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ABSTRACT 

 

 

 

 

All real physical structures, when subjected to loads or displacements, behave 

dynamically.  The additional inertia forces, from Newton’s second law, are equal to 

the mass times the acceleration. If the loads or displacements are applied very slowly 

then the inertia forces can be neglected and a static load analysis can be justified. 

Hence, dynamic analysis is a simple extension of static analysis. 

 

 

In addition, all real structures potentially have an infinite number of displacements. 

Therefore, the most critical phase of a structural analysis is to create a computer 

model, with a finite number of mass less members and a finite number of node (joint) 

displacements, that will simulate the behavior of the real structure. The mass of a 

structural system, which can be accurately estimated, is lumped at the nodes. Also, 

for linear elastic structures the stiffness properties of the members, with the aid of 

experimental data, can be approximated with a high degree of confidence. However, 

the dynamic loading, energy dissipation properties and boundary (foundation) 

conditions for many structures are difficult to estimate. This is always true for the 

cases of seismic input or wind loads. 

 

 

To reduce the errors that may be caused by the approximations summarized in the 

previous paragraph, it is necessary to conduct many different dynamic analyses 

using different computer models, loading and boundary conditions. Because of the 

large number of computer runs required for a typical dynamic analysis, it is very 

important that accurate and numerically efficient methods be used within computer 

programs 
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      FINITE ELEMENT  METHOD 
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                            FINITE ELEMENT METHOD 

 

1.1 INTRODUCTION Theory 

1.1.1Where this Material Fits 

The field of Mechanics can be subdivided into three major areas: 

 

       

 

 

Theoretical mechanics deals with fundamental laws and principles of mechanics studied 

for their intrinsic scientific value. Applied mechanics transfers this theoretical knowledge 

to scientific and engineering applications, especially as regards the construction of 

mathematical models of physical phenomena. Computational mechanics solves specific 

problems by simulation through numerical methods implemented on digital computers. 

 

1.1.2Computational Mechanics 

 

Several branches of computational mechanics can be distinguished according to the 

physical scale of the focus of attention: 
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Nano mechanics deals with phenomena at the molecular and atomic levels of matter. As 

such it is closely linked to particle physics and chemistry. Micro mechanics looks 

primarily at the crystallographic and granular levels of matter. Its main technological 

application is the design and fabrication of materials and micro devices. 

 

 

Continuum mechanics studies bodies at the macroscopic level, using continuum models 

in which the microstructure is homogenized by phenomenological averages. The two 

traditional areas of application are solid and fluid mechanics. The former includes 

structures which, for obvious reasons, are fabricated with solids. Computational solid 

mechanics takes an applied sciences approach, whereas computational structural 

mechanics emphasizes technological applications to the analysis And design of 

structures. 

 

 

Computational fluid mechanics deals with problems that involve the equilibrium and 

motion of liquid and gases. Well developed subsidiaries are hydrodynamics, 

aerodynamics, acoustics, atmospheric physics, shock, combustion and propulsion. 

 

 

A system is studied by decomposition: its behavior is that of its components plus the 

interaction between components. Components are broken down into subcomponents and 

so on. As this hierarchical breakdown process continues, individual components become 

simple enough to be treated by individual disciplines, but component interactions get 

more complex. 
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1.1.3Statics vs. Dynamics 

 

 

Continuum mechanics problems may be subdivided according to whether inertial effects 

are taken into account or not: 

 

 

 

In dynamics actual time dependence must be explicitly considered, because the 

calculation of inertial (and/or damping) forces requires derivatives respect to actual time 

to be taken. 

 

 

 

Problems in statics may also be time dependent but with inertial forces ignored or 

neglected. Accordingly static problems may be classed into strictly static and quasi-static. 

For the former time need not be considered explicitly; any historical time-like response 

ordering parameter, if one is needed, will do. In quasi-static problems such as foundation 

settlement, metal creep, rate-dependent plasticity or fatigue cycling, a realistic measure of 

time is required but inertial forces are still neglected. 

 

 

1.1.4 Discretization methods 

 

A final classification of CSM static analysis is based on the discretization method by 

which the continuum mathematical model is discretized in space, i.e., converted to a 

discrete model with a finite number of degrees of freedom: 
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In CSM linear problems finite element methods currently dominate the scene as regards 

space discretization. Boundary element methods post a strong second choice in specific 

application areas. For nonlinear problems the dominance of finite element methods is 

overwhelming. 

 

1.1.5 FEM Variants 

 

The term Finite Element Method actually identifies a broad spectrum of techniques that 

share common features outlined in above sections. Two sub classifications that fit well 

applications to structural mechanics are 

 

 

 

Of the variants listed above, emphasis is placed on the displacement formulation and 

stiffness solution. This combination is called the Direct Stiffness Method or DSM. 
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1.2 The Finite Element Method 

 

The finite element method (FEM) is the dominant discretization technique in structural 

mechanics. 

 

The basic concept in the physical FEM is the subdivision of the mathematical model into 

disjoint (non-overlapping) components of simple geometry called finite elements or 

elements for short. The response of each element is expressed in terms of a finite number 

of degrees of freedom characterized as the value of an unknown function, or functions, at 

a set of nodal points. The response of the mathematical model is then considered to be 

approximated by that of the discrete model obtained by connecting or assembling the 

collection of all elements. 

