
FINGERPRINT RECOGNITION

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

Bachelor of Technology

In

Electrical Engineering

By

NEETA MURMU

And

ABHA OTTI

Under the Guidance of

Prof. P. K. Sahu

Department of Electrical Engineering

National Institute of Technology

Rourkela-769008

National Institute of Technology

Rourkela

CERTIFICATE

 This is to certify that the thesis entitled, “FINGERPRINT RECOGNITION”

submitted by Neeta Murmu and Abha Otti in partial fulfillments for the requirements for the

award of Bachelor of Technology Degree in Electrical Engineering at National Institute of

Technology, Rourkela (Deemed University) is an authentic work carried out by them under my

supervision and guidance.

 To the best of my knowledge, the matter embodied in the thesis has not been

submitted to any other University / Institute for the award of any Degree or Diploma.

Date:

Rourkela Prof. P. K. Sahu

 Dept. of Electrical Engineering,

 National Institute of Technology

 Rourkela - 769008, Orissa

ACKNOWLEDGEMENT

 We would like to articulate our deep gratitude to our project guide Prof. P.K. Sahu for

his guidance, advice and constant support in the project work. We would like to thank him for

being our advisor here at National Institute of Technology, Rourkela. We would like to thank all

faculty members and staff of the Department of Electrical Engineering, N.I.T. Rourkela for their

generous help in various ways for this project.

 Last but not the least, our sincere thanks to all of our friends who have patiently

extended all sorts of help in this project.

 Neeta Murmu

 Roll No-10502015

 Dept. of EE, NIT, Rourkela

 Abha Otti

 Roll No-10502020

 Dept. of EE, NIT, Rourkela

CONTENTS

Page No.

Abstract iii

CHAPTER 1 INTRODUCTION 1

1.1 What is a fingerprint? 2

1.2 Fingerprint Recognition 3

1.3 Objective 4

CHAPTER 2 SYSTEM DESIGN 5

2.1 System Level Design 6

2.2 Algorithm Level Design 7

CHAPTER 3 FINGERPRINT IMAGE PREPROCESSING 9

 3.1 Fingerprint Image Enhancement 10

 3.2 Fingerprint Image Binarization 13

3.3 Fingerprint Image Segmentation 14

CHAPTER 4 MINUTIA EXTRACTION 17

 4.1 Fingerprint Ridge Thinning 18

4.2 Minutia Marking 18

CHAPTER 5 MINUTIA POSTPROCESSING 20

5.1 False Minutia Removal 21

5.2 Unify Terminations and Bifurcations 22

i

CHAPTER 6 MINUTIA MATCH 24

6.1 Alignment Stage 25

6.2 Match Stage 27

CHAPTER 7 EXPERIMENTATION 28

7.1 Source Code 29

CHAPTER 8 CONCLUSION 46

 8.1 Evaluation Indexes 47

 8.2 Experimentation Results 47

 8.3 Conclusion 48

 REFERENCES 49

ii

ABSTRACT

 Human fingerprints are rich in details called minutiae, which can be used as

identification marks for fingerprint verification. The goal of this project is to develop a complete

system for fingerprint verification through extracting and matching minutiae. To achieve good

minutiae extraction in fingerprints with varying quality, preprocessing in form of image

enhancement and binarization is first applied on fingerprints before they are evaluated. Many

methods have been combined to build a minutia extractor and a minutia matcher. Minutia

marking with special consideration of the triple branch counting and false minutiae removal

methods are used in the work. An alignment-based elastic matching algorithm has been

developed for minutia matching. This algorithm is capable of finding the correspondences

between input minutia pattern and the stored template minutia pattern without resorting to

exhaustive search. Performance of the developed system is then evaluated on a database with

fingerprints from different people.

iii

1

 CHAPTER 1

 Introduction

2

1.INTRODUCTION
1.1 What is a fingerprint?

 Skin on human fingertips contains ridges and valleys which together forms distinctive

patterns. These patterns are fully developed under pregnancy and are permanent throughout

whole lifetime. Prints of those patterns are called fingerprints. Injuries like cuts, burns and

bruises can temporarily damage quality of fingerprints but when fully healed, patterns will be

restored.

 Through various studies it has been observed that no two persons have the same

fingerprints, hence they are unique for every individual .

 Figure 1. A fingerprint image obtained by optical sensor

 Due to the above mentioned properties, fingerprints are very popular as biometrics

measurements. Especially in law enforcement where they have been used over a hundred years

to help solve crime. Unfortunately fingerprint matching is a complex pattern recognition

problem. Manual fingerprint matching is not only time consuming but education and training of

experts takes a long time. Therefore since 1960s there have been done a lot of effort on

development of automatic fingerprint recognition systems.

 Automatization of the fingerprint recognition process turned out to be success in

forensic applications. Achievements made in forensic area expanded the usage of the automatic

fingerprint recognition into the civilian applications. Fingerprints have remarkable permanency

3

and individuality over the time. The observations showed that the fingerprints offer more secure

and reliable person identification than keys, passwords or id-cards can provide. Examples such

as mobile phones and computers equipped with fingerprint sensing devices for fingerprint based

password protection are being produced to replace ordinary password protection methods. Those

are only a fraction of civilian applications where fingerprints can be used.

1.2 Fingerprint recognition

 The method that is selected for fingerprint matching was first discovered by Sir

Francis Galton. In 1888 he observed that fingerprints are rich in details also called minutiae in

form of discontinuities in ridges. He also noticed that position of those minutiae doesn’t change

over the time. Therefore minutiae matching are a good way to establish if two fingerprints are

from the same person or not.

Figure 2 Minutia. (Valley is also referred as Furrow,

Termination is also called Ending,

and Bifurcation is also called Branch)

 The two most important minutiae are termination and bifurcation, termination, which

is the immediate ending of a ridge; the other is called bifurcation, which is the point on the ridge

from which two branches derive.

 The fingerprint recognition problem can be grouped into two sub-domains: one is

fingerprint verification and the other is fingerprint identification.

4

Objective

The objective is to implement fingerprint recognition algorithm. The Region of Interest (ROI) for

each fingerprint image is extracted after enhancing its quality. The concept of Crossing Number

is used to extract the minutia, followed by false minutiae elimination. An alignment based

matching algorithm is then used for minutia matching.

5

 CHAPTER 2

 System Design

6

2.1 System Level Design

 A fingerprint recognition system constitutes of fingerprint acquiring device, minutia

extractor and minutia matcher [Figure 2.1.1].

Figure 2.1.1 Simplified Fingerprint Recognition System

 For fingerprint acquisition, optical or semi-conduct sensors are widely used. They

have high efficiency and acceptable accuracy except for some cases that the user’s finger is too

dirty or dry. However, the testing database used in this project is from the available fingerprints

provided by FVC2002 (Fingerprint Verification Competition 2002). So no acquisition stage has

been implemented.

 The minutia extractor and minutia matcher modules have been explained in detail in

the next part for algorithm design and other subsequent sections.

7

2.2 Algorithm Level Design

 To implement a minutia extractor, a three-stage approach is widely used by

researchers. They are preprocessing, minutia extraction and postprocessing stage [Figure 2.2.1].

Figure 2.2.1 Minutia Extractor

 For the fingerprint image preprocessing stage, Histogram Equalization and Fourier

Transform have been used to do image enhancement . And then the fingerprint image is

binarized using the locally adaptive threshold method . The image segmentation task is fulfilled

by a three-step approach: block direction estimation, segmentation by direction intensity and

Region of Interest extraction by Morphological operations.

 For minutia extraction stage, iterative parallel thinning algorithm is used. The minutia

marking is a relatively simple task.

 For the postprocessing stage, a more rigorous algorithm is developed to remove false

minutia. Also a novel representation for bifurcations is proposed to unify terminations and

bifurcations.

8

Figure2.2.2 Minutia Matcher

 The minutia matcher chooses any two minutia as a reference minutia pair and then

matches their associated ridges first. If the ridges match well , the two fingerprint images are

aligned and matching is conducted for all remaining minutia .

Figure 2.2.3 Steps involved in fingerprint recognition algorithm

9

 CHAPTER 3

 Fingerprint

 Image Preprocessing

10

3.1 Fingerprint Image Enhancement

 Fingerprint Image enhancement is to make the image clearer for easy further

operations. Since the fingerprint images acquired from sensors or other medias are not assured

with perfect quality, those enhancement methods, for increasing the contrast between ridges and

furrows and for connecting the false broken points of ridges due to insufficient amount of ink,

are very useful for keep a higher accuracy to fingerprint recognition.

 Two Methods are adopted for image enhancement stage: the first one is Histogram

Equalization; the next one is Fourier Transform.

3.1.1 Histogram Equalization:

 Histogram equalization is to expand the pixel value distribution of an image so as to

increase the perceptional information. The original histogram of a fingerprint image has the

bimodal type [Figure 3.1.1.1], the histogram after the histogram equalization occupies all the

range from 0 to 255 and the visualization effect is enhanced [Figure 3.1.1.2].

Figure 3.1.1.1 The Original Histogram of a Figure 3.1.1.2 Histogram after

 fingerprint image histogram equalization

Figure 3.1.1.3. Original Image

3.1.2 Fingerprint Enhancement by Fou

 The image was divided

transform was performed according to:

for u = 0, 1, 2, ..., 31 and v = 0, 1, 2, ..., 31.

 In order to enhance a specific block by its dominant frequencies, the FFT of the block

was multiplied by its magnitude a set of times.

Where the magnitude of the original FFT = abs(F(u,v)) = |F(u,v)|.

11

.3. Original Image Figure 3.1.1.4 Enhanced Image after

 Histogram Equalization

3.1.2 Fingerprint Enhancement by Fourier Transform

was divided into small processing blocks (32 by 32 pixels) and

according to:

 (1)

for u = 0, 1, 2, ..., 31 and v = 0, 1, 2, ..., 31.

a specific block by its dominant frequencies, the FFT of the block

by its magnitude a set of times.

Where the magnitude of the original FFT = abs(F(u,v)) = |F(u,v)|.

Enhanced Image after

Histogram Equalization

into small processing blocks (32 by 32 pixels) and the Fourier

a specific block by its dominant frequencies, the FFT of the block

The enhanced block is obtained according to

where F-1(F(u,v)) is done by:

for x = 0, 1, 2, ..., 31 and y = 0, 1, 2, ..., 31.

 The k in formula (2) is an experimentally determined constant, which w

k=0.45 to calculate. While having a higher "k" improves the appearance of the ridges, filling up

small holes in ridges, having too high a "k" can result in false joining of ridges. Thus a

termination might become a bifurcation. Figure 3.1.2.2 re

enhancement.

 Figure 3.1.2.1 Original image

12

The enhanced block is obtained according to

(2) ,

 (3)

for x = 0, 1, 2, ..., 31 and y = 0, 1, 2, ..., 31.

The k in formula (2) is an experimentally determined constant, which w

k=0.45 to calculate. While having a higher "k" improves the appearance of the ridges, filling up

small holes in ridges, having too high a "k" can result in false joining of ridges. Thus a

me a bifurcation. Figure 3.1.2.2 represents the image after FFT

Original image Figure 3.1.2.2. Fingerprint Enhanced By

The k in formula (2) is an experimentally determined constant, which was chosen as

k=0.45 to calculate. While having a higher "k" improves the appearance of the ridges, filling up

small holes in ridges, having too high a "k" can result in false joining of ridges. Thus a

the image after FFT

Enhanced By FFT

13

 The enhanced image after FFT has the improvements to connect some falsely broken

points on ridges and to remove some spurious connections between ridges. The shown image at

the left side of figure 3.1.2.1 is also processed with histogram equalization after the FFT

transform.

3.2 Fingerprint Image Binarization

 Fingerprint Image Binarization is to transform the 8-bit Gray fingerprint image to a 1-

bit image with 0-value for ridges and 1-value for furrows. After the operation, ridges in the

fingerprint are highlighted with black color while furrows are white.

 A locally adaptive binarization method is performed to binarize the fingerprint image.

Such a named method comes from the mechanism of transforming a pixel value to 1 if the value

is larger than the mean intensity value of the current block (16x16) to which the pixel belongs

[Figure 3.2.1and Figure 3.2.2].

Figure 3.2.1 Enhanced Image Figure 3.2.2 Image after Adaptive

 Binarization

14

3.3 Fingerprint Image Segmentation

 In general, only a Region of Interest (ROI) is useful to be recognized for each

fingerprint image. The image area without effective ridges and furrows is first discarded since it

only holds background information. Then the bound of the remaining effective area is sketched

out since the minutia in the bound region are confusing with those spurious minutia that are

generated when the ridges are out of the sensor.

 To extract the ROI, a two-step method is used. The first step is block direction

estimation and direction variety check, while the second is intrigued from some Morphological

methods.

3..3.1 Block direction estimation

 The direction for each block of the fingerprint image with WxW in size(W is 16

pixels by default)is estimated. The algorithm is:

I. The gradient values along x-direction (gx) and y-direction (gy) for each pixel of the block

is calculated. Two Sobel filters are used to fulfill the task.

II. For each block, following formula is used to get the Least Square approximation of the

block direction.

tg2ß = 2   (gx*gy)/  (gx2-gy2) for all the pixels in each block.

The formula is easy to understand by regarding gradient values along x-direction and y-

direction as cosine value and sine value. So the tangent value of the block direction is

estimated nearly the same as the way illustrated by the following formula.

tg2 = 2sin cos /(cos2 -sin2)

 After the estimation of each block direction, those blocks without significant

information on ridges and furrows are discarded based on the following formulas:

E = {2   (gx*gy)+   (gx2-gy2)}/ W*W*  (gx2+gy2)

15

For each block, if its certainty level E is below a threshold, then the block is regarded as a

background block.

 The direction map is shown in the following diagram (assuming there is only one

fingerprint in each image.)

Figure 3.3.1.1.Binarization Image Figure 3.3.1.2 Direction Map

3.3.2 ROI extraction by Morphological operations

 Two Morphological operations called ‘OPEN’ and ‘CLOSE’ are adopted. The

‘OPEN’ operation can expand images and remove peaks introduced by background noise [Figure

3.3.2.3]. The ‘CLOSE’ operation can shrink images and eliminate small cavities [Figure 3.3.2.2].

16

Figure 3.3.2.1 Original Image Area Figure 3.3.2.2 After CLOSE operation

Figure 3.3.2.3 After OPEN operation Figure 3.3.2.4 ROI + Bound

 Figure 3.3.2.4 show the interest fingerprint image area and its bound. The bound is

the subtraction of the closed area from the opened area. Then the algorithm throws away those

leftmost, rightmost, uppermost and bottommost blocks out of the bound so as to get the tightly

bounded region just containing the bound and inner area.

17

 CHAPTER 4

 Minutia Extraction

18

4.1 Fingerprint Ridge Thinning

 Ridge Thinning is to eliminate the redundant pixels of ridges till the ridges are just

one pixel wide. An iterative, parallel thinning algorithm is used. In each scan of the full

fingerprint image, the algorithm marks down redundant pixels in each small image window

(3x3). And finally removes all those marked pixels after several scans.

 The thinned ridge map is then filtered by other three Morphological operations to

remove some H breaks, isolated points and spikes.

4.2 Minutia Marking

 After the fingerprint ridge thinning, marking minutia points is relatively easy. The

concept of Crossing Number (CN) is widely used for extracting the minutiae.

 In general, for each 3x3 window, if the central pixel is 1 and has exactly 3 one-value

neighbors, then the central pixel is a ridge branch [Figure 4.2.1]. If the central pixel is 1 and has

only 1 one-value neighbor, then the central pixel is a ridge ending [Figure4.2.2] ,i.e., if Cn(P) = =

1 it’s a ridge end and if Cn(P) = = 3 it’s a ridge bifurcation point, for a pixel P.

Figure 4.2.1. Bifurcation Figure 4.2.2. Termination

0 1 0

 0 1 0

1 0 1

0 0 0

 0 1 0

0 0 1

19

 Figure 4.2.3 Triple counting branch

 Figure 4.2.3 illustrates a special case that a genuine branch is triple counted. Suppose

both the uppermost pixel with value 1 and the rightmost pixel with value 1 have another

neighbor outside the 3x3 window, so the two pixels will be marked as branches too. But actually

only one branch is located in the small region. So a check routine requiring that none of the

neighbors of a branch are branches is added.

 Also the average inter-ridge width D is estimated at this stage. The average inter-

ridge width refers to the average distance between two neighboring ridges. The way to

approximate the D value is to scan a row of the thinned ridge image and sum up all pixels in the

row whose value is one. Then divide the row length with the above summation to get an inter-

ridge width. For more accuracy, such kind of row scan is performed upon several other rows and

column scans are also conducted, finally all the inter-ridge widths are averaged to get the D.

 Together with the minutia marking, all thinned ridges in the fingerprint image are

labeled with a unique ID for further operation. The labeling operation is realized by using the

Morphological operation: BWLABEL.

001
110
010

20

 CHAPTER 5

 Minutia Postprocessing

21

5.1 False Minutia Removal

 The preprocessing stage does not totally heal the fingerprint image. For example,

false ridge breaks due to insufficient amount of ink and ridge cross-connections due to over

inking are not totally eliminated. Actually all the earlier stages themselves occasionally introduce

some artifacts which later lead to spurious minutia. These false minutia will significantly affect

the accuracy of matching if they are simply regarded as genuine minutia. So some mechanisms

of removing false minutia are essential to keep the fingerprint verification system effective.

 Seven types of false minutia are specified in following diagrams:

 m1 m2 m3 m4

m5 m6 m7

 Figure 5.1.1. False Minutia Structures.

m1 is a spike piercing into a valley. In the m2 case a spike falsely connects two ridges. m3 has

two near bifurcations located in the same ridge. The two ridge broken points in the m4 case have

nearly the same orientation and a short distance. m5 is alike the m4 case with the exception that

one part of the broken ridge is so short that another termination is generated. m6 extends the m4

case but with the extra property that a third ridge is found in the middle of the two parts of the

broken ridge. m7 has only one short ridge found in the threshold window.

22

The procedure for the removal of false minutia are:

1. If the distance between one bifurcation and one termination is less than D and the two

minutia are in the same ridge(m1 case), both of them are removed. Where D is the average

inter-ridge width representing the average distance between two parallel neighboring

ridges.

2. If the distance between two bifurcations is less than D and they are in the same ridge, the

two bifurcations are removed. (m2, m3 cases).

3. If two terminations are within a distance D and their directions are coincident with a small

angle variation. And they suffice the condition that no other termination is located between

the two terminations. Then the two terminations are regarded as false minutia derived from

a broken ridge and are removed. (case m4,m5, m6).

4. If two terminations are located in a short ridge with length less than D, remove the two

terminations (m7).

5.2 Unify terminations and bifurcations

 Since various data acquisition conditions such as impression pressure can easily

change one type of minutia into the other, most researchers adopt the unification representation

for both termination and bifurcation. So each minutia is completely characterized by the

following parameters at last: 1) x-coordinate, 2) y-coordinate, and 3) orientation.

 The orientation calculation for a bifurcation needs to be specially considered. All

three ridges deriving from the bifurcation point have their own direction. The bifurcation is

broken into three terminations. The three new terminations are the three neighbor pixels of the

bifurcation and each of the three ridges connected to the bifurcation before is now associated

with a termination respectively [Figure 5.2.1].

23

Figure 5.2.1 A bifurcation to three terminations

 Three neighbors become terminations (Left)

 Each termination has their own orientation (Right)

And the orientation of each termination (tx,ty) is estimated by following method :

A ridge segment is tracked whose starting point is the termination and length is D. All x-

coordinates of points in the ridge segment are summed up. The above summation is then divided

with D to get sx. And sy can be obtained using the same way.

The direction is obtained from:

 atan((sy-ty)/(sx-tx)).

100
011
100

24

 CHAPTER 6

 Minutia Match

25

 Given two set of minutia of two fingerprint images, the minutia match algorithm

determines whether the two minutia sets are from the same finger or not. An alignment-based

match algorithm is used. It includes two consecutive stages: one is alignment stage and the

second is match stage.

1. Alignment stage. Given two fingerprint images to be matched, any one minutia from each

image is chosen, and the similarity of the two ridges associated with the two referenced

minutia points is calculated. If the similarity is larger than a threshold, each set of minutia

is transformed to a new coordination system whose origin is at the referenced point and

whose x-axis is coincident with the direction of the referenced point.

2. Match stage: After obtaining two set of transformed minutia points, the elastic match

algorithm is used to count the matched minutia pairs by assuming two minutia having

nearly the same position and direction are identical.

6.1 Alignment Stage

 The ridge associated with each minutia is represented as a series of x-coordinates (x1,

x2…xn) of the points on the ridge. A point is sampled per ridge length L starting from the

minutia point, where the L is the average inter-ridge length. And n is set to 10 unless the

total ridge length is less than 10*L.

So the similarity of correlating the two ridges is derived from:

S = m
i=0xiXi/[m

i=0xi
2Xi

2]^0.5,

where (xi~xn) and (Xi~XN) are the set of minutia for each fingerprint image respectively.

And m is minimal one of the n and N value. If the similarity score is larger than 0.8, then

the next step is executed else the next pair of rideges are continued to match.

. For each fingerprint, all other minutia are translated and rotated with respect to the

reference minutia according to the following formula:

26

,

where (x,y,) is the parameters of the reference minutia, and TM is

The following diagram illustrate the effect of translation and rotation:

The new coordinate system is originated at minutia F and the new x-axis is coincident with the

direction of minutia F. No scaling effect is taken into account by assuming two fingerprints

from the same finger have nearly the same size.

xi_new

yi_new

i_new











xi x()

yi y()

i  











=TM *

TM =

cos

sin

0

sin

cos

0

0

0

1













D

E F

D

E

F

X -axis

Y -axis

X '-axis

Y '-axis

y

x


D

E F

D

E

F



D

E F

D

E F

D

E

F

D

E

F

X -axis

Y -axis

X '-axis

Y '-axis

y

x

27

6.2 Match Stage

 The matching algorithm for the aligned minutia patterns needs to be elastic since the

strict match requiring that all parameters (x, y, ) are the same for two identical minutia is

impossible due to the slight deformations and inexact quantizations of minutia.

 The elastic matching of minutia is achieved by placing a bounding box around each

template minutia. If the minutia to be matched is within the rectangle box and the direction

discrepancy between them is very small, then the two minutia are regarded as a matched minutia

pair. Each minutia in the template image either has no matched minutia or has only one

corresponding minutia.

 The final match ratio for two fingerprints is the number of total matched pair over the

number of minutia of the template fingerprint. The score is 100*ratio and ranges from 0 to 100.

If the score is larger than a pre-specified threshold, the two fingerprints are from the same finger.

 However, the elastic match algorithm has large computation complexity and is

vulnerable to spurious minutia.

28

 CHAPTER 7

 Experimentation

29

7.1 SOURCE CODE

Program no.1

(Image Enhancement)

function [final]=fftenhance(image,f)

I = 255-double(image);

[w,h] = size(I);

%out = I;

w1=floor(w/32)*32;

h1=floor(h/32)*32;

inner = zeros(w1,h1);

for i=1:32:w1

 for j=1:32:h1

 a=i+31;

 b=j+31;

 F=fft2(I(i:a,j:b));

 factor=abs(F).^f;

 block = abs(ifft2(F.*factor));

 larv=max(block(:));

 if larv==0

 larv=1;

 end;

 block= block./larv;

 inner(i:a,j:b) = block;

 end;

30

end;

final=inner*255;

final=histeq(uint8(final));

Program no.2

(Image Binarization)

function [o] = adaptiveThres(a,W,noShow);

%Adaptive thresholding is performed by segmenting image a

[w,h] = size(a);

o = zeros(w,h);

%seperate it to W block

%step to w with step length W

for i=1:W:w

for j=1:W:h

mean_thres = 0;

if i+W-1 <= w & j+W-1 <= h

 mean_thres = mean2(a(i:i+W-1,j:j+W-1));

 mean_thres = 0.8*mean_thres;

 o(i:i+W-1,j:j+W-1) = a(i:i+W-1,j:j+W-1) < mean_thres;

 end;

 end;

end;

if nargin == 2

imagesc(o);

colormap(gray);

31

end;

Program no.3

(for Block Direction Estimation)

function [p,z] = direction(image,blocksize,noShow)

%image=adaptiveThres(image,16,0);

[w,h] = size(image);

direct = zeros(w,h);

gradient_times_value = zeros(w,h);

gradient_sq_minus_value = zeros(w,h);

gradient_for_bg_under = zeros(w,h);

W = blocksize;

theta = 0;

sum_value = 1;

bg_certainty = 0;

blockIndex = zeros(ceil(w/W),ceil(h/W));

%directionIndex = zeros(ceil(w/W),ceil(h/W));

times_value = 0;

minus_value = 0;

center = [];

filter_gradient = fspecial('sobel');

%to get x gradient

I_horizontal = filter2(filter_gradient,image);

%to get y gradient

filter_gradient = transpose(filter_gradient);

32

I_vertical = filter2(filter_gradient,image);

gradient_times_value=I_horizontal.*I_vertical;

gradient_sq_minus_value=(I_vertical-I_horizontal).*(I_vertical+I_horizontal);

gradient_for_bg_under = (I_horizontal.*I_horizontal) + (I_vertical.*I_vertical);

for i=1:W:w

 for j=1:W:h

 if j+W-1 < h & i+W-1 < w

 times_value = sum(sum(gradient_times_value(i:i+W-1, j:j+W-1)));

 minus_value = sum(sum(gradient_sq_minus_value(i:i+W-1, j:j+W-1)));

 sum_value = sum(sum(gradient_for_bg_under(i:i+W-1, j:j+W-1)));

 bg_certainty = 0;

 theta = 0;

 if sum_value ~= 0 & times_value ~=0

 %if sum_value ~= 0 & minus_value ~= 0 & times_value ~= 0

bg_certainty = (times_value*times_value +
minus_value*minus_value)/(W*W*sum_value);

 if bg_certainty > 0.05

 blockIndex(ceil(i/W),ceil(j/W)) = 1;

 %tan_value = atan2(minus_value,2*times_value);

 tan_value = atan2(2*times_value,minus_value);

 theta = (tan_value)/2 ;

theta = theta+pi/2;

33

 center = [center;[round(i + (W-1)/2),round(j + (W-1)/2),theta]];

 end;

 end;

 end;

times_value = 0;

 minus_value = 0;

 sum_value = 0;

 end;

 end;

if nargin == 2

imagesc(direct);

 hold on;

[u,v] = pol2cart(center(:,3),8);

 quiver(center(:,2),center(:,1),u,v,0,'g');

 hold off;

end;

x = bwlabel(blockIndex,4);

y = bwmorph(x,'close');

z = bwmorph(y,'open');

p = bwperim(z);

34

Program no.4

(to extract ROI)

function [roiImg,roiBound,roiArea] = drawROI(in,inBound,inArea,noShow)

[iw,ih]=size(in);

tmplate = zeros(iw,ih);

[w,h] = size(inArea);

tmp=zeros(iw,ih);

left = 1;

right = h;

upper = 1;

bottom = w;

le2ri = sum(inBound);

roiColumn = find(le2ri>0);

left = min(roiColumn);

right = max(roiColumn);

tr_bound = inBound';

up2dw=sum(tr_bound);

roiRow = find(up2dw>0);

upper = min(roiRow);

bottom = max(roiRow);

%cut out the ROI region image

%show background,bound,innerArea with different gray intensity:0,100,200

for i = upper:1:bottom

 for j = left:1:right

 if inBound(i,j) == 1

35

 tmplate(16*i-15:16*i,16*j-15:16*j) = 200;

 tmp(16*i-15:16*i,16*j-15:16*j) = 1;

elseif inArea(i,j) == 1 & inBound(i,j) ~=1

 tmplate(16*i-15:16*i,16*j-15:16*j) = 100;

 tmp(16*i-15:16*i,16*j-15:16*j) = 1;

 end;

 end;

end;

in=in.*tmp;

roiImg = in(16*upper-15:16*bottom,16*left-15:16*right);

roiBound = inBound(upper:bottom,left:right);

roiArea = inArea(upper:bottom,left:right);

%inner area

roiArea = im2double(roiArea) - im2double(roiBound);

if nargin == 3

colormap(gray);

imagesc(tmplate);

end;

36

Program no.5

(Ridge Thinning)

function edgeDistance =RidgeThin(image,inROI,blocksize)

[w,h] = size(image);

a=sum(inROI);

b=find(a>0);

c=min(b);

d=max(b);

i=round(w/5);

m=0;

for k=1:4

 m=m+sum(image(k*i,16*c:16*d));

end;

e=(64*(d-c))/m;

a=sum(inROI,2);

b=find(a>0);

c=min(b);

d=max(b);

i=round(h/5);

m=0;

for k=1:4

 m=m+sum(image(16*c:16*d,k*i));

end;

m=(64*(d-c))/m;

edgeDistance=round((m+e)/2);

37

Program no. 6

(Minutia marking)

function [end_list,branch_list,ridgeOrderMap,edgeWidth] = mark_minutia(in,
inBound,inArea,block);

[w,h] = size(in);

[ridgeOrderMap,totalRidgeNum] = bwlabel(in);

imageBound = inBound;

imageArea = inArea;

blkSize = block;

%innerArea = im2double(inArea)-im2double(inBound);

edgeWidth = interRidgeWidth(in,inArea,blkSize);

end_list = [];

branch_list = [];

for n=1:totalRidgeNum

 [m,n] = find(ridgeOrderMap==n);

 b = [m,n];

 ridgeW = size(b,1);

 for x = 1:ridgeW

 i = b(x,1);

 j = b(x,2);

 %ifimageArea(ceil(i/blkSize),ceil(j/blkSize))==1&
imageBound(ceil(i/blkSize),ceil(j/blkSize)) ~= 1

if inArea(ceil(i/blkSize),ceil(j/blkSize)) == 1

 neiborNum = 0;

 neiborNum = sum(sum(in(i-1:i+1,j-1:j+1)));

 neiborNum = neiborNum -1;

38

 if neiborNum == 1

 end_list =[end_list; [i,j]];

 elseif neiborNum == 3

 %if two neighbors among the three are connected directly

 %there may be three braches are counted in the nearing three cells

 tmp=in(i-1:i+1,j-1:j+1);

 tmp(2,2)=0;

 [abr,bbr]=find(tmp==1);

 t=[abr,bbr];

 if isempty(branch_list)

 branch_list = [branch_list;[i,j]];

 else

 for p=1:3

 cbr=find(branch_list(:,1)==(abr(p)-2+i) & branch_list(:,2)==(bbr(p)-2+j));

 if ~isempty(cbr)

 p=4;

 break;

 end;

 end;

 if p==3

 branch_list = [branch_list;[i,j]];

 end;

 end;

 end;

39

 end;

 end;

 end;

Program no.7

(False Minutia removal)

function [pathMap, final_end,final_branch]
=remove_spurious_Minutia(in,end_list,branch_list,inArea,ridgeOrderMap,edgeWidth

[w,h] = size(in);

final_end = [];

final_branch =[];

direct = [];

pathMap = [];

end_list(:,3) = 0;

branch_list(:,3) = 1;

minutiaeList = [end_list;branch_list];

finalList = minutiaeList;

[numberOfMinutia,dummy] = size(minutiaeList);

suspectMinList = [];

for i= 1:numberOfMinutia-1

 for j = i+1:numberOfMinutia

 d =((minutiaeList(i,1) - minutiaeList(j,1))^2 + (minutiaeList(i,2)-minutiaeList(j,2))^2)^0.5;

 if d < edgeWidth

 suspectMinList =[suspectMinList;[i,j]];

40

 end;

 end;

end;

[totalSuspectMin,dummy] = size(suspectMinList);

for k = 1:totalSuspectMin

 typesum = minutiaeList(suspectMinList(k,1),3) + minutiaeList(suspectMinList(k,2),3)

 if typesum == 1

 % branch - end pair

 if ridgeOrderMap(minutiaeList(suspectMinList(k,1),1),minutiaeList(suspectMinList(k,1),2))
== ridgeOrderMap(minutiaeList(suspectMinList(k,2),1),minutiaeList(suspectMinList(k,2),2))

 finalList(suspectMinList(k,1),1:2) = [-1,-1];

 finalList(suspectMinList(k,2),1:2) = [-1,-1];

 end;

 elseif typesum == 2

 % branch - branch pair

 if ridgeOrderMap(minutiaeList(suspectMinList(k,1),1),minutiaeList(suspectMinList(k,1),2))
== ridgeOrderMap(minutiaeList(suspectMinList(k,2),1),minutiaeList(suspectMinList(k,2),2))

 finalList(suspectMinList(k,1),1:2) = [-1,-1];

 finalList(suspectMinList(k,2),1:2) = [-1,-1];

 end;

 elseif typesum == 0

 % end - end pair

 a = minutiaeList(suspectMinList(k,1),1:3);

 b = minutiaeList(suspectMinList(k,2),1:3);

 if ridgeOrderMap(a(1),a(2)) ~= ridgeOrderMap(b(1),b(2))

 [thetaA,pathA,dd,mm] = getLocalTheta(in,a,edgeWidth);

41

 [thetaB,pathB,dd,mm] = getLocalTheta(in,b,edgeWidth);

 %the connected line between the two point

 thetaC = atan2((pathA(1,1)-pathB(1,1)), (pathA(1,2) - pathB(1,2)));

 angleAB = abs(thetaA-thetaB);

 angleAC = abs(thetaA-thetaC);

 if ((or(angleAB < pi/3, abs(angleAB -pi)<pi/3)) & (or(angleAC < pi/3, abs(angleAC - pi)
< pi/3)))

 finalList(suspectMinList(k,1),1:2) = [-1,-1];

 finalList(suspectMinList(k,2),1:2) = [-1,-1];

 end;

 %remove short ridge later

 elseif ridgeOrderMap(a(1),a(2)) == ridgeOrderMap(b(1),b(2))

 finalList(suspectMinList(k,1),1:2) = [-1,-1];

 finalList(suspectMinList(k,2),1:2) = [-1,-1];

 end;

 end;

end;

 for k =1:numberOfMinutia

 if finalList(k,1:2) ~= [-1,-1]

 if finalList(k,3) == 0

 [thetak,pathk,dd,mm] = getLocalTheta(in,finalList(k,:),edgeWidth);

 if size(pathk,1) >= edgeWidth

 final_end=[final_end;[finalList(k,1:2),thetak]];

 [id,dummy] = size(final_end);

 pathk(:,3) = id;

42

 pathMap = [pathMap;pathk];

 end;

 else

 final_branch=[final_branch;finalList(k,1:2)];

 [thetak,path1,path2,path3] = getLocalTheta(in,finalList(k,:),edgeWidth);

 if size(path1,1)>=edgeWidth & size(path2,1)>=edgeWidth & size(path3,1)>=edgeWidth

 final_end=[final_end;[path1(1,1:2),thetak(1)]];

 [id,dummy] = size(final_end);

 path1(:,3) = id;

 pathMap = [pathMap;path1];

 final_end=[final_end;[path2(1,1:2),thetak(2)]];

 path2(:,3) = id+1;

 pathMap = [pathMap;path2];

 final_end=[final_end;[path3(1,1:2),thetak(3)]];

path3(:,3) = id+2;

 pathMap = [pathMap;path3];

 end;

 end;

 end;

 end;

Program no.8

(Alignment stage)

43

function [newXY] = MinuOriginTransRidge(real_end,k,ridgeMap

 theta = real_end(k,3);

 if theta <0

theta1=2*pi+theta;

end;

theta1=pi/2-theta;

 rotate_mat=[cos(theta1),-sin(theta1);sin(theta1),cos(theta1)];

 %locate all the ridge points connecting to the miniutia

 %and transpose it as the form:

 %x1 x2 x3...

 %y1 y2 y3...

 pathPointForK = find(ridgeMap(:,3)== k);

 toBeTransformedPointSet = ridgeMap(min(pathPointForK):max(pathPointForK),1:2)';

 %translate the minutia position (x,y) to (0,0)

 %translate all other ridge points according to the basis

 tonyTrickLength = size(toBeTransformedPointSet,2);

 pathStart = real_end(k,1:2)';

 translatedPointSet = toBeTransformedPointSet - pathStart(:,ones(1,tonyTrickLength)

 %rotate the point sets

 newXY = rotate_mat*translatedPointS

function [newXY] = MinuOrigin_TransAll(real_end,k)

theta = real_end(k,3);

if theta <0

theta1=2*pi+theta;

44

end;

theta1=pi/2-theta;

rotate_mat=[cos(theta1),-sin(theta1),0;sin(theta1),cos(theta1),0;0,0,1];

 toBeTransformedPointSet = real_end';

 tonyTrickLength = size(toBeTransformedPointSet,2);

 pathStart = real_end(k,:)';

 translatedPointSet = toBeTransformedPointSet - pathStart(:,ones(1,tonyTrickLength));

 newXY = rotate_mat*translatedPointSet;

 %ensure the direction is in the domain[-pi,pi]

 for i=1:tonyTrickLength

 if or(newXY(3,i)>pi,newXY(3,i)<-pi)

 newXY(3,i) = 2*pi - sign(newXY(3,i))*newXY(3,i);

 end;

 end;

Program no.9

(Minutiae matching)

function [newXY] = MinuOrigin_TransAll(real_end,k)

theta = real_end(k,3);

if theta <0

theta1=2*pi+theta;

end;

theta1=pi/2-theta;

rotate_mat=[cos(theta1),-sin(theta1),0;sin(theta1),cos(theta1),0;0,0,1];

 toBeTransformedPointSet = real_end';

45

 tonyTrickLength = size(toBeTransformedPointSet,2);

 pathStart = real_end(k,:)';

 translatedPointSet = toBeTransformedPointSet - pathStart(:,ones(1,tonyTrickLength));

 newXY = rotate_mat*translatedPointSet;

 for i=1:tonyTrickLength

 if or(newXY(3,i)>pi,newXY(3,i)<-pi)

 newXY(3,i) = 2*pi - sign(newXY(3,i))*newXY(3,i);

 end;

 end;

46

 CHAPTER 8

 Conclusion

47

8.1 Evalution indexes for fingerprint recognition

 Two indexes are well accepted to determine the performance of a fingerprint

recognition system: one is FRR (false rejection rate) and the other is FAR (false acceptance rate).

FAR-describes the number of times, someone is inaccurately positively matched.FRR- derives

the number of times,someone who should be identified positively is instead rejected.

 FAR

(%) FAR=(FA/N)*100

FA= number of incidents of false acceptance

N=total number of samples

 FRR

(%) FRR=(FR/N)*100

FR=number of incidents of false rejections

8.2 Experimentation results

 A fingerprint database from the FVC2000 (Fingerprint Verification Competition

2000) is used to test the experiment performance. The algorithm is capable of differentiating

fingerprints at a good correct rate by setting an appropriate threshold value.

Threshold Value False Acceptance Rate False Reject Rate

7 0.07% 7.1%

8 0.02% 9.4%

9 0.01% 12.5%

10 0 14.3%

 The incorrect acceptance and false rejection are due to some fingerprint images with

bad quality and the vulnerable minutia match algorithm.

48

8.3 Conclusion

 The reliability of any automatic fingerprint system strongly relies on the precision

obtained in the minutia extraction process. A number of factors are detrimental to the correct

location of minutia. Among them, poor image quality is the most serious one. In this project, we

have combined many methods to build a minutia extractor and a minutia matcher. The following

concepts have been used- segmentation using Morphological operations,minutia marking by

specially considering the triple branch counting, minutia unification by decomposing a branch

into three terminations and matching in the unified x-y coordinate system after a 2-step

transformation in order to increase the precision of the minutia localization process and

elimination of spurious minutia with higher accuracy. The proposed alignment-based elastic

matching algorithm is capable of finding the correspondences between minutiae without

resorting to exhaustive research.

 There is a scope of further improvement in terms of efficiency and accuracy which

can be achieved by improving the hardware to capture the image or by improving the image

enhancement techniques. So that the input image to the thinning stage could be made better

which could improve the future stages and the final outcome.

49

REFERENCES:

1. A. Jain, R. Bolle, and S. Pankanti, “Biometrics Personal Identification in Networked

Society”, Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow,

pp. 1-64, 2002.

2. A. K. Jain, F. Patrick, A. Arun, “Handbook of Biometrics”, Springer Science+Business

Media, LLC, 1st edition, pp. 1-42, 2008.

3. D. Maio, and D. Maltoni, “Direct gray-scale minutiae detection in fingerprints”, IEEE

Transactions Pattern Analysis and Machine Intelligence, vol. 19(1), pp. 27-40, 1997.

4. D. Maltoni, D. Maio, and A. Jain, S. Prabhakar, “4.3: Minutