to morphisms of S : given a morphism s : Z → Y in S there exists a unique
morphism t : YS → Z in S̄ such that st = e. In other words, the following diagram is
commutative:

YS Y

Z

e

t s

In the greater interest of the utility it is indispensable for the morphism e : Y → YS

(e : YS → Y ) to be in S; this is the circumstance when S is saturated and the outcome is as
stated below.

Theorem 1.5.7. ([8], Theorem 2.9, p.76) Let S be a saturated family of morphisms of C and
let every object of C admit an S-completion. Then the morphism e : Y → YS belongs to S
and is universal for morphisms to S-complete objects and couniversal for the morphisms in
S.

Dual of the above result states as follows.

Theorem 1.5.8. ([8], dual of Theorem 2.9, p.76) Let S be a saturated family of morphisms
of C and let every object of C admit an S-cocompletion. Then the morphism e : YS → Y

11



Chapter 1 Preliminaries

belongs to S and is universal for morphisms to S-cocomplete objects and couniversal for
the morphisms in S.

In some cases of interests S is not saturated. Under certain assumptions Behera and
Nanda have proved an interesting result to show that themorphism e : Y → YS (e : YS → Y )
always belongs to S, in case S is not saturated.

Theorem 1.5.9. ([21], Theorem 1.3, p.533) Let S be a set of morphisms in a category C

admitting a calculus of left fractions. Let e : Y → YS be the canonical morphism as defined
in Theorem 1.5.5 where YS is the S-completion of Y . Furthermore, let S1 and S2 be sets of
morphisms in the category C which have the following properties:

(a) S1 and S2 are closed under composition;
(b) fg ∈ S1 implies that g ∈ S1;
(c) fg ∈ S2 implies that f ∈ S2;
(d) S = S1 ∩ S2.

Then e ∈ S.

The dual of Theorem 1.5.9 states as follows.

Theorem 1.5.10. ([21], dual of Theorem 1.3, p.533) Let S be a set of morphisms in a
category C admitting a calculus of right fractions. Let e : YS → Y be the canonical
morphism as defined in Theorem 1.5.6 where YS is the S-cocompletion of Y . Furthermore,
let S1 and S2 be sets of morphisms in the category C which have the following properties:

(a) S1 and S2 are closed under composition;
(b) fg ∈ S1 implies that g ∈ S1;
(c) fg ∈ S2 implies that f ∈ S2;
(d) S = S1 ∩ S2.

Then e ∈ S.

1.6 Limit and Colimit

In this section we recall the universal constructions such as limit and colimit [12, 24, 25].

Definition 1.6.1. [12, 24] Let C be anyU -category andI be a small indexingU -category.
LetF : I → C be a functor. Then (L, ti)i∈I is called a limit ofF if and only if the following
conditions hold:

(1) L ∈ C ,
(2) for each i ∈ I , ti : L→ F (i) is a morphism in C ,
(3) for each morphism a : i→ j in I , the diagram

12



Chapter 1 Preliminaries

L

F (j)

F (i)
ti

tj

F (a)

commutes, that is, F (a)ti = tj ,
(4) for any other pair (X, si)i∈I satisfying (1), (2), (3), there exists a unique morphism

θ : X → L making the following diagram

X

L F (i)

si
θ

ti

commutative, that is, tiθ = si for each i ∈ I .

The dual concept of limit is colimit.

Definition 1.6.2. [12, 24] Let C be anyU -category andI be a small indexingU -category.
Let F : I → C be a functor. Then (C, si)i∈I is called a colimit of F if and only if the
following conditions hold:

(1) C ∈ C ,
(2) for each i ∈ I , si : F (i)→ C is a morphism in C ,
(3) for each morphism a : i→ j in I , the diagram

C

F (j)

F (i)
si

sj

F (a)

commutes, that is, sjF (a) = si,
(4) for any other pair (X, ti)i∈I satisfying (1), (2), (3), there exists a unique morphism

θ : C → X making the following diagram

X

CF (i)
si

θ
ti

commutative, that is θsi = ti for each i ∈ I .

13



Chapter 1 Preliminaries

1.7 Serre class of abelian groups

The concept of ’getting rid’ of troublesome factors in the study of abelian groups is a well
known fact. Some of the familiar examples are: by tensoring over Q or R to get rid of
torsion or by tensoring with Zp to get rid of torsions coprime to p and so on. This problem
was overcome by Serre, eventually known as Serre class of abelian groups.

Definition 1.7.1. [26] A nonempty class C of abelian groups is called Serre class of abelian
groups if whenever the three-term sequence

A→ B → C

of abelian groups is exact and A,C ∈ C, then B ∈ C.

An immediate consequence of the above is given as follows.

Theorem 1.7.2. [26] A class of abelian groups C is a Serre class iff the following properties
are satisfied:

(a) C contains a trivial group.
(b) If A ∈ C and A ≈ A′, then A′ ∈ C.
(c) If A ⊂ B and B ∈ C, then A ∈ C and B/A ∈ C.
(d) If 0→ A→ B → C → 0 is a short exact sequence with A,C ∈ C, then B ∈ C.

Some of the broadly used examples of Serre classes are listed below.

Example 1.7.3. [26]
1. The class of trivial groups.
2. The class of all abelian groups.
3. The class of finite abelian groups.
4. The class of torsion abelian groups.
5. The class of all finitely generated abelian groups.
6. The class of p-groups where p is a prime number.
7. The class of all torsion abelian groups containing no element of order equal to a

power of p for a given prime p.

Definition 1.7.4. [26] Let A,B ∈ C. A homomorphism f : A→ B is a
(a) C-monomorphism if ker f ∈ C.
(b) C-epimorphism if coker f ∈ C.
(c) C-isomorphism if it is both C-monomorphism and C-epimorphism.

Definition 1.7.5. [26] Two abelian groups A and B are called C-isomorphic if there exists
an abelian group C and two C-isomorphisms f : C → A and g : C → B.

Note 1.7.6. The relation of being C-isomorphic is an equivalence relation.

14



Theorem 1.7.7. [26, 27] Let f : A → B and g : B → C be homomorphisms of abelian
groups. Then the following are always true.

(a) If gf is C-monic, then so is f .
(b) If gf is C-epic, then so is g.
(c) If any two of the three maps f , g and gf are C-isomorphisms, then so is the third.

The Five lemma is an essential and widely used lemma about commutative diagrams.

Theorem 1.7.8. [28] Suppose that

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

α β γ δ ε

be a row exact commutative diagram of abelian groups and homomorphisms. Then the
following hold.

(a) Ifα is an epimorphism and β and δ are monomorphisms, then γ is a monomorphism.
(b) If ε is a monomorphism and β and δ are epimorphisms, then γ is an epimorphism.
(c) If α, β, δ and ε are isomorphisms, then γ is an isomorphism.

Definition 1.7.9. [26] A three-term sequence of groups and homomorphisms

A
f←− B

g−→ C

is said to be C-exact if

(im f ∪ ker g)/im f ∈ C

and if

(im f ∪ ker g)/ker g ∈ C.

Longer sequences are C-exact if every three-term sequence is C-exact.

Theorem 1.7.10. [26] Given any commutative diagram

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

α β γ δ ε

with C-exact rows such that α, β, δ and ε are C-isomorphisms, then γ is also a
C-isomorphism.



Chapter 2

Cayley’s Theorem and Adams
Completion

There are many fundamental results in group theory which have historical importance.
Fundamental Theorem of Group Homorphism has wide application. Lagrange’s theorem
has been used in numerous applications.

Given any nonempty set, the set of all bijections from the set to itself (also known as the
set of all permutations of the set) forms a group under function composition. The resulting
group is said to be the symmetric group. This symmetric groups possess subgroups called
Sylow subgroups whose characterizations extravagantly appear in literature. The purpose
of this chapter is to obtain a characterization of Cayley’s theorem. Historically Cayley’s
theorem is very vital. Groups can arise from groups of permutations. This idea was given by
BritishmathematicianArthur Cayley. Cayley’s theorem states that every group is isomorphic
to a subgroup of the symmetric group. Mathematicians have studied several characteristics
of the Cayley’s theorem. We study a categorical aspect of Cayley’s theorem. In this chapter
we study that this group of permutations in terms of Adams completion.

2.1 Cayley’s theorem

From Cayley’s Theorem [29] we conclude the following:

Reamrk 2.1.1. Let G be a group. Construct a set Ḡ as follows:

Ḡ = {Tg : G→ G | Tg(x) = gx for all x ∈ G, g ∈ G}.

It can be easily verified that Ḡ is a permutation group. Then according to Cayley’s theorem
G is isomorphic to Ḡ, that is, there exists an isomorphism φ : G→ Ḡ.

We need the following result in our sequel.

Theorem 2.1.2. Let G, Ḡ and φ : G → Ḡ be defined as above. If K is a group and
f : G → K is an isomorphism, then there exists a unique isomorphism θ : K → Ḡ such
that the diagram below commutes, i.e., θf = φ.

16
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G

K

Ḡ
φ

f
θ

Proof. Define θ : K → Ḡ by the rule

θ(k) = φf−1(k)

for all k ∈ K. Clearly, θ is well defined and is also a homomorphism. In order to show θ

is injective, we have to show ker θ = {eK}. Let k ∈ ker θ, i.e., θ(k) = φf−1(k) = eḠ. So
f−1(k) = eG, i.e., k = eK , showing θ is injective. Next

θ(K) = φf−1(K) = φ(G) = Ḡ;

so θ is surjective. Thus, θ is an isomorphism. For any g ∈ G,

θf(g) = φf−1(f(g)) = φ(g).

Thus θf = φ, i.e., the diagram is commutative. Next we show that θ is unique. Let there
exist another θ′ : K → Ḡ with θ′f = φ. Then for any k ∈ K,

θ(k) = φf−1(k) = θ′ff−1(k) = θ′(k).

Hence θ = θ′.

2.2 The category G

Let G denote the category of groups and homomorphisms in which the underlying sets of
the elements of G are elements of a fixed Grothendieck universe U . Let us consider a set S
which consists of all morphisms s : P → Q in G such that s is an isomorphism.

Proposition 2.2.1. Let si : Pi → Qi lie in S for each i ∈ I where the index set I is an
element of U . Then

∨
i∈I
si : ∨

i∈I
Pi → ∨

i∈I
Qi

lies in S.

Proof. Coproducts in G are the free products. Define a map s = ∨
i∈I
si : P = ∨

i∈I
Pi →

∨
i∈I
Qi = Q by the rule

s(p1 · · · pk) = φ(p1) · · ·φ(pk)

where φ(pj) = si(pj) if pj ∈ Pi for j = 1, · · · , k. Clearly, s is well defined and is also a
homomorphism.

In order to show s is injective we have to show that ker s = {eP}. Let p = p1 · · · pk ∈
ker s, i.e., s(p1 · · · pk) = eQ = 1; this implies φ(p1) · · ·φ(pk) = 1 where

17
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φ(pj) = si(pj) = ω′
i(si(pj))

for pj ∈ Pi, j = 1, · · · , k and ω′
i : Qi → Q defined by

ω′
i(eQi

) = 1 and ω′
i(b) = b

for b ∈ Qi is a monomorphism for each i ∈ I . Thus

φ(pj) = si(pj) = ω′
i(si(pj)) = 1 = ω′

i(eQi
)

and it follows that si(pj) = eQi
, that is, pj = ePi

for pj ∈ Pi and j = 1, · · · , k. Next let
p1 · · · pk = η(p1) · · · η(pk) where

η(pj) = ωi(pj) = ωi(ePi
) = 1

for pj ∈ Pi and ωi : Pi → P , defined by

ωi(ePi
) = 1 and ωi(a) = a

for a ∈ Pi, is a monomorphism for each i ∈ I . So p1 · · · pk = 1 = eP . Hence s is injective.
Next let q1 · · · qk ∈ Q where qj ∈ Qi for i ∈ I and j = 1, · · · , k. But qj = si(pj)

where pj ∈ Pi. So q1 · · · qk = φ(p1) · · ·φ(pk) where φ(pj) = si(pj) for pj ∈ Pi. Hence
q1 · · · qk = s(p1 · · · pk), showing s is surjective. Therefore, s : P → Q is an isomorphism,
that is, s = ∨

i∈I
si lies in S.

We will exhibit that the chosen set of morphisms S of the category G of groups and
homomorphisms admits a calculus of left fractions.

Proposition 2.2.2. S admits a calculus of left fractions.

Proof. Since S consists of all isomorphisms in G , clearly S is a closed family of morphisms
of the category G . We shall verify conditions (i) and (ii) of Theorem 1.2.2. Let s : P → Q

and t : Q → R be two morphisms in G . We show if ts ∈ S and s ∈ S, then t ∈ S. Let
q ∈ ker t, i.e., t(q) = eR. So t(s(p)) = eR, p ∈ P . Since ts is an isomorphism we have
p = eP . So q = s(eP ) = eQ, i.e., ker t = {eQ}, i.e., t is injective. Since ts ∈ S and s ∈ S,
we have ts(P ) = R and s(P ) = Q. Then t(Q) = t(s(P )) = R. So t is surjective. Thus t is
an isomorphism, i.e., t ∈ S. Hence condition (i) of Theorem 1.2.2 holds.

In order to prove condition (ii) of Theorem 1.2.2 consider the diagram

A

C

B
f

s

in G with s ∈ S. We assert that the above diagram can be completed to a weak push-out
diagram

18



Chapter 2 Cayley’s Theorem and Adams Completion

A

C

B

D

f

s

g

t

in G with t ∈ S. Let

D = (B ∗ C)/N ,

where N is a normal subgroup of B ∗ C generated by

{f(a)s(a)−1 : a ∈ A}.

Define t : B → D by the rule

t(b) = bN

for all b ∈ B and g : C → D by the rule

g(c) = cN

for all c ∈ C. Clearly, the two maps are well defined and homomorphisms. For any a ∈ A,

tf(a) = f(a)N = s(a)N = gs(a),

implies that tf = gs. Hence the diagram is commutative.
Next we show t ∈ S, i.e., t is an isomorphism. Take b ∈ ker t, i.e., t(b) = eD = N ; this

implies bN = N , i.e., b ∈ N . Hence

b = f(a)s(a)−1 = f(a)s(a−1)

for some a ∈ A. Now consider the map δ2 : C → B ∗ C, defined by

δ2(eC) = 1 and δ2(c) = c

for c ∈ C; δ2 is a monomorphism. Then b1 = f(a)s(a−1) gives

bδ2(eC) = f(a)δ2(s(a
−1)).

Hence

b = f(a), δ2(eC) = δ2(s(a
−1)).

As δ2(eC) = δ2(s(a
−1)), we have s(a−1) = eC , giving a = eA. Then b = f(eA) = eB,

implies that ker t = {eB}, i.e., t is injective.
In order to show t is surjective, take an element wN ∈ D, where w ∈ B ∗ C, and for

w ̸= 1, w can be uniquely written as w = w1 · · ·wk where all factors are ̸= 1 and two
adjacent factors do not belong to the same group. Then

wN = w1 · · ·wkN = w1N · · ·wkN = φ(w1) · · ·φ(wk)
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where

φ(wi) = t(wi) if wi ∈ B

and

φ(wi) = g(wi) if wi ∈ C.

If wi ∈ C, then

wi = s(ai)

and

g(wi) = g(s(ai)) = gs(ai) = tf(ai).

SowN = t(an element of B), showing t is surjective. Thus t is an isomorphism, i.e., t ∈ S.
Next let u : B → X and v : C → X in category G be such that uf = vs.

A

C

B

D

X

f

s

g

t
u

v

θ

Define θ : D → X by the rule

θ(wN) = φ(w1) · · ·φ(wk), w = w1 · · ·wk

where

φ(wi) = u(wi) if wi ∈ B

and

φ(wi) = v(wi) if wi ∈ C.

We can easily show that θ is well defined and also a homomorphism. Next we show that the
two triangles are commutative. For any b ∈ B,

θt(b) = θ(bN) = u(b)

and for any c ∈ C,

θg(c) = θ(cN) = v(c).

So θt = u and θg = v.

The following results are well known.

Proposition 2.2.3. The category G is cocomplete.
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Chapter 2 Cayley’s Theorem and Adams Completion

Proposition 2.2.4. S is saturated.

The category G and the set of morphims S of G fulfill all the conditions of Theorem
1.4.1. So from the Theorem 1.5.3, we have the result stated below:

Theorem 2.2.5. Every objectG of the category G has an Adams completionGS with respect
to the set of morphisms S. Furthermore, there exists a morphism e : G→ GS in S which is
couniversal with respect to the morphisms in S : given a morphism s : G → H in S there
exists a unique morphism t : H → GS in S such that ts = e. In other words the following
diagram is commutative:

G

H

GS
e

s
t

2.3 Ḡ as Adams completion

We show that Ḡ, a permutation group for a group G, is the Adams completion GS of the
group G.

Theorem 2.3.1. Ḡ ∼= GS .

Proof. Consider the following diagram:

G

GS

Ḡ
φ

e
θ

By Theorem 2.1.2, there exists a unique morphism θ : GS → Ḡ in S such that θe = φ.
Next consider the following diagram:

G

Ḡ

GS
e

φ
ψ

By Theorem 2.2.5, there exists a unique morphism ψ : Ḡ→ GS in S such that ψφ = e.
From the following diagram
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G

Ḡ

GS

GS
e

e

θ

ψ

1GS

we have ψθe = ψφ = e. By the uniqueness condition of the couniversal property of e, we
conclude ψθ = 1GS

.
From the following diagram

G

GS

Ḡ

Ḡ
φ

φ

ψ

θ

1Ḡ

we have θψφ = θe = φ. By the uniqueness condition of the couniversal property of φ, we
conclude θψ = 1Ḡ.

Thus Ḡ ∼= GS .



Chapter 3

Ascending and Descending Central
Series in Terms of Adams Completion

There is some relation between the groups and their subgroups. Therefore, the notion of
subgroups of a given group can be adopted to study the concept of a series of that group,
which gives deep understanding of the structure of the group. Two such familiar series of a
group are ascending and descending central series (also known as upper and lower central
series respectively), both of which are characteristic series. Despite the names, both of them
are central series if and only if the given group is nilpotent. In this chapter, we recall the
definition of ascending and descending central series and see how they are related to Adams
completion.

Ascending central series and Adams completion

We begin with recalling the definition of ascending central series of a group and perceive
how it can be expressed in terms of Adams completion.

3.1 The ascending central series of a group

Subnormal and normal series play a crucial role while studying structure of the groups. It is
a well-known fact that every normal series is always subnormal, but the converse need not
be true. However, both the notions coincide in case of abelian groups. For our purpose, we
will focus on subnormal series.

The most relevant example of subnormal series is ascending central series which can be
constructed using the centers of groups. We know that center of a groupG, denoted asZ(G),
is a normal subgroup of G defined by

Z(G) = {x ∈ G | xg = gx for all g ∈ G}.

We recall the concept of ascending central series of a group.
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Definition 3.1.1. [30] For any (finite or infinite) group G define the following subgroups
inductively:

Z0(G) = 1, Z1(G) = Z(G)

and Zi+1(G) is the subgroup of G containing Zi(G) such that

Zi+1(G)/Zi(G) = Z(G/Zi(G))

(i.e., Zi+1(G) is the complete preimage in G of the center of G/Zi(G) under the natural
projection). The chain of subgroups

Z0(G) ≤ Z1(G) ≤ Z2(G) ≤ · · ·

is called the upper central series or ascending central series of G.

3.2 Limit and ascending central series

We recall the concept of limit in the category of groups and homomorphisms in order to
establish a couniversal property that will be used in the sequel.

Note 3.2.1. Let G be the category of groups and homomorphisms and I be the indexing
category whose objects are 0, 1, 2, · · · and morphisms are ai : i→ i+ 1 for i > 0. Define a
functor F : I → G by the rule

F (i) = Zi(G)

and

F (i
ai−→ i+ 1) = Zi(G)

F (ai)
↪−−−→ Zi+1(G)

where F (ai) is an inclusion map. Let us define L as follows:

L =
∩
{Zi(G) : i ∈ I } = {eG} = 1.

We can readily demonstrate thatL is the limit ofF (limit of the terms of the ascending central
series of the group G). Clearly, the map from G to L is an epimorphism; let us denote it as
β.

With the above notations we prove the following result.

Theorem 3.2.2. IfH is a group and l : G→ H is an epimorphism, then there exists a unique
epimorphism θ : H → L such that θl = β, i.e., the following diagram is commutative:

G

H

L
β

l
θ

24



Chapter 3 Ascending and Descending Central Series in Terms of Adams Completion

Proof. Define θ : H → L by the rule

θ(h) = β(x)

where h = l(x) for some x ∈ G (as l is an epimorphism). It is easy to show that θ is well
defined and an epimorphism. By the definition of θ, the triangle is commutative.

In order to show θ is unique, consider another θ′ : H → L such that θ′l = β. For any
h ∈ H , we have

θ(h) = β(x) = θ′l(x) = θ′(h).

So θ = θ′, showing the uniqueness of θ.

3.3 The category of groups and homomorphisms

Let G denote the category of groups and homomorphisms where every element of G is
an element of U . Let S be the set of all morphisms s : A → B in G such that s is
an epimorphism. For the category G along with this set of morphisms S, we exhibit the
following result.

Proposition 3.3.1. Let si : Ai → Bi lie in S for each i ∈ I where the index set I is an
element of U . Then

∨
i∈I
si : ∨

i∈I
Ai → ∨

i∈I
Bi

lies in S.

Proof. Coproducts in G are the free products (usually denoted as ∗). Take A = ∗
i∈I
Ai and

B = ∗
i∈I
Bi. Define a map s = ∨

i∈I
si : A→ B by the rule

s(a1 · · · ak) = φ(a1) · · ·φ(ak)

where φ(aj) = si(aj) for aj ∈ Ai, j = 1, · · · , k. Clearly, s is well defined and is also
a homomorphism. In order to show s is surjective, let b1 · · · bk ∈ B where bj ∈ Bi for
i ∈ I, j = 1, · · · , k. Let bj = si(aj) where aj ∈ Ai (since si is surjective). So

b1 · · · bk = φ(a1) · · ·φ(ak) (where φ(aj) = si(aj) for aj ∈ Ai)

= s(a1 · · · ak).

Since aj ∈ Ai for i ∈ I , we have a1 · · · ak ∈ A. So s = ∨
i∈I
si lies in S.

We establish that the chosen set of morphisms S admits a calculus of left fractions.

Proposition 3.3.2. S admits a calculus of left fractions.
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Proof. Since S is the set of all morphisms s : A → B in G such that s is an epimorphism,
we have that S is a closed family of morphisms of the category G . We shall verify conditions
(i) and (ii) of Theorem 1.2.2. Let s : A → B and t : B → C be two morphisms in G . We
show that if ts ∈ S and s ∈ S, then t ∈ S. Take a1, a2 ∈ A. Then ts(a1a2) = t(s(a1)s(a2)),
which implies ts(a1)ts(a2) = t(s(a1)s(a2)). So t is a homomorphism. Since ts ∈ S and
s ∈ S, we have ts(A) = C and s(A) = B. Then t(B) = t(s(A)) = C. So t is surjective.
Thus t ∈ S. Hence condition (i) of Theorem 1.2.2 holds.

In order to prove condition (ii) of Theorem 1.2.2 consider the diagram

A

C

B
f

s

in G with s ∈ S. We assert that the above diagram can be completed to a weak push-out
diagram

A

C

B

D

f

s

g

t

in G with t ∈ S. Let

D = (B ∗ C)/N ,

where N is a normal subgroup of B ∗ C generated by

{f(a)s(a)−1 : a ∈ A}.

Define t : B → D by the rule

t(b) = bN

for b ∈ B and g : C → D by the rule

g(c) = cN

for c ∈ C. Clearly, the two maps are well defined homomorphisms. For any a ∈ A,

tf(a) = f(a)N = s(a)N = gs(a),

implies that tf = gs. Hence the diagram is commutative.
Next we show that t ∈ S, i.e., t is an epimorphism. We take an element wN ∈ D, where

w ∈ B ∗C, and for w ̸= 1, it can be uniquely written as w = w1 · · ·wk where all factors are
̸= 1 and two adjacent factors do not belong to the same group. Then
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wN = w1 · · ·wkN = w1N · · ·wkN = φ(w1) · · ·φ(wk)

where

φ(wi) = t(wi) if wi ∈ B

and

φ(wi) = g(wi) if wi ∈ C.

If wi ∈ C, then wi = s(ai) and

g(wi) = g(s(ai)) = gs(ai) = tf(ai),

proving wN = t(an element of B). So t is surjective. Thus t ∈ S.
Next let u : B → X and v : C → X in category G be such that uf = vs.

A

C

B

D

X

f

s

g

t
u

v

θ

Define θ : D → X by the rule

θ(wN) = φ(w1) · · ·φ(wk), w = w1 · · ·wk

where

φ(wi) = u(wi) if wi ∈ B

and

φ(wi) = v(wi) if wi ∈ C.

We can easily show that θ is a well defined homomorphism. Next we show that the two
triangles of the above diagram are commutative. For any b ∈ B,

θt(b) = θ(bN) = u(b)

and for any c ∈ C,

θg(c) = θ(cN) = v(c).

So θt = u and θg = v.

For the category G of groups and homomorphisms the following result is trivial.

Proposition 3.3.3. The category G is cocomplete.

From Theorem 1.4.1 and Theorem 1.5.5 we conclude the following.
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Theorem 3.3.4. Every objectG of the category G has an Adams completionGS with respect
to the set of morphisms S. Furthermore, there exists a morphism e : G→ GS in S̄ which is
couniversal with respect to the morphisms in S : given a morphism s : G → K in S there
exists a unique morphism t : K → GS in S̄ such that ts = e. In other words the following
diagram is commutative:

G

K

GS
e

s
t

Theorem 1.5.9 shows that the morphism e : Y → YS (as defined in Theorem 1.5.5)
always belongs to S (the case where the set of morphisms S is not saturated). However, we
come across some cases where S1 ⊂ S2 and under this assumption we have S = S1 ∩ S2 =

S2. From Theorem 1.5.9, the following result follows.

Corollary 3.3.5. Let S be a set of morphisms in a category C admitting a calculus of left
fractions. Let e : Y → YS be the canonical morphism as defined in Theorem 1.5.5, where
YS is the S-completion of Y . Furthermore, let S have the following properties:

(a) S is closed under composition;
(b) fg ∈ S implies that f ∈ S.

Then e ∈ S.

Proof. SinceF (e) is an isomorphism inC [S−1], assume that [h, s], with s ∈ S, is the inverse
of F (e) = [e, 1YS

]. We therefore have a diagram

Y

Y YS Y K

YS X

X

1Y u
1Y

e
1YS

h
s

h
1X

v

with u = vs ∈ S and u = vhe. Moreover, the couniversal property of e implies that we
have a commutative diagram
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Y

K

YS
e

u
w

So e = wu = wvhe implying that wvh = 1YS
∈ S. Condition (b) implies that w ∈ S.

Therefore, e = wu ∈ S.

We show that the morphism e : G→ GS as constructed in the Theorem 3.3.4 is in S.

Theorem 3.3.6. The morphism e : G→ GS is in S.

Proof. The set of morphisms S satisfies all the conditions of the above corollary. Therefore,
e ∈ S.

3.4 L as Adams completion

In this section we obtain L, the limit of the ascending central series of a group G, as the
Adams completion GS of the group G.

Theorem 3.4.1. L is the Adams completion of G, that is, L ∼= GS .

Proof. Consider the following diagram:

G

GS

L
β

e
θ

By Theorem 3.2.2, there exists a unique morphism θ : GS → L (θ ∈ S ⊂ S̄) such that
θe = β.

Next consider the following diagram:

G

L

GS
e

β
ψ

By Theorem 3.3.4, there exists a unique morphism ψ : L→ GS in S̄ such that ψβ = e.
Consider the following diagram:
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G

L

GS

GS
e

e

θ

ψ

1GS

Thus we have ψθe = ψβ = e. By the uniqueness condition of the couniversal property of
e, we conclude ψθ = 1GS

.
Next consider the following diagram:

G

GS

L

L
β

β

ψ

θ

1L

Thus we have θψβ = θe = β. By the uniqueness condition of the couniversal property of
β, we conclude θψ = 1L.

Thus L ∼= GS .

Descending central series and Adams completion

Next we will overview the definition of descending central series of a group (rather a free
group) and the theory of associated graded Lie algebra with the descending central series for
a free group. Also we deduce the relation with the Adams completion.

3.5 The descending central series of a free group and the
associated graded Lie algebra

For a group G and x, y ∈ G, the commutator [30] of x, y is defined as

[x, y] = x−1y−1xy

and for any two subgroups H andK of the group G, their commutator [30] is defined to be
the following subgroup:

[H,K] = ⟨ [h, k] | h ∈ H, k ∈ K ⟩

The lower central series (also known as descending central series) of a group G is the
descending series of subgroups.
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Definition 3.5.1. [31] Let G be a group and ΓG(k) be the k-th term of the lower central
series of G defined by

ΓG(1) = G,

ΓG(k) = [ΓG(k − 1), G], k ≥ 2.

It is a well known fact that there is associated a graded Lie algebra with the lower central
series of a group. We recall these below.

Definition 3.5.2. [31, 32] For each k ≥ 1, set LG(k) = ΓG(k)/ΓG(k + 1) and

LG =
⊕
k≥1

LG(k).

Then LG has a structure of a graded Lie algebra which can be induced from the commutator
bracket on G. LG is called the associated Lie algebra of a group G.

Let us consider the case where G is a free group, say Fn with basis x1, · · · , xn. For
simplicity, ifG = Fn, we write Γn(k), Ln(k) and Ln for ΓG(k), LG(k) and LG respectively.
Let H be the abelianization of Fn, i.e.,

H = Fn/[Fn, Fn].

Then in general, the associated graded Lie algebra Ln is isomorphic to the free Lie algebra
generated by H [31].

Let L(H) denote the free Lie algebra generated by H . Then Ln is isomorphic to L(H).
Let φ : Ln → L(H) be the isomorphism. For simplicity, we write Ln = L. The following
result is easy to prove.

Theorem 3.5.3. Let φ, L and L(H) be as defined above. IfM is a graded Lie algebra and
ψ : L → M is an isomorphism, then there exists a unique isomorphism θ : M → L(H)

making the triangle commutative, i.e., θψ = φ.

L

M

L(H)
φ

ψ
θ

Proof. Define θ :M → L(H) by the rule

θ(m) = φψ−1(m)

for allm ∈M . Clearly, θ is well defined and is also an isomorphism. For any x ∈ L,

θψ(x) = φψ−1ψ(x) = φ(x).
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Thus θψ = φ, i.e., the diagram (above) is commutative. Next we show that θ is unique. Let
there exist another θ′ :M → L(H) with θ′ψ = φ. Then for anym ∈M ,

θ(m) = φψ−1(m) = θ′ψψ−1(m) = θ′(m).

Hence θ = θ′.

3.6 The category G L

Let G L denote the category of graded Lie algebras and graded maps where every element
of G L is an element of U . Let S denote the set of all maps s : L→ L′ in G L such that s
is an isomorphism. For this chosen set of morphisms S, the following results hold.

Proposition 3.6.1. S is saturated.

Proof. The proof is evident from Theorem 1.5.2.

Proposition 3.6.2. Let si : Ai → Bi lie in S for each i ∈ I where the index set I is an
element of U . Then

∨
i∈I
si : ∨

i∈I
Ai → ∨

i∈I
Bi

lies in S.

Proof. The proof is trivial.

We exhibit that the set of maps S of the category G L of graded Lie algebras and graded
maps admits a calculus of left fractions.

Proposition 3.6.3. S admits a calculus of left fractions.

Proof. S is the set of all graded maps in G L which are isomorphisms. So S is a closed
family of morphisms of the category G L . We shall verify conditions (i) and (ii) of Theorem
1.2.2. Let s : L → M and t : M → N be two morphisms in G L . We show if ts ∈ S and
s ∈ S, then t ∈ S. Let m,m′ ∈ M and t(m) = t(m′). Then as s is an epimorphism, we
have

m = s(l), m′ = s(l′)

for l, l′ ∈ L and ts(l) = ts(l′) implying l = l′ as ts is injective. So s(l) = s(l′) implies
m = m′, i.e., t is injective. Next

t(M) = t(s(L)) = N ,

i.e., t is surjective. So t ∈ S. Hence condition (i) of Theorem 1.2.2 holds.
In order to prove condition (ii) of Theorem 1.2.2 consider the diagram
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A

C

B
f

s

in G L with s ∈ S. We assert that the above diagram can be completed to a weak push-out
diagram

A

C

B

D

f

s

g

t

in G L with t ∈ S. Let B ⊔ C denote the free product of B and C. Consider the diagram

A

C

B

B ⊔ C

B ⊔ C

D

f

s

jC

jB

q

q

Let N be the ideal generated by

{jBf(a)− jCs(a) : a ∈ A}

and

D = (B ⊔ C)/N .

Define t : B → D by the rule

t(b) = qjB(b)

for all b ∈ B and g : C → D by the rule

g(c) = qjC(c)

for all c ∈ C. Clearly, t and g are well defined and graded maps. In [33], it is shown that D
is the push-out of C

s←− A
f−→ B in the category G L .

It is left to show that t ∈ S. Let t(b) = t(b′) for b, b′ ∈ B. Then qjB(b) = qjB(b
′), that

is,

jB(b) +N = jB(b
′) +N

implying jB(b)− jB(b′) ∈ N . So

jB(b− b′) = jBf(x)− jCs(x)
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for some x ∈ A. Then

jB(b− b′) + jC(0) = jBf(x) + jC(−s(x))

implies b−b′ = f(x), 0 = s(−x) gives x = 0 and hence b−b′ = f(0) = 0. So t is injective.
Next take an element w +N ∈ D where w is an element of B ⊔ C other than identity. So

w +N = q(w′) = qjB(b) + qjC(c)

= t(b) + g(c) = t(b) + gs(a)

= t(b) + tf(a) = t(b+ f(a))

shows t is surjective. Hence t is an isomorphism.

Also from the above discussions the following result follows.

Proposition 3.6.4. The category G L is cocomplete.

For the category G L and the set of morphisms S of G L , all the conditions of Theorem
1.4.1 are satisfied. So from the Theorem 1.5.3, we have the following.

Theorem 3.6.5. Every object L of the category G L has an Adams completion LS with
respect to the set of morphisms S. Furthermore, there exists a morphism e : L → LS in S
which is couniversal with respect to the morphisms in S : given a morphism s : L → M in
S there exists a unique morphism t : M → LS in S such that ts = e. In other words, the
following diagram is commutative:

L

M

LS
e

s
t

3.7 L(H) as Adams completion

We establish that L(H), the free Lie algebra generated by the abelianization of a free group
is the Adams completion of the associated graded Lie algebra L of the free group.

Theorem 3.7.1. L(H) ∼= LS .

Proof. Consider the following diagram:

L

LS

L(H)
φ

e
θ
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By Theorem 3.5.3, there exists a unique morphism θ : LS → L(H) in S such that θe = φ.
Next consider the following diagram:

L

L(H)

LS
e

φ
α

By Theorem 3.6.5, there exists a unique morphism α : L(H)→ LS in S such that αφ = e.
Consider the diagram:

L

L(H)

LS

LS
e

e

θ

α

1LS

We have αθe = αφ = e. By the uniqueness condition of the couniversal property of e, we
conclude αθ = 1LS

.
Next consider the diagram:

L

LS

L(H)

L(H)
φ

φ

α

θ

1L(H)

We have θαφ = θe = φ. By the uniqueness condition of the couniversal property of φ, we
conclude θα = 1L(H).

Thus L(H) ∼= LS .



Chapter 4

Homotopy Theory of Modules and
Adams Cocompletion

The relative homotopy theory of modules, including the (module) homotopy exact sequence
was proposed by Peter Hilton. In fact, he has developed homotopy theory in module
theory, parallel to the existing homotopy theory in topology. Later homotopy theory of
modules was broadly contemplated by C. J. Su [14–16]. In contrast with homotopy theory
in general topology, there are two sorts of homotopy theory in module theory, in particular,
the injective theory and the projective theory. They are dual however not isomorphic [16].

In this chapter, using injective theory we have obtained the Cartan-Whitehead-like
decomposition of a module. We do this in a general framework by considering a Serre class C
of abelian groups [26]. The narrative of homotopy theory of modules, may be assessed from
([13], Chapter 13). We briefly depict a bit of the thoughts towards notational perspectives.

4.1 Homotopy theory in module theory

All through this chapter we will work with right Λ-modules, where Λ is a Dedekind domain
[34]. LetM and N be right Λ-modules and f :M → N a Λ-homomorphism.

Definition 4.1.1. [13] The map f is i-nullhomotopic, denoted f ≃i 0, if f can be extended
to some injective moduleM containingM .

Proposition 4.1.2. [13] The following statements are equivalent.
(i) f ≃i 0.
(ii) f can be extended to every module containingM .
(iii) f can be factored through some injective module.

Proposition 4.1.3. [13] Let L, P be right Λ-modules and g : L → M , h : N → P be
Λ-homomorphisms. If f ≃i 0, then fg ≃i 0 and hf ≃i 0.

Proposition 4.1.4. [13] Let f ′ : M → N a Λ-homomorphism. If f ≃i 0 and f ′ ≃i 0, then
f + f ′ ≃i 0 and −f ≃i 0.
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Chapter 4 Homotopy Theory of Modules and Adams Cocompletion

In like manner we obtain a subgroup of nullhomotopic homomorphisms

Hom0(M,N) ⊂ HomΛ(M,N).

Definition 4.1.5. [13] The i-homotopy group of maps ofM to N is

π(M,N) = HomΛ(M,N)/Hom0(M,N).

Let g : M → N is a Λ-homomorphism. Then f ≃i g if f − g ≃i 0 which is clearly
an equivalence relation. The map f is an i-homotopy equivalence if there exists a map
h : N →M such that

fh ≃i 1 : N → N,

hf ≃i 1 :M →M.

Then we denote f : M ≃i N or M ≃i N . The group π(M,N) depends only on the
equivalence classes ofM and N .

We recall the concept of suspension that enriches the motivation of homotopy groups in
module theory.

Definition 4.1.6. [13] Consider the short exact sequence

0→M →M →M/M → 0

where M is injective. Then suspension of M , denoted as SM , is defined as M/M which
always has the same homotopy type whatever injective containerM ofM may be chosen.
Next the suspension of SM , denoted as S2M , can be defined in a similar manner and
continuing this procedure we will have a sequence

SM, S2M, · · · , SnM, · · ·

which enables us to describe the group π(SM,N) or more generally π(SnM,N). This
group, written as πn(M,N), is called as the nth i-homotopy group ofM toN which depends
only on the homotopy types of SnM and N and usually defined by means of an injective
resolution ofM , namely

M →M → SM → · · · → SnM → · · ·

with successive cokernels SM , S2M , · · · , Sn+1M .

4.2 The category M̃

Let M denote the category of right Λ-modules and Λ-module homomorphisms and let
M̃ be the corresponding i-homotopy category, that is, the objects of M̃ are all right
Λ-modules and the morphisms are i-homotopy classes of Λ-homomorphisms. For any
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Λ-homomorphism f : M → N where M and N are right Λ-modules, we denote the
i-homotopy class of f by [f ]i. We assume that the underlying sets of elements of M are
elements of U .

We now choose a suitable set of morphisms Sn for the category M̃ . Let A be any right
Λ-module. Amorphismα : X → Y in M̃ is inSn if and only ifα∗ : πm(A,X)→ πm(A, Y )

is a C-isomorphism form > n and a C-monomorphism form = n.

We will demonstrate that the set of morphisms Sn of the category M̃ admits a calculus
of right fractions.

Proposition 4.2.1. Sn admits a calculus of right fractions.

Proof. Clearly, Sn is a closed family of morphisms of the category M̃ . We shall verify
conditions (i) and (ii) of Theorem 1.2.4.

Let α : X → Y and β : Y → Z be two morphisms in M̃ . We show if βα ∈ Sn and
β ∈ Sn, then α ∈ Sn. Since βα ∈ Sn and β ∈ Sn, (βα)∗ = β∗α∗ : πm(A,X)→ πm(A,Z)

and β∗ : πm(A, Y ) → πm(A,Z) are C-isomorphisms for m > n and C-monomorphisms
for m = n. Therefore α∗ is a C-monomorphism for m ≥ n. In order to show α∗ to be a
C-isomorphism form > n, we need to show α∗ is a C-epimorphism form > n. We have

β∗α∗(πm(A,X)) = πm(A,Z)

form > n, that is,

β∗(α∗(πm(A,X))) = β∗(πm(A, Y ))

form > n. From this we conclude that

α∗(πm(A,X)) = πm(A, Y )

form > n, that is, α∗ is a C-epimorphism form > n. Therefore, α∗ is a C-isomorphism for
m > n and a C-monomorphism form = n. Hence condition (i) of Theorem 1.2.4 holds.

In order to prove the condition (ii) of Theorem 1.2.4 consider the diagram

X

Y Z

α

γ

with γ ∈ Sn in M̃ . We assert that the above diagram can be completed to a weak pull-back
diagram
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W X

Y Z

δ

β α

γ

in M̃ with δ ∈ Sn. Let α = [f ]i and γ = [s]i. We replace f and s by fibrations [35], that is,

f = f ′r and s = s′t

where f ′, s′ are fibrations and r, t are i-homotopy equivalences. Let r and t be i-homotopy
inverses of r and t respectively. Let

Pf = X ⊕D and Ps = Y ⊕D

where D is the maximal divisible submodule of Z. LetW be the usual pull-back of f ′ and
s′; hence there exist p : W → Pf and q : W → Ps such that f ′p = s′q. Let δ = [rp]i and
β = [tq]i. Hence

αδ = [f ]i[rp]i = [frp]i = [f ′rrp]i

= [f ′p]i = [s′q]i = [s′ttq]i

= [stq]i = [s]i[tq]i = γβ.

So we have the following commutative diagram in M̃ .

W X

Y Z

δ

β α

γ

Moreover, let φ : R → X and ψ : R → Y in M̃ be such that αφ = γψ. Let φ = [u]i

and ψ = [v]i. Thus we have fu ≃i sv. This implies f ′ru ≃i s
′tv, that is, f ′ru− s′tv ≃i 0,

that is, f ′ru− s′tv can be extended to some injective module R containing R.

R

R Z

k
h

f ′ru− s′tv

Thus kh = f ′ru− s′tv. Consider the following diagram
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R

R

Pf

Z

l

h

f ′ru− s′tv

f ′
k

Since f ′ is a fibration, there exists l : R→ Pf such that f ′l = k. Thus f ′lh = kh and

f ′ru− s′tv = kh = f ′lh,

that is,

f ′(ru− lh) = s′(tv).

In the following diagram

R

W

Ps

Pf

Z

f ′

s′

p

q

ru− lh

tv

j

sinceW is the pull-back of f ′ and s′ in M , there exists j : R→ W such that

pj = ru− lh and qj = tv.

Let θ = [j]i. In the following diagram in M̃ ,

R

W

Y

X

Z

α

γ

δ

β

φ

ψ

θ

we have

δθ = [rp]i[j]i = [rpj]i = [r(ru− lh)]i = [rru− rlh]i = [u− rlh]i.

We claim that [u− rlh]i = [u]i, that is, u− rlh ≃i u; hence we need to show that rlh ≃i 0,
which is evident from the following commutative diagram.
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R

R X

rl
h

rlh

Also

βθ = [tq]i[j]i = [tqj]i = [ttv]i = [v]i = ψ.

Thus we have the required pull-back diagram in M̃ .
It remains to show that δ ∈ Sn. Let F = ker β and from the commutative diagram

F

W

F

X

Y Z

δ

β α

γ

in M̃ we have the following commutative diagram

· · · πm+1(A, Y ) πm(A,F ) πm(A,W )

· · · πm+1(A,Z) πm(A,F ) πm(A,X)

γ∗ δ∗

πm(A, Y ) πm−1(A,F ) · · ·

πm(A,Z) πm−1(A,F ) · · ·

γ∗

By Five Lemma, δ∗ is a C-isomorphism form > n and a C-monomorphism form = n, that
is, δ ∈ Sn.

The following result holds for the category M̃ together with the chosen set of morphisms
Sn.

Proposition 4.2.2. Let sj : Xj → Yj lie in Sn for each j ∈ J where the index set J is an
element of U . Then

∧
j∈J
sj : ∧

j∈J
Xj → ∧

j∈J
Yj

lies in Sn.
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Proof. Let

s =
∏
j∈J
sj , X =

∏
j∈J
Xj and Y =

∏
j∈J
Yj .

Define a map s : X → Y by the rule

s(x) = (sj(xj))j∈J

where x = (xj)j∈J . Clearly, s is well defined and is also a morphism in M̃ . Consider the
commutative diagram

X

Xj

Y

Yj

s

pj

sj

qj

where pj and qj are the projections. Let F = ker pj and from the commutative diagram

F

X

F

Y

Xj Yj

s

pj qj

sj

we have the following commutative diagram

· · · πm+1(A,Xj) πm(A,F ) πm(A,X)

· · · πm+1(A, Yj) πm(A,F ) πm(A, Y )

sj∗ s∗

πm(A,Xj) πm−1(A,F ) · · ·

πm(A, Yj) πm−1(A,F ) · · ·

sj∗

By Five Lemma, s∗ is a C-isomorphism form > n and a C-monomorphism form = n, that
is, s ∈ Sn.

The following result is well known.

Proposition 4.2.3. The category M̃ is complete.
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4.3 Existence of Adams cocompletion in M̃

Using Propositions 4.2.1 - 4.2.3 and Theorem 1.4.3 we reach at the accompanying result.

Theorem 4.3.1. Every object X in the category M̃ has an Adams cocompletion XSn with
respect to the set of morphisms Sn.

Since every object in the category M̃ has Adams cocompletion with respect to the set of
morphisms Sn, from Theorem 1.5.6 we conclude the following result.

Theorem 4.3.2. Every objectX of the category M̃ has an Sn cocompletion with respect to
the set of morphisms Sn if and only if there exists a morphism en : XSn → X in Sn which
is couniversal with respect to the morphisms in Sn : given a morphism s : Y → X in Sn

there exists a unique morphism tn : XSn → Y in Sn such that stn = en. In other words, the
following diagram is commutative:

XSn X

Y

en

tn s

We prove that the morphism en : XSn → X as constructed above is in Sn.

Theorem 4.3.3. en ∈ Sn.

Proof. Let

S1
n = {α : X → Y in M̃ | α∗ : πm(A,X)→ πm(A, Y ) is a C-monomorphism form ≥ n}

and

S2
n = {α : X → Y in M̃ | α∗ : πm(A,X)→ πm(A, Y ) is a C-epimorphism form > n}.

Clearly,

Sn = S1
n ∩ S2

n

and S1
n and S2

n satisfy all the conditions of Theorem 1.5.10. Hence en ∈ Sn.

Behera and Nanda [17] have obtained the Cartan-Whitehead decomposition of a
0-connected based CW -complex with the help of a suitable set of morphisms. Following
techniques of the works of Behera and Nanda [17] we obtain a Whitehead-like tower for a
module with the help of chosen set of morphisms Sn whose different stages are the Adams
cocompletion with respect to the set of morphisms Sn.

Theorem 4.3.4. Let X be a right Λ-module. Then for n ≥ 0, there exists right Λ-modules
XSn , maps en : XSn → X and maps θn+1 : XSn+1 → XSn such that
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(i) en∗ : πm(A,XSn) → πm(A,X) is a C-isomorphism for m > n and
πm(A,XSn) = 0 form ≤ n.

(ii) en+1 = en ◦ θn+1.

Proof. For every n ≥ 0, let XSn be the Sn-cocompletion of X and en : XSn → X be the
canonical map. We have already shown en ∈ Sn. So

en∗ : πm(A,XSn)→ πm(A,X)

is a C-isomorphism form > n. Every module has an injective resolution [34]. Consider an
injective resolution of A as

A→ A→ SA→ · · · → SmA→ · · ·

with successive cokernels

SA, S2A, · · · , Sm+1A, · · · .

We claim that SmA is injective. We can decompose the above sequence into the following
short exact sequences.

0→ A→ A→ SA→ 0

0→ SA→ SA→ S2A→ 0

...
...

...

0→ Sm−1A→ Sm−1A→ SmA→ 0

...
...

...

Applying ExtjΛ(A,−) for every integer j ≥ 1 to the short exact sequence

0→ Sm−1A→ Sm−1A→ SmA→ 0,

we get the following short exact sequence [34].

0→ ExtjΛ(A, Sm−1A)→ ExtjΛ(A, Sm−1A)→ ExtjΛ(A, SmA)→ 0

Since Sm−1A is injective, ExtjΛ(A, Sm−1A) = 0 for every integer j ≥ 1 [34]. So
ExtjΛ(A, SmA) = 0 for every integer j ≥ 1. This concludes SmA is injective [34].
Therefore, πm(A,XSn) = 0 form ≤ n [13].

Next we have en ∈ Sn ⊂ Sn+1. By the couniversal property of en+1 there exists a unique
morphism θn+1 : XSn+1 → XSn such that the following diagram

XSn+1 X

XSn

en+1

θn+1 en
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commutes, that is, en+1 = en ◦ θn+1. Thus we get a Whitehead-like tower of a module in the
category M̃ .

...

XSn+1

XSn

...

XS1

XS0 X

θn+1

θ1

e0

en

en+1

e1



Chapter 5

Minimal Model as Adams Cocompletion

Rational homotopy theory, which is the study of properties that depend only on the rational
homotopy type of space or the rational homotopy class of a map, was introduced by
Sullivan in 1960. Initially, rational homotopy theory arose from an underlying geometrical
construction. Rational homotopy theory is less complicated than ordinary theory and is
remarkably computational because of an explicit algebraic formulation revealed by Quillen
[36] and Sullivan [18]. In rational homotopy theory Sullivan introduced the idea of minimal
model.

In [21], Behera and Nanda have obtained the various stages of the Postnikov
decomposition of a 1-connected CW -complex in terms of Adams completion of the space.
Minimal model may be treated as the dual version of Postnikov decomposition. Adams
cocompletion is the dual concept of Adams completion. It is natural for someone to conclude
that minimal model can be expressed in terms of Adams cocompletion. In [37], the minimal
model of a simply connected differential graded algebra is characterized in terms of Adams
cocompletion under certain assumptions. In this chapter, by dropping the assumptions of
[37] we express minimal model in terms of Adams cocompletion. More elaborately, we
show that the minimal model of a simply connected differential graded algebra can be
expressed as the Adams cocompletion of the given simply connected differential graded
algebra in the category of 1-connected differential graded algebras (in short d.g.a.’s) over Q
and d.g.a.-homomorphisms.

5.1 Minimal model

We reminisce a couple of definitions that are key for our outcome.

Definition 5.1.1. [38] Let Q denote the set of rational numbers. By a graded algebra, A,
over Q we mean a graded Q-vector space

A = ⊕
n≥0

An

together with an associative multiplication
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µ : A⊗ A→ A

which is graded, that is,

µ(An ⊗ Am) ⊂ An+m

and graded commutative, that is,

a · b = (−1)nmb · a when a ∈ An and b ∈ Am.

We also assume, unless otherwise stated, that A has an identity element 1 ∈ A0. The
elements of An are said to be homogeneous of degree n (or dimension n).

Definition 5.1.2. [38] A differential graded algebra A is graded algebra, together with a
differential, d, of degree +1 which is a derivation. This means that for each n there is a
vector space homomorphism

d = dn : An → An+1

satisfying
(i) d ◦ d = 0 (differential);
(ii) d(a · b) = d(a) · b+ (−1)na · d(b) for a, b ∈ An (derivation).

Definition 5.1.3. [38] If A is a differential graded algebra, let

Zn(A) = Ker {d : An → An+1} = Subspace of cocycles of An,

Bn(A) = Im {d : An−1 → An} = Subspace of coboundaries of An.

Then Z∗(A) and B∗(A) are defined as

Z∗(A) = ⊕
n≥0

Zn(A) and B∗(A) = ⊕
n≥0

Bn(A).

The proof of the following result is immediate.

Proposition 5.1.4. Bn(A) ⊂ Zn(A).

Proof. Let x ∈ Bn(A). Then x = dn−1(y) where y ∈ An−1. Now

dn(x) = dndn−1(y) = 0.

So x ∈ Ker dn, that is, x ∈ Zn(A). Thus Bn(A) ⊂ Zn(A).

Definition 5.1.5. [38] The nth cohomology space of A, denoted as Hn(A), is defined to be
the quotient vector space

Hn(A) = Zn(A)/Bn(A).

As d is a derivation, we see that Z∗(A) is a subalgebra of A and B∗(A) is an ideal in Z∗(A).
Hence

H∗(A) = ⊕
n≥0

Hn(A) = Z∗(A)/B∗(A)
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is a graded algebra, called the cohomology algebra of A.

Definition 5.1.6. [38] A differential graded algebra A is is said to be
(i) connected if H0(A) = Q;
(ii) 1-connected or simply connected if it is connected and H1(A) = 0.

Definition 5.1.7. [38] If A and B are graded algebras, a function f : A → B is a graded
algebra homomorphism if it preserves all the algebraic structure, that is,

(i) f(An) ⊂ Bn,
(ii) f(a+ b) = f(a) + f(b),
(iii) f(a · b) = f(a) · f(b).

We also assume that f(1) = 1.

Definition 5.1.8. [38] If A and B are differential graded algebras, then f : A → B is a
differential graded algebra homomorphism if

(i) f is a graded algebra homomorphism,
(ii) f commutes with the differentials, i.e., f ◦ dA = dB ◦ f .

Definition 5.1.9. [38] If f : A→ B is a differential graded algebra homomorphism then f
induces a map

f ∗ : H∗(A)→ H∗(B)

defined by the rule

f ∗([z]) = f ∗(z +B(A)) = f(z) + B(B) = [f(z)]

where [z] denotes the cohomology class of the element z ∈ Z∗(A). Clearly, f ∗ is a
homomorphism of graded algebras.

Definition 5.1.10. [38] If A = ⊕
n≥0

An is a graded algebra, set

A+ = ⊕
n≥1

An.

Define D(A) to be the image of A+ ⊗A+ under multiplication. D(A) is clearly an ideal of
A, called the ideal of decomposables; it consists of all sums of non-trivial products in A.

Definition 5.1.11. [38] If A is a differential graded algebra, we say that A has a
decomposable differential if the image of the differential is contained in the ideal of
decomposables, that is,

B∗(A) ⊂ D(A).

Definition 5.1.12. [38] A differential graded algebra M is called a minimal algebra if it
satisfies the following properties:

(i) M is free as a graded algebra;
(ii) M has a decomposable differential;
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(iii) M0 = Q,M1 = 0;
(iv) M has cohomology of finite type, that is, for each n,Hn(M) is a finite dimensional

vector space.
Note that Properties (ii)-(iv) imply

(v) for each n,Mn is a finite dimensional vector space.

Let DG A be the category of differential graded algebras and differential graded algebra
homomorphisms and M denote the full subcategory of DG A consisting of all minimal
algebras and all differential graded algebra maps between them.

Definition 5.1.13. [38] Suppose A is a simply connected differential graded algebra. A
differential graded algebraM =M(A) is called a minimal model for A if

(i) M ∈M ;
(ii) there is a differential graded algebra map ρ : M → A which induces an

isomorphism on cohomology

ρ∗ : H∗(M)
∼=→ H∗(A).

The following result will be used in our work.

Theorem 5.1.14. [38, 39] Let A be a simply connected differential graded algebra over
Q and M = M(A) be a minimal model for A. Then the map ρ : M → A induces an
isomorphism on cohomology in all dimensions. Then ρ has following couniversal property:
for any simply connected differential graded algebra C over Q and differential graded
algebra map η : C → A which induces an isomorphism on cohomology in all dimensions,
there exists a differential graded algebra map φ : M → C such that ηφ ≃ ρ, that is, the
following diagram commutes:

M

C

A
ρ

η
φ

5.2 The category D

Let D be the category of 1-connected differential graded algebras (in short d.g.a.’s) over Q
and d.g.a.-homomorphisms where every element of D is an element of U . Let S be the
set of all d.g.a.-homomorphisms which induce cohomology isomorphisms in all dimensions.

The going with result is significant for the set of morphisms S for the category D .

Proposition 5.2.1. S is saturated.
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Proof. The proof follows from Theorem 1.5.2.

We will show that the set of morphisms S of the category D admits a calculus of right
fractions.

Proposition 5.2.2. The set of morphisms S admits a calculus of right fractions.

Proof. Clearly, S is a closed family of morphisms of the category D . We shall verify
conditions (i) and (ii) of Theorem 1.2.4. Let u, v be two morphisms in D . We show that
if vu ∈ S and v ∈ S, then u ∈ S. We know (vu)∗ = v∗u∗ and v∗ are both cohomology
isomorphisms implying u∗ is a cohomology isomorphism. Thus u ∈ S. Hence condition (i)
of Theorem 1.2.4 holds.

In order to prove condition (ii) of Theorem 1.2.4 consider the diagram

C

A

B

f

s

in D with s ∈ S. We assert that the above diagram can be completed to a weak pull-back
diagram

D

C

A

B

f

s

t

g

in D with t ∈ S. Since A, B and C are in D ,

A = ⊕
n≥0

An, B = ⊕
n≥0

Bn, C = ⊕
n≥0

Cn,

and
f = ⊕

n≥0
fn, s = ⊕

n≥0
sn

where

fn : An → Bn and sn : Cn → Bn

are d.g.a. homomorphisms. Let

Dn = {(a, c) ∈ An × Cn : fn(a) = sn(c)}.

Let tn : Dn → An be defined by the rule

tn(a, c) = a

and gn : Dn → Cn be defined by the rule
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gn(a, c) = c.

Clearly, tn and gn are d.g.a. homomorphisms. Let

D = ⊕
n≥0

Dn, t = ⊕
n≥0

tn and g = ⊕
n≥0

gn.

Clearly, the above diagram is commutative. Here we have to show D is a 1-connected
differential graded algebra. Define a multiplication in D in following way:

(a, c) · (a′, c′) = (aa′, cc′) ∈ Dn+m

where (a, c) ∈ Dn and (a′, c′) ∈ Dm. Let

dnA : An → An+1 and dnC : Cn → Cn+1,

dA = ⊕
n≥0

dnA and dC = ⊕
n≥0

dnC .

Define dnD : Dn → Dn+1 by the rule

dnD(a, c) = (dnA(a), d
n
C(c))

for (a, c) ∈ Dn. Let
dD = ⊕

n≥0
dnD.

Now for any (a, c) ∈ D,

dDdD(a, c) = dD(dA(a), dC(c))

= (dAdA(a), dCdC(c))

= (0, 0).

So dD is a differential. Now for (a1, c1) ∈ Dn and (a2, c2) ∈ Dm,

dD((a1, c1) · (a2, c2)) = dD(a1a2, c1c2)

= (dA(a1a2), dC(c1c2))

= (dA(a1) · a2 + (−1)na1dA(a2), dC(c1) · c2 + (−1)nc1dC(c2))

= (dA(a1), dC(c1)) · (a2, c2) + (−1)n(a1, c1)(dA(a2), dC(c2))

= (dD(a1, c1)) · (a2, c2) + (−1)n(a1, c1)(dD(a2, c2)).

So dD is a derivation. Thus D becomes a differential graded algebra.
Next we show thatD is simply connected, that is,H0(D) = Q and H1(D) = 0. Now

H0(D) = Z0(D)/B0(D)

= Z0(D)

= {(a, c) ∈ Z0(A)× Z0(C) : f 0(a) = s0(c)}.

Also 1A ∈ A0 and 1c ∈ C0. Then

d0D(1A, 1C) = (dA1A, dC1C) = (0, 0)

implies (1A, 1c) ∈ Z0(D). Since A and C are 1-connected, we have
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H0(A) = Q and H0(C) = Q,

that is,

Z0(A) = Q and Z0(C) = Q.

Thus
(a, c) ∈ H0(D) = Z0(D) ⊂ Z0(A)× Z0(C)

if and only if

a = r1A and c = r1C

for some r ∈ Q. So H0(D) = Q. Again let [(a, c)] ∈ H1(D). Then (a, c) ∈ Z1(D). This
implies

a ∈ Z1(A), c ∈ Z1(C) and f 1(a) = s1(c).

Since a ∈ Z1(A) and c ∈ Z1(C), we have d1A(a) = 0 and d1C(a) = 0 respectively. As A and
C are 1-connected, we have

H1(A) = 0 and H1(C) = 0,

that is,

Z1(A)/B1(A) = B1(A) and Z1(C)/B1(C) = B1(C)

which implies a = d0A(a
′) where a′ ∈ A0 and c = d0C(c

′) where c′ ∈ C0. Now

f 1(a) = s1(c),

that is,

f 1(d0A(a
′)) = s1(d0C(c

′)).

Thus

d0Bf
0(a′) = d0Bs

0(c′),

that is,

f 0(a′)− s0(c′) ∈ kerd0B.

But s0 ∈ S deduces (s0)∗ : H0(C) → H0(B) is an isomorphism, that is, (s0)∗ : ker d0C →
ker d0B is an isomorphism. Then there exists an element c′′ ∈ ker d0C such that

s0(c′′) = f 0(a′)− s0(c′),

that is,

f 0(a′) = s0(c′ + c′′).
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Thus (x′, c′ + c′′) ∈ D0 and

d0D(x
′, c′ + c′′) = (d0A(a

′), d0C(c
′) + d0C(c

′′))

= (d0A(a
′), d0C(c

′))

= (a, c).

This implies (a, c) ∈ B1(D). So H1(D) = 0. Thus D is 1-connected.
The only thing left to show is t ∈ S, i.e., we have to show

t∗ : H∗(D)→ H∗(A)

is an isomorphism. Let F = Ker g. Then from the following commutative diagram

F

D

F

A

C B

t

g f

s

in D we will have the following commutative diagram [40]

· · · Hn−1(C) Hn(F ) Hn(D)

· · · Hn−1(B) Hn(F ) Hn(A)

s∗ t∗

Hn(C) Hn+1(F ) · · ·

Hn(B) Hn+1(F ) · · ·

s∗

By Five Lemma, t∗ is an isomorphism, showing t ∈ S.
Next for any differential graded algebra

E = ⊕
n≥0

En

and differential graded algebra homomorphisms

u = ⊕
n≥0

un : E → A

and

v = ⊕
n≥0

vn : E → C

in D the following diagram
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E

C

A

B

f

s

u

v

commutes, that is, fu = sv. Consider the diagram:

E

D

C

A

B

f

s

t

g

u

v

θ

Define the map

θ = ⊕
n≥0

θn : E → D

by the rule

θ(x) = (u(x), v(x))

for x ∈ E. Clearly, θ is well defined and also a d.g.a. homomorphism. Next for any x ∈ E,

tθ(x) = t(u(x), v(x)) = u(x)

and

gθ(x) = g(u(x), v(x)) = v(x).

So tθ = u and gθ = v, that is, the two triangles are commutative.

For the category D along with this set of morphisms S, the going with reliably holds.

Proposition 5.2.3. If each si : Xi → Yi, i ∈ I is an element of S where the index set I is an
element of U , then

∧
i∈I
si : ∧

i∈I
Xi → ∧

i∈I
Yi

is an element S.

Proof. The proof is obvious.

The following result follows trivially.

Proposition 5.2.4. The category D is complete.

By considering all the above results, from Theorem 1.4.3 and Theorem 1.5.4 we can
reach at the outcome that the Adams cocompletion of an object always exists.
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Theorem 5.2.5. Every object A of the category D has an Adams cocompletion AS with
respect to the set of morphisms S and there exists a morphism e : AS → A in S which is
couniversal with respect to the morphisms in S, that is, given a morphism s : B → A in
S there exists a unique morphism t : AS → B in S such that st = e. In other words, the
following diagram is commutative:

AS A

B

e

t s

5.3 The result

In this section, minimal model for a simply connected differential graded algebra is obtained
as the Adams cocompletion of that simply connected differential graded algebra.

Theorem 5.3.1. Let A be a simply connected differential graded algebra andM = MA be
the minimal model for A. ThenM ≃ AS .

Proof. Let e : AS → A be the morphism as defined in Theorem 5.2.5. we conclude from
the couniversal property of e that there exists a unique d.g.a. map ψ : AS → M such that
ρψ = e.

AS A

M

e

ψ ρ

Next we have the d.g.a. map ρ :M → Awhich induces an isomorphism on cohomology
in all dimension. By Theorem 5.1.14, there exists a d.g.a. map φ : M → AS such that
eφ ≃ ρ.

M A

AS

ρ

φ
e

From the following diagram
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AS

AS

A

M

e

ψ

e
φ

1AS

we have

eφψ ≃ ρψ = e.

Then

(eφψ)∗ = e∗,

that is,

e∗φ∗ψ∗ = e∗

which implies φ∗ψ∗ = 1∗AS
. So φψ ≃ 1AS

.
Again from the following diagram

M

M

A

AS

ρ

φ

ρ

ψ

1M

we have

ρψφ = eφ ≃ ρ.

Then

(ρψφ)∗ = ρ∗,

that is,

ρ∗ψ∗φ∗ = ρ∗

which implies ψ∗φ∗ = 1∗M . So ψφ ≃ 1M .
Now we have ψφ ≃ 1M and φψ ≃ 1AS

. HenceM ≃ AS .



Chapter 6

Adams Cocompletion of a Graph

Numerous structures in real world can be represented on paper by means of a diagram
comprising of a set of points together with lines joining some or all pairs of these points.
A mathematical abstraction of such structures including points and lines drives us to
the idea of graphs. The origins of graph theory can be taken from Euler’s work on the
Konigsberg bridge problem. The theory of graphs has established itself as a standout
amongst the most rapidly growing areas of mathematics with many applications in various
fields such as computer science, chemistry, engineering, social sciences etc,. Lately the
category-theoretical approach to graph theory has become one of the most interesting area
of study.

Given any graph G there exists a connected graph H , the center of which is isomorphic
toG, is a renowned fact in the field of graph theory [20, 41]. In this chapter we will establish
that the center Z(H) of H is Adams cocompletion of the given graph G.

6.1 Result related to a graph

In this section we review some basics of graph theory and a result of Kopylov and Timofeev.

Definition 6.1.1. [42, 43] A graph G = (V,E) consists of two sets V and E where
• the elements of V are called vertices (or nodes),
• the elements of E are called edges,
• each edge has a set of one or two vertices associated to it, which are called its endpoints.
An edge is said to join its endpoints.

Throughout this chapter, denote by V (G) and E(G) to be the vertex set and edge set of
a graph G respectively.

Definition 6.1.2. [44] A graph homomorphism f from a graph G = (V (G), E(G)) to a
graph G′ = (V (G′), E(G′)), denoted as

f : G→ G′,
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is a map

f : V (G)→ V (G′)

that keeps adjacency, that is, {u, v} ∈ E(G) implies {f(u), f(v)} ∈ E(G′).

The interpretation of isomorphism basically means that the two graphs are similar.

Definition 6.1.3. [44] Two graphs

G = (V (G), E(G))

and

G′ = (V (G′), E(G′))

are called isomorphic if there exists a one-to-one correspondence between vertex sets V (G)

and V (G′) such that any two vertices are adjacent in G if and only if their images in the
correspondence are adjacent in G′.

Definition 6.1.4. [44] A graph in which all vertices can be numbered (ordered from left to
right) x1, x2, · · · , xn in such a way that there is precisely one edge connecting every two
consecutive vertices and there are no other edges, is called a path. Generally, any path
connecting vertices x and y is called (x, y)-path.

Definition 6.1.5. [44] A graph is called connected if any two vertices in it are connected by
some path; otherwise it is called disconnected.

Definition 6.1.6. [44] Let G = (V (G), E(G)) be a graph and u, v ∈ V (G). The distance
from u to v denoted by d(u, v) is the length of the shortest (u, v)-path. Let N∞(u) denote
the set of farthest vertices from vertex u, that is, if v ∈ N∞(u) and w /∈ N∞(u), then
d(u,w) < d(u, v). The distance between vertex u and set N∞(u) is called the eccentricity
of u.

Definition 6.1.7. [44] The center of G is a set of vertices of minimum eccentricity.

The following is an eminent result given by Kopylov and Timofeev.

Theorem 6.1.8. [20] For any graphG, there exists a connected graphH such that the center
of H is isomorphic to G.

Let us denote the center of the graph H as Z(H) and α be the isomorphism from Z(H)

to G. Applying the above result of Kopylov and Timofeev we prove the following result.

Theorem 6.1.9. If K is a graph and β : K → G is an isomorphism, then there exists a
unique isomorphism γ : Z(H) → K such that βγ = α, that is, the following diagram
commutes:
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Z(H) G

K

α

γ
β

Proof. Let us define the map γ : V (Z(H))→ V (K) (means γ : Z(H)→ K) by the rule

γ(x) = β−1α(x)

for every x ∈ V (Z(H)). Clearly, the map is well defined and is a graph isomorphism. Next
for any x ∈ V (Z(H)),

βγ(x) = ββ−1α(x) = α(x)

shows that the diagram is commutative. The only thing left to show is the uniqueness of γ.
Suppose that there exists another γ′ : V (Z(H)) → V (K) satisfying βγ′ = α. Then for
every x ∈ V (Z(H)),

γ(x) = β−1α(x) = β−1βγ′(x) = γ′(x),

showing γ is unique.

6.2 The category of graphs and graph homomorphisms

Let G denote the category of graphs and graph homomorphisms where every element of G

is an element ofU . We fix a suitable set of graph homomorphisms in G as follows. Let S be
a set of all graph homomorphisms f : A→ B in G such that f is an isomorphism. For this
chosen set of graph homomorphisms, the following result evidently follows from Theorem
1.5.2.

Proposition 6.2.1. S is saturated.

The following result holds for the set of graph homomorphisms S for the category G .

Proposition 6.2.2. If each si : Ai → Bi for i ∈ I is an element of S where the index set I is
an element of U , then

∧
i∈I
si : ∧

i∈I
Ai → ∧

i∈I
Bi

is an element in S.

Proof. Tensor product of graphs is the product in the category of graphs and graph
homomorphisms. Let

V (A) = V (
∏
i∈I
Ai) =

∏
i∈I
V (Ai)

and
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V (B) = V (
∏
i∈I
Bi) =

∏
i∈I
V (Bi).

Define a map

s = ∧
i∈I
si : V (A)→ V (B)

by the rule

s(a) = (si(ai))i∈I

for a = (ai)i∈I . Clearly, s is well defined. Let us consider {(ai)i∈I , (a′i)i∈I} ∈ E(A). That
means (ai)i∈I and (a′i)i∈I are adjacent in A, that is, ai is adjacent with a′i in Ai for each
i ∈ I . Thus si(ai) is adjacent with si(a′i) in Bi for each i ∈ I , that is, (si(ai))i∈I is adjacent
with (si(a

′
i))i∈I in B. Therefore, {s((ai)i∈I), s((a′i)i∈I)} ∈ E(B); this implies s is a graph

homomorphism.
Let (ai)i∈I and (a′i)i∈I ∈ V (A) with s((ai)i∈I) = s((a′i)i∈I). So si(ai) = si(a

′
i) for each

i ∈ I implies ai = a′i for each i ∈ I; this results in (ai)i∈I = (a′i)i∈I and hence s is injective.
Next consider an element (bi)i∈I ∈ V (B). As si is surjective, there exists some ai ∈ Ai

such that si(ai) = bi for each i ∈ I . Thus

(bi)i∈I = (si(ai))i∈I = s((ai)i∈I)

showing s is surjective. Let (ai)i∈I and (a′i)i∈I be adjacent in A. Then s((ai)i∈I) and
s((a′i)i∈I) are adjacent in B (already shown). Conversely, let (ai)i∈I and (a′i)i∈I ∈ V (A)

and s((ai)i∈I) and s((a′i)i∈I) be adjacent in B. That means (si(ai))i∈I and (si(a
′
i))i∈I are

adjacent inB; i.e., si(ai) is adjacent with si(a′i) in Bi for each i ∈ I and hence ai is adjacent
with a′i in Ai for each i ∈ I (since si is an isomorphism). So (ai)i∈I and (a′i)i∈I are adjacent
in A. Thus s is an isomorphism, that is, s ∈ S.

We will exhibit that the set of graph homomorphisms S for the category G admits a
calculus of right fractions.

Proposition 6.2.3. S admits a calculus of right fractions.

Proof. Since S is the set of all isomorphisms, it is clearly a closed family of morphisms
of the category G . Next we shall verify conditions (i) and (ii) of Theorem 1.2.4. In order
to show condition (i) of Theorem 1.2.4 we have to show for morphisms u : A → B and
v : B → C of D , vu ∈ S and v ∈ S implies u ∈ S. As vu is a monomorphism, u is a
monomorphism. Next for any b ∈ B, v(b) ∈ C. Since vu is an epimorphism, hence there
exists some a ∈ A such that vu(a) = v(b) implying u(a) = b (v is a monomorphism) which
means u is an epimorphism. Thus u ∈ S.

For showing condition (ii) of Theorem 1.2.4 consider the following diagram
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C

A

B

f

s

in G with s ∈ S. We claim that the above diagram can be embedded to a weak pull-back
diagram

D

C

A

B

f

s

t

g

in G with t ∈ S. This is indeed represented by the following diagram:

V (D)

V (C)

V (A)

V (B)

f

s

t

g

We construct a set V (D) as follows:

V (D) = {(a, c) ∈ V (A)× V (C) : f(a) = s(c)}

⊂ V (A)× V (C).

Define t : V (D)→ V (A) by the rule

t(a, c) = a

for a ∈ V (A) and g : V (D)→ V (C) by the rule

g(a, c) = c

for c ∈ V (C). Clearly, the two maps are well defined. Let {(a, c), (a′, c′)} ∈ E(D). That
means (a, c) and (a′, c′) are adjacent inD. Then from the definition of V (D) we can deduce
that a is adjacent with a′ and c is adjacent with c′. So {a, a′} ∈ E(A). Then

{t(a, c), t(a′, c′)} = {a, a′} ∈ E(A).

So t is a graph homomorphism. Similarly, g is also a graph homomorphism. For all (a, c) ∈
V (D),

ft(a, c) = f(a) = s(c) = sg(a, c),
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that is, the above diagram commutes.
Let u : V (E) → V (A) and v : V (E) → V (C) in G be two morphisms such that

fu = sv.

V (E)

V (D)

V (C)

V (A)

V (B)

f

s

t

g

u

v

θ

Define θ : E → D by the rule

θ(x) = (u(x), v(x))

for x ∈ E. Clearly, θ is well defined and also a graph homomorphism. Next we show that
the two triangles are commutative. Now for any x ∈ X

tθ(x) = t(u(x), v(x)) = u(x)

and

gθ(x) = g(u(x), v(x)) = v(x).

So tθ = u and gθ = v.
Next consider (a, c) and (a′, c′) ∈ V (D) with t(a, c) = t(a′, c′); this implies a = a′.

Since (a, c) and (a′, c′) ∈ V (D), we have

f(a) = s(c) and f(a′) = s(c′).

Then s(c) = s(c′) implies c = c′. So (a, c) = (a′, c′), showing t is injective. Consider an
element a ∈ V (A); so f(a) ∈ V (B). There exists some c ∈ V (C) such that s(c) = f(a).
Clearly, (a, c) ∈ V (D) such that t(a, c) = a showing that t is surjective. Thus t is bijective.
Let (a, c) and (a′, c′) ∈ V (D) be adjacent inD. So t(a, c) = a and t(a′, c′) = a′ are adjacent
inA (since t is a homomorphism). Conversely, let (a, c) and (a′, c′) ∈ V (D) and t(a, c) = a,
t(a′, c′) = a′ be adjacent in A. So f : A → B, being a homomorphism, deduces that f(a)
and f(a′) are adjacent in B, that is, s(c) and s(c′) are adjacent in B. Thus c and c′ are
adjacent in C. So (a, c) and (a′, c′) are adjacent in D (by definition of V (D)). Therefore, t
is an isomorphism, showing t ∈ S.

The proof of the following result is trivial.

Proposition 6.2.4. The category G is complete.

By considering all the above results, from Theorem 1.4.3 and Theorem 1.5.4 we can
reach at the outcome that the Adams cocompletion of an object always exists.
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Theorem 6.2.5. Every object G of the category G has an Adams cocompletion GS with
respect to the set of morphisms S. Furthermore, there exists a morphism e : GS → G in
S which is couniversal with respect to morphisms of S : given a morphism s : K → G in
S there exists a unique morphism t : GS → K in S such that st = e. In other words, the
following diagram is commutative:

GS G

K

e

t s

6.3 Z(H) as Adams cocompletion of G

In this section, we will show that Z(H), the center of the graphH (as defined above), is the
Adams cocompletion of the graph G.

Theorem 6.3.1. Z(H) ∼= GS .

Proof. Let us consider the following diagram:

Z(H) G

GS

α

γ
e

ByTheorem 6.1.9, we conclude that there exists a unique graph homomorphism γ : Z(H)→
GS in S such that eγ = α.

Consider another diagram as follows:

GS G

Z(H)

e

t α

By Theorem 6.2.5, there exists a unique graph homomorphism t : GS → Z(H) in S such
that αt = e.

From the following diagram
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Z(H)

Z(H)

G

GS

α

γ

α

t

1Z(H)

we conclude that

αtγ = eγ = α

and the uniqueness condition of α exhibits

tγ = 1Z(H).

From the following

GS

GS

G

Z(H)

e

t

e
γ

1GS

we have

eγt = αt = e

and uniqueness condition of e concludes that

γt = 1GS
.

Now we have

tγ = 1Z(H) and γt = 1GS
;

this shows that Z(H) ∼= GS , that is, Z(H) is the Adams cocompletion of G with respect to
S.
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