 

1.2.1Element Attributes 

 

The procedure involves the separation of elements from their neighbors by disconnecting 

the nodes, followed by referral of the element to a convenient local coordinate system.8 

After that we can consider generic elements: a bar element, a beam element, and so on.  

 

From the standpoint of the computer implementation, it means that you can write one 

subroutine or module that constructs, by suitable  parametrization, all elements 

of one type, instead of writing a new one for each element instance. 

 

1.2.2Dimensionality 

 

Elements can have intrinsic dimensionality of one, two or three space dimensions. There 

are also special elements with zero dimensionality, such as lumped springs or point 

masses. The intrinsic dimensionality can be expanded as necessary by use of kinematic 

transformations. For example a 1D element such as a bar, spar or beam may be used to 

build a model in 2D or 3D space. 
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1.2.3Nodes 

 

Each element possesses a set of distinguishing points called nodal points or nodes for 

short. Nodes serve a dual purpose: definition of element geometry, and home for degrees 

of freedom. When a distinction is necessary we call the former geometric nodes and the 

latter connection nodes. For most elements studied here, geometric and connector nodes 

coalesce. 

 

1.2.4 Degrees of Freedom 

 

The element degrees of freedom (DOF) specify the state of the element. They also 

function as “handles” through which adjacent elements are connected. DOFs are defined 

as the values (and possibly derivatives) of a primary field variable at connector node 

points.  

A simple definition of "degrees of freedom" is - the number of coordinates that it takes to 

uniquely specify the position of a system. 

 

 

               

                

         SINGLE DOF                                      TWO DOF                                       SIX DOF          

 

(Figure 1) 
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For mechanical elements, the primary variable is the displacement field and the DOF for 

many (but not all) elements are the displacement components at the nodes. 

 

If the number of degrees of freedom is finite, the model is called discrete, and continuous 

otherwise. Because FEM is a discretization method, the number of DOF of a FEM model 

is necessarily finite. They are collected in a column vector called u. This vector is called 

the DOF vector or state vector. The term nodal displacement vector for u is reserved to 

mechanical applications. 

 

1.2.5Nodal Forces 

 

There is always a set of nodal forces in a one-to-one correspondence with degrees of 

freedom. In mechanical elements the correspondence is established through energy 

arguments. 

 

1.2.6Assembly 

 

The assembly procedure of the Direct Stiffness Method for a general finite element 

model follows rules identical in principle to those discussed for the truss example. As in 

that case the process involves two basic steps: 

 

Globalization.  The element equations are transformed to a common global coordinate 

system, if necessary. 

 

Merge. The element stiffness equations are merged into the master stiffness equations by 

appropriate indexing and matrix-entry addition. 

 

The master stiffness equations in practical applications may involve thousands or even 

millions of freedoms, and programming can become involved. 
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1.2.7 Essential and Natural B.C. 

 

The key thing to remember is that boundary conditions (BCs) come in two basic flavors: 

essential and natural. 

 

 Essential BCs directly affect DOFs, and are imposed on the left-hand side vector u. 

 

Natural BCs do not directly affect DOFs and are imposed on the right-hand side vector f. 

 

The mathematical justification for this distinction requires use of concepts from 

variational calculus, and is consequently relegated to Part II. For the moment, the basic 

recipe is: 

 

1. If a boundary condition involves one or more degrees of freedom in a direct 

way, it is essential. An example is a prescribed node displacement. 

 

2. Otherwise it is natural.  

 

The term “direct” is meant to exclude derivatives of the primary function, unless 

those derivatives also appear as degrees of freedom, such as rotations in beams and 

plates. 

1.2.8Boundary Conditions in Structural Problems 

 

Essential boundary conditions in mechanical problems involve displacements (but not 

strain-type displacement derivatives). Support conditions for a building or bridge 

problem furnish a particularly simple example. But there are more general boundary 

conditions that occur in practice.  

 

The total potential energy in the body is  

                         = 0.5 * Q
T
 K*Q – Q

T
 * F 
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Where K is the structural stiffness matrix is the global load vector, and Q is the global 

displacement vector. We now must arrive at the equations of equilibrium, from which we 

can determine nodal displacements, element stresses and support reactions. The minimum 

potential energy theorem is now invoked. This theorem is stated as follows: of all 

possible displacements that satisfy the boundary conditions of a structural system, those 

corresponding to equilibrium configurations make the total potential energy assume a 

minimum value.  

 

   It is noted that the treatment of boundary conditions in this sections is applicable to two 

and three dimensional problems as well. 

It should be emphasized that improper specification of boundary conditions can lead to 

erroneous results. Boundary conditions eliminate the possibility of the structure moving 

as a rigid body.   

 

There are two approaches to calculate displacements: 

                     1. Elimination approach 

                     2. Penalty approach 

 

1.2.9 Elimination approach: 

 

Considering the single boundary condition Q1=a1. The equilibrium equations are 

obtained by minimizing pi with respect to Q, subjected to the boundary condition 

Q1=a1.for an N- dof structure, we have Q=[Q1,Q2,…….Qn] 

F= [F1, F2….......Fn] 

Steps involved :  

Consider the boundary conditions Q1=a1,Q2=a2………Qr=ar. 

 

1. Store the p1 th,p2 th…and pr th rows of the global stiffness matrix K and force 

vector F.these rows will be used subsequently. 
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2. Delete the p1th row and column, the p rth row and column from the K matrix. The 

resulting stiffness matrix K is of dimension (N-r,N-r).similarly, the corresponding 

load vector F is of dimension(N-r,1).so 

                                          KQ=F 

3. For each element, extract the element, displacement vector q from the q vector,  

element connectivity, and determine element stresses. 

4. Using the information stored in step 1 ,evaluate the reaction forces at each support 

dof from 

Rp1=Kp1 Q1+Kp2 Q2 +………Kp N QN –Fp1 

Rp2=Kp1 Q1+Kp2 Q2 +………Kp N QN –Fp2 

------------------------------------------------------------ 

Rpr = Kpr1  Q1+Kpr2 Q2 +………KprN  QN –Fpr2 

 

 

1.2.10 Penalty approach: 

Consider the boundary condition Q1=a1,Q2=a2………Qr=ar. 

 

1. Modify the structural stiffness matrix K by adding a large number C to each of 

p1 th,p2 th…and pr th diagonal elements of k . also modify the global load 

vector F by adding Ca1 to Fa1 , Ca2 to Fa2  …..and Car to Far . Solve KQ=F for 

the displacement Q, where K and F are the modified stiffness and load 

matrices. 

2. For each element, extract the element displacement vector q from the Q 

vector, using element connectivity and determinate the element stresses. 

3. Evaluate the reaction forces at each support from  

                              Rpi =-C (Qpi –ai )        i=1,2,3….r 

It should be noted that the penalty approach presented here is an approximate 

approach. The accuracy of the solution particularly depends on choice of C. 
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1.3 STIFFNESS MATRIX  

Properties: 

 

1. The dimension of the global stiffness matrix K is (N*N), where N is the number of 

nodes .this follows from the fact that each node has only one   DOF. 

 

2. K is symmetric. 

 

3. K is banded matrix. That is all elements outside of the band are zero. K(banded) is of 

dimension [N*NBW],where NBW is the half-bandwidth.in many one dimensional 

problems such as the example just considered ,the connectivity of element I,i+1.in such 

cases ,the banded matrix has only two columns (NBW=2). 

 

NBW=max (difference between dof numbers connecting an element) +1 

1.4 MASS MATRIX 

1.4.1Introduction 

 

To do dynamic and vibration finite element analysis, you need at least a mass matrix to 

pair with the stiffness matrix. 

 

As a general rule, the construction of the master mass matrix M largely parallels that of 

the master stiffness matrix K. Mass matrices for individual elements are formed in local 

coordinates, transformed to global, and merged into the master mass matrix following 

exactly the same techniques used for K. In practical terms, the assemblers for K and M 

can be made identical. This procedural uniformity is one of the great assets of the Direct 

Stiffness Method 

. 
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A notable difference with the stiffness matrix is the possibility of using a diagonal mass 

matrix based on direct lumping. A master diagonal mass matrix can be stored simply as a 

vector. If all entries are nonnegative, it is easily inverted, since the inverse of a diagonal 

matrix is also diagonal. Obviously a lumped mass matrix entails significant 

computational advantages for calculations that involve M−1. 

 

1.4.2Mass Matrix Construction 

The master mass matrix is built up from element contributions, and we start at that level. 

The construction of the mass matrix of individual elements can be carried out through 

several methods. These can be categorized into three groups: direct mass lumping, 

variational mass lumping, and template mass lumping. The last group is more general in 

that includes all others. Variants of the first two techniques are by now standard in the 

FEM literature, and implemented in all general purpose codes.  

 

1.4.3Mass Matrix Properties 

Mass matrices must satisfy certain conditions that can be used for verification and 

debugging. They are: (1) matrix symmetry, (2) physical symmetries, (3) conservation and 

(4) positivity. 

 

1.4.4Globalization 

 

Like their stiffness counterparts, mass matrices are often developed in a local or element 

frame. Should globalization be necessary before merge, a congruent transformation is 

applied: 

 

Me = (Te)
T  

*M’
e 
 *T

e 
 

 

 

Here M’
e 
is the element mass referred to is the element mass referred to the local frame 

whereas T
e 
is the local-to-global displacement transformation matrix. Matrix T

e 
 is in 

principle that used for the stiffness globalization. 
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THEORY OF VIBRATION   

 

2.1 SINGLE DEGREE OF FREEDOM SYSTEMS 

 

2.1.1)Damped Vibration of Free SDOF Systems     

 

Definition 

Free vibration (no external force) of a single degree-of-freedom system with viscous 

damping can be illustrated as,  

 

 

(Figure 2) 

Damping that produces a damping force proportional to the mass's velocity is commonly 

referred to as "viscous damping", and is denoted graphically by a dashpot.  

Time Solution for Damped SDOF Systems 

For an unforced damped SDOF system, the general equation of motion becomes,  

 

with the initial conditions,  
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This equation of motion is a second order, homogeneous, ordinary differential equation 

(ODE). If all parameters (mass, spring stiffness and viscous damping) are constants, the 

ODE becomes a Linear ODE with constant coefficients and can be solved by the 

Characteristic Equation method. The characteristic equation for this problem is,  

 

which  determines the 2 independent roots for the damped vibration problem. The roots 

to the characteristic equation fall into one of the following 3 cases:  

If < 0, the system is termed under damped. The roots of the characteristic 

equation are complex conjugates, corresponding to oscillatory motion with an 

exponential decay in amplitude. 

If = 0, the system is termed critically damped. The roots of the characteristic 

equation are repeated, corresponding to simple decaying motion with at most one 

overshoot of the system's resting position. 

If > 0,  the system is termed over damped. The roots of the characteristic 

equation are purely real and distinct, corresponding to simple exponentially decaying 

motion. 

To simplify the solutions coming up, we define the critical damping cc, the damping ratio 

ξ, and the damped vibration frequency ωd as,  
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Where  the natural frequency of the system ωn is given by,  

 

Note that ωd will equal ωn when the damping of the system is zero (i.e. un damped). The 

time solution for the free SDOF system is presented below for each of the three case 

scenarios.  

Under damped Systems 

When < 0 (equivalent to < 1 or < ), the characteristic equation has a 

pair of complex conjugate roots. The displacement solution for this kind of system is,  

 

An alternate but equivalent solution is given by,  
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The displacement plot of an under damped system would appear as,  

 

(Figure 3) 

Note that the displacement amplitude decays exponentially (i.e. the natural logarithm of 

the amplitude ratio for any two displacements separated in time by a constant ratio is a 

constant; long-winded!),  

 

where is the period of the damped vibration.  
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Critically-Damped Systems 

When = 0 (equivalent to = 1 or = ), the characteristic equation has 

repeated real roots. The displacement solution for this kind of system is,  

 

The critical damping factor cc can be interpreted as the minimum damping that results in 

non-periodic motion (i.e. simple decay).  

The displacement plot of a critically-damped system with positive initial 

displacement and velocity would appear as,  

 

(Figure 4) 

The displacement decays to a negligible level after one natural period, Tn. Note that if the 

initial velocity v0 is negative while the initial displacement x0 is positive, there will exist 

one overshoot of the resting position in the displacement plot. 



 

 

20 

Over damped Systems 

When > 0 (equivalent to > 1 or > ), the characteristic equation has two 

distinct real roots. The displacement solution for this kind of system is,  

 

   The displacement plot of an over damped system would appear as,  

 

(Figure 5) 
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The motion of an over damped system is non-periodic, regardless of the initial 

conditions. The larger the damping, the longer the time to decay from an initial 

disturbance.  

If the system is heavily damped, , the displacement solution takes the approximate 

form,  

 

2.1.2) SDOF Systems under Harmonic Excitation 

When a SDOF system is forced by f(t), the solution for the displacement x(t) consists of 

two parts: the complimentary solution, and the particular solution. The complimentary 

solution for the problem is given by the free vibration discussion. The particular solution 

depends on the nature of the forcing function.  

When the forcing function is harmonic (i.e. it consists of at most a sine and cosine at the 

same frequency, a quantity that can be expressed by the complex exponential e
iωt

), the 

method of undetermined coefficients can be used to find the particular solution. Non-

harmonic forcing functions are handled by other techniques.  

Consider the SDOF system forced by the harmonic function f(t),  

 

(Figure 6) 

The particular solution for this problem is found to be,  
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The general solution is given by the sum of the complimentary and particular solutions 

multiplied by two weighting constants c1 and c2,  

 

The values of c1 and c2 are found by matching x(t = 0) to the initial conditions. 

2.1.3) Undamped SDOF Systems under Harmonic Excitation 

For an un damped system (cv = 0) the total displacement solution is,  

 

If the forcing frequency is close to the natural frequency, , the system will exhibit 

resonance (very large displacements) due to the near-zeros in the denominators of x(t).  

When the forcing frequency is equal to the natural frequency, we cannot use the x(t) 

given above as it would give divide-by-zero. Instead, we must use L hospitals Rule to 

derive a solution free of zeros in the denominators,  
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To simplify x(t), let's assume that the driving force consists only of the cosine 

function, ,  

 

(Figure 7) 

 

The displacement solution reduces to,  

 

 

 

This solution contains one term multiplied by t. This term will cause the displacement 

amplitude to increase linearly with time as the forcing function pumps energy into the 

system, as shown in the following displacement plot,  
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(Figure 8) 

The maximum displacement of an un damped system forced at its resonant frequency 

will increase unbounded according to the solution for x(t) above. However, real systems 

will inject additional physics once displacements become large enough. These additional 

physics (nonlinear plastic deformation, heat transfer, buckling, etc.) will serve to limit the 

maximum displacement exhibited by the system, and allow one to escape the "sudden 

death" impression that such systems will immediately fail.  
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2.1.4) SDOF Systems under General Dynamic Loading 

Impulsive Force 

An Impulsive Loading is a Load which is applied during a short duration of time. 

 

 

(Figure 9) 

The above figure shows the typical time history of an impulsive force, f(t),  It can be seen 

that the force is only non-zero in the short time interval t1 to t2. It is helpful to define a 

quantity known as the net impulse, , associated with : 

 

. 
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(Figure 10) 

The Total Displacement of a UN damped Single degree of freedom system with any 

orbitary load is given by CLASSIC SOLUTION as 

 

2.2 Multiple Degree –of –Freedom SYSTEM  

 

Multi degree-of-freedom system has the same basic form of the governing equation 

as a single degree-of-freedom system.  

The difference is that it is a matrix equation:  
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So apply the same solution technique as for a single degree-of-freedom system.  

Free Vibration  

 

Again assume a solution which has harmonic motion. It now has multiple 

components 

 

where ω are the natural frequencies of the system  

and  

 

 

Substituting the assumes solution in to the matrix 

set  

of governing equations : 

     -ω
2
[m][A] e

iωt  
+ [K] [A] e

iωt 
 =  [0] 
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CHAPTER 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Dynamic Analysis  By Numerical  Integration 
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DYNAMIC ANALYSIS BY NUMERICAL INTEGRATION 

3.1 INTRODUCTION 

The most general approach for the solution of the dynamic response of structural Systems 

is the direct numerical integration of the dynamic equilibrium equations. This involves, 

after the solution is defined at time zero, the attempt to satisfy dynamic equilibrium at 

discrete points in time. Most methods use equal time intervals at D t, 2Dt, 3Dt........NDt. 

Many different numerical techniques have previously been presented; however, all 

approaches can fundamentally be classified as either explicit or implicit integration 

methods. 

 

Explicit methods do not involve the solution of a set of linear equations at each step. 

Basically, these methods use the differential equation at time “ t ” to predict a solution at 

time “t+Dt”. For most real structures, which contain stiff elements, a very small time step 

is required in order to obtain a stable solution. Therefore, all explicit methods are 

conditionally stable with respect to the size of the time step. 

 

Implicit methods attempt to satisfy the differential equation at time “ t ” after the solution 

at time “t-Dt” is found. These methods require the solution of a set of linear equations at 

each time step; however, larger time steps may be used. Implicit methods can be 

conditionally or unconditionally stable. 

 

There exist a large number of accurate, higher-order, multi-step methods that have been 

developed for the numerical solution of differential equations. These multistep methods 

assume that the solution is a smooth function in which the higher derivatives are 

continuous. The exact solution of many nonlinear structures requires that the 

accelerations, the second derivative of the displacements, are not smooth functions. This 

discontinuity of the acceleration is caused by the nonlinear hysteresis of most structural 

materials, contact between parts of the structure, and buckling of elements. 
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3.2 The NUMERICAL SOLUTION can be calculated by 

various methods 

• Duhamel Integral 

• Newmark Integration method 

• Central difference Method 

• Houbolt  Method 

• Wilson θ Method 

3.3The Newmark method 

The Newmark method consists of the following equations [#! Newm1959!#]  

 

which are used for the determination of three unknowns 
t + t

, 
t + t

 and 
t + t

. 

Summary of the Newmark Method for Direct Integration 

I. INITIAL CALCULATION 

               A. Form static stiffness matrix K , mass matrix M and damping matrix C 
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         B. Specify integration parameters β and γ 

         C. Calculate integration constants 

            

         D. Form effective stiffness matrix 

 

        E. Triangularize effective stiffness matrix     

 

                    
F. Specify   initial conditions

 

 

II. FOR EACH TIME STEP t = ∆t, 2∆t, 3∆t - - - - - - 

A.   Calculate effective load vector         

 

B. Solve for node displacement vector at time t 

C. Calculate node velocities and accelerations at time tss 
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3.4Duhamel's integral 

The response of a linear, viscously damped single degree of freedom (SDF) system to a 

time-varying mechanical excitation p(t) is given by the following second-orderordinary 

differential equation  

 

where m is the (equivalent) mass, x stands for the amplitude of vibration, t for time, c for 

the viscous damping coefficient, and k for the stiffness of the system or structure. 

If a system is initially rest at its equilibrium position, from where it is acted upon by a 

unit-impulse at the instance t=0, i.e., p(t) in the equation above is a delta function δ(t), 

, then by solving the differential equation one can get a 

fundamental solution  (known as a unit-impulse response function) 

 

where is called the damping ratio of the system, ωn is the natural angular 

frequency of the un damped system (when c=0) and is the angular 

frequency  when damping effect is taken into account (when ). If the impulse 

happens at t=τ instead of t=0, i.e. p(t) = δ(t − τ), the impulse response is 

，   
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 CHAPTER 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Plane frame Analysis  

 

 

 



 

 

34 

STEPS INVOLVED IN SOLVING 2 – D PLANE FRAME: 

(Multi Degree Of Freedom System) 

 

1. Identify Degrees of Freedom. Number all the global degrees of freedom in your frame. 

In a planar frame, every joint has three degrees of freedom: one in the global X-direction, 

one in the global Y-direction, and one rotation about the global Z-axis (counter-

clockwise). Using the method in this handout, every joint gets three degrees of freedom 

 

2. Number all of the elements. 

 

3. Joint Coordinates: Write the coordinates of each joint using units consistent with E 

and I. In other words, if E and I are given in kN/cm2 and cm4, write the coordinates, (x; 

y), in terms of centimeters. 

 

4. Define each element: Draw each element of your frame individually and draw the 

local coordinates in the global directions. For example if element number N is a diagonal 

beam element, and the global directions are X: horizontal and Y: vertical, draw element 

number N like this: 

 

 

 

(Figure 11) 

where 1,2,3,4,5,6 are the LOCAL coordinates of the beam element in the GLOBAL 

directions. The local coordinates are always numbered 1,2,3,4 with 1 and 4 pointing in 
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the global X direction (to the right), with 2 and 5 pointing in the global Y direction (up), 

and with 3 and 6 rotating about the global Z-axis (counter-clockwise). All of these six 

coordinates will line up with with the global degrees of freedom that you identified in 

step 1., above. 

 

5. Element Stiffness Matrices in Global Coordinates, K. 

 

For each element, find it's (6 x 6) element stiffness matrix, by evaluating the equations 
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6. Structural Stiffness Matrix, Ks. 

 

The structural stiffness matrix is a square, symmetric, matrix with dimension equal to 

the number of degrees of freedom. In this step we will fill up the structural stiffness 

matrix using terms from the element stiffness matrices in global coordinates (from 

step 5.) This procedure is called matrix assembly. 

 

Recall from step 4.  how  the LOCAL element degrees of freedom (1,2,3,4,5,6) line up with the 

GLOBAL degrees of freedom in your problem. For example, local coordinates (1,2,3,4,5,6) 

might line up with degrees of freedom (13,14,15,7,8,9) of the frame. In that case: 

K(1,1) is added to Ks(13,13), 

K(1,2) is added to Ks(13,14), 

... 

K(2,6) is added to Ks(14,9), 

... 

K(5,6) is added to Ks(8,9), 

K(6,6) is added to Ks(9,9), 

Add each element into the structural stiffness matrix in this way to build up Ks 

 

7. Reactions: Ks must be modified to include the effects of the reactions, which have been 

ignored up until now. Set every element of each row and column corresponding to a restrained 

degree of freedom (reaction) equal to zero. Set every diagonal element that is zero equal to 1. 

 

8. External Loads, p: Create the load vector p, by finding the fixed-end forces and moments of 

each member, and their components in the directions of the global degrees of freedom. Add the 

fixed end forces and moments to any point loads applied directly to the joints. Create the force 

vector by placing these force components into the force vector at the proper coordinates. 

 

9. Deflections, d: Find the deflections by inverting the stiffness matrix and multiplying it by the 

load vector.  
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10. Internal beam forces, q: Again, recall how the global degrees of freedom line up with 

each element's coordinates (1,2 ,3,4, 5,6).  For example, in element number "N" from step 6., the 

local element deflections v1,v2,v3,v4,v5,v6 line up with the global deflections 

d13,d14,d15,d7,d8,d9.  

 

11. Formation of MASS Matrix:  The mass matrix in local coordinate system for an 

element is given by [MC
-e 

 ] , which is multiplied by the transformation matrix [ T
e
 ] to 

get in global coordinate system  

 

 

 

 

Similarly as described in step 6 the Global Mass Matrix is formed. 

 

12. Dynamic Analysis: Now the dynamic analysis is carried out by substituting the Mass 

matrix [M] and stiffness matrix [K] in the Dynamic Equilibrium equation given by 

 

 

         in which M is the mass matrix (lumped or consistent), C is a viscous damping 

matrix (which is normally selected to approximate energy dissipation in the real 

structure) and K is the static stiffness matrix for the system of structural elements. 
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The time-dependent vectors u(t)a, u
’
(t)a ,and u

’’
(t)a are the absolute node displacements, 

velocities and accelerations, respectively. 

  

13. Free Vibration: In this case the Eigen values and Eigen vectors are calculated by 

using MATLAB program me and then the results are plotted and discussed. 

 

 

14. Harmonic Vibration: In this case the displacement u(t), velocity u
’
(t) , acceleration 

u
’’
(t), vectors are calculated at different times by using the Newmark Integration Method 

(numerical method) for the given 2D plane frame system using MATLAB program me  

and the results are plotted and discussed. 
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CHAPTER 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Problems Solved 
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PROBLEMS BEEN SOLVED DURING PROJECT: 

COMPUTER CODE TO CALCULATE RESPONSE OF A STRUCTURE 

SUBJECTEDTOTHE FOLLOWING EXCITING   FUNCTIONS USING Duhamel’s 

INTEGRATION METHOD 

Data given    K=100000 N/Sec-3      m=100kg       

Problem 1) Forcing Function given by 

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6

0

1 2 0 0 0 0

D
is

p
la

c
e
m

e
n
t 
(m

)

T i m e  i n  ( s e c )

 

(Figure 12) 

OUTPUT GRAPH CAN BE PLOTTED AS: 
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(Figure 13) 
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Problem 2) Forcing Function given by 

 

(Figure 14) 

 

OUTPUT GRAPH CAN BE PLOTTED AS: 
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(Figure 15) 
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Problem 3) HARMONIC FORCING FUNCTION 

F (t) = A Sin (ώ t) 

Where A= 1000N ; k=4000000N/m ; mass = 10000 kg ;natural frequency ω = 20 

rad/s 
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(Figure16)          Forcing frequency ώ = 16 rad /sec 
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(Figure 17 ) Forcing frequency ώ = 18 rad /s 
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(Figure 18) Forcing frequency ώ = 20 rad /s    
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   (Figure 19)Forcing frequency ώ = 22 rad/sec 
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(Figure 20)Forcing frequency ώ = 24 rad / sec 
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Problem 4) Free undamped vibration of 2 D plane Frame  

 

 

 

 

(Figure 21) 

 

A plane frame having two prismatic beam elements and three degrees of freedom as 

shown above  

 

Using the consistent mass formulation determine the three natural frequencies and normal 

modes corresponding to discrete modal of frame   

 

Given   Area = 6 inch
2
 

            Second moment of inertia = 100 inch
4
 

           Young’s modulus (E) = 10
7
 lb/inch

2
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After applying Boundary conditions the 
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Problem 5)Free undamped vibration of 2 D plane Frame 

 

 

(Figure 22) 

A plane frame having three prismatic elements and three degrees of freedom as shown 

above  

 

Using the consistent mass formulation determine the three natural frequencies and normal 

modes corresponding to discrete modal of frame   

Given  

 Area = 1.85187*10
-5

m
2
 

E=2.06829*10
11

 kg/cm
2
 

L= 0.2413 m 

I=2.85785*10
-4

 

Density = 25613.5 kg/m
-3
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After applying Boundary conditions the  
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Forced Vibration of 2D Plane Frame  subjected to 

Harmonic Exciting Function 

Problem 6) F(t)= 20000sin30(t)  applied at node 2 in horizontal direction .for the frame 

shown in Problem 4 then calculate the displacement velocity and acceleration 

 

Output:   

 USING NEWMARK INTEGRATION METHOD AND MATLAB PROGRAM ME  : 

 

Table 1 

Time(sec) Displacement(m) Velocity(ms
-1)

  Acceleration(ms-2) 

0 0 0 0 

0.5 0.0203 0.0810 0.3240 

1.0 -0.0297 -0.2807 -1.7709 

1.5 0.0227 0.4902 4.8544 

2.0 -0.0019 -0.5885 -9.1692 

2.5 -0.0234 0.5026 13.337 

3.0 0.0412 -0.2442 -16.5209 

3.5 -0.0431 -0.0929 17.1262 

4.0 0.0277 0.3759 -15.2510 

4.5 -0.0019 -0.4943 11.7701 

5.0 -0.0226 0.4116 -8.1465 

5.5 0.035 -0.1810 5.7761 

6.0 -0.0302 -0.08 -5.3719 

6.5 0.0114 0.2464 6.6773 

7.0 0.0118 -0.2447 -8.6415 

7.5 -0.0277 0.0867 9.9669 

8.0 0.0285 0.1380 -9.7618 

8.5 -0.0138 -0.3071 7.9815 

9.0 -0.0089 0.3270 -5.4448 
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Graphs : 

 

 

 

(Figure 23) 

 

 

 

( Figure 24 ) 
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Problem 7) F(t)= 20000sin30(t)  applied at node 2 in horizontal direction for the plane 

frame shown in Problem 5.then calculate the displacement velocity and acceleration …. 

 

Output:   USING NEWMARK INTEGRATION METHOD AND MATLAB 

PROGRAMME : 

 

Table 2 

Time  Displacement Velocity acceleration 

0.0 0.0031*10-4 0.0012*10-3 0.00 

0.5 0.1959*10-4 0.0759*10-3 0.0003 

1.0 -0.2990*10-4 -0.0003 -0.0017 

1.5 0.2565*10-4 0.0005 0.0048 

2.0 -0.0887*10-4 -0.0006 -0.0093 

2.5 -0.0124*10-3 0.0006 0.0143 

3.0 0.0280*10-3 -0.0005 -0.0186 

3.5 -0.0304*10-3 0.0002 0.0214 

4.0 0.0184*10-3 0.0 -0.0224 

4.5 0.0203*10-4 0.0 0.0224 

5.0 -0.2120*10-4 -0.0001 -0.0224 

5.5 0.2983*10-4 0.0003 0.0237 

6.0 -0.2376*10-4 -0.0005 -0.0267 

6.5 0.0589*10-4 0.0006 0.0309 

7.0 0.0152*10-3 -0.0006 -0.0355 

7.5 -0.0294*10-3 0.0004 0.0393 

8.0 0.0299*10-3 -0.0001 0.0414 

8.5 -0.0165*10-3 -0.00 0.0418 

9.0 -0.0438*10-4 0.0001 -0.0412 

9.5 0.2267*10-4 0.00 0.0409 
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Graphs : 

 

 

 

( Figure 25) 

 

(Figure 26) 
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CHAPTER 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Computer Programmes  

 

 



 

 

54 

Computer Programmes 

 

 

%Newmark's Direct Integration Method 

%-------------------------------------------------------------------------- 

% Integrates  a N-DOF system with mass matrix "m", stiffness matrix "k" and damping 

% matrix "c", when subjected to an external load harmonic in nature F(t). 

% Returns the displacement, velocity and acceleration of the system with 

% respect to an inertial frame of reference. 

n=input('no. of time increments required n='); 

dt=input('time interval dt ='); 

t(1)=0; 

for(i=1:n) 

     

        t(i+1)=t(i)+dt; 

    end 

end 

disp('input the stiffness and mass matrices'); 

k=input('stiffness matrix='); 

m=input('mass matrix='); 

c=input('damping matrix c='); 

disp('stiffness matrix k='); 

disp(k); 

disp('mass matrix m='); 

disp(m); 

disp('damping matrix c='); 

disp(c); 

disp('force matrix f='); 

disp(f); 

u=[0;0;0;0;0;0]; 
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ud=[0;0;0;0;0;0]; 

udd=[0;10;10;0;0;0]; 

alpha=input('integration constantl alpha ='); 

gamma=input('integration constant gamma='); 

a0=1/(alpha*dt^2); 

a1=gamma/(alpha*dt); 

a2=1/(alpha*dt); 

a3=(1/(2*alpha))-1; 

a4=(gamma/alpha)-1; 

a5=((gamma/alpha)-2)*(dt/2); 

a6=dt*(1-gamma); 

a7=gamma*dt; 

keff=k+a0*m+a1*c; 

 

for(i=1:n) 

    f=[0;2*sin(3*t(i));0;10;0;0]; 

s=m*(a0*u+a2*ud+a3*udd) 

    +c*(a1*u+a4*ud+a5*udd); 

    feff=f+s; 

    disp('feffective ::') 

    disp(feff) 

    temp1=u;     

    u=inv(keff)*feff; 

    temp=udd; 

        udd=a0*(u-temp1)-a2*(ud)-a3*udd; 

    ud=ud+a6*temp+a7*udd; 

    disp('upadated value of u') 

    disp(u) 

    disp('upadated value of u') 

    disp(ud) 

    disp('upadated value of udd:') 
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    disp(udd) 

     

end 

end 

 

%  Method to Display Eigen values and Eigen Vectors  

K=10^4*[0.0052 0 -0.0026 0.0326;0 1.0880 -0.0326 0.2720;-0.0026 -0.0326 0.0026 -

0.0326;0.0326 0.2720 -0.0326 0.5440;] 

M=[0.0929 0 0.0161 -0.0967;0 1.4881 0.0967 -0.5580;0.0161 0.0967 0.0464 -0.1637;-

0.0967 -0.5580 -0.1637 0.7440]; 

F=[0;0;0;0]; 

[V,D]=eig(K,M); 

[lambda,K]=sort(diag(D)); 

V=V(:,K); 

omega=sqrt(D); 

pi=3.1414; 

frequency=omega/(2*pi); 

factor=diag(V'*M*V); 

phi=V*inv(sqrt(diag(factor))); 
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     CONCLUSION 

 

W e c a n  ob s e r v e  t he  r e so n an c e  ph e nom e no n  in  t he  r es pon s e  p l o t s  

w h e n  ex c i t i n g  f r eq u en c y i s  e qu a l  t o  n a t u ra l  f r e qu e ncy  o f  t h e  

a p p l i e d  h a rmo n i c  ex c i t i n g  fu nc t i on .   

 

A l s o  i t  h as  b e en  f o un d  th a t  t h e  t yp e  o f  N u me r i c a l  In t e g r a t i o n  

m et ho d  u s ed  a l so  a f f e c t s  t h e  r e su l t s .  D uh am e l ’ s  i n t e g r a t i o n  

m et ho d  c an  b e  ap p l i e d  s in g l e  de g r e e  o f  f r e ed om  s ys t e ms ,  wh i l e  

t h e  N e wm a rk  in t e g r a t i on  me th od  c an  b e  a pp l i ed  t o  m ul t i  d e g r e e  

o f  f r e e do m s ys t e ms .  T he  N ew ma r k  in t e g r a t i on  m et ho d  a l so  v e r y  

a d v an ta ge o us  ov e r  o th e r  m et ho ds  as  i t s  c omp ut e r  im p l eme n t a t i on  

i s  v e r y e a s y a n d  a l s o  t h e  c a l cu l a t i ons  i nv o l ve d  a r e  a l s o  ve r y e a s y  

a n d  c a n  b e  co mp ut ed  ve r y a c c u r a t e l y.   

  

In  t h e  F r e e  Vi b r a t i on  an a l ys i s  t h e  l ow e r  m od e s  a r e  muc h  m o re  

i mp or t an t  t h an  h i gh e r  mo d es  as  i t  do min a n t l y  a f f e c t s  t h e  

s t ru c t u re  t h an  o t h e r  mo de s ,   

 

T h e  v a r i a t i on  i n  Co mp ut e r  ge n e ra t e d  r es u l t s  a nd  m an u a l l y  

c a l cu l a t ed  r es u l t s  a r e  i n  c o in c id en c e  . Th e  v a r i a t i on  i s  v e r y l e s s  

b e c a us e  o f  t h e  a cc u r a t e  ap p rox im at io ns  ad op t ed  in  gen e r a t i n g  

c o d e .   
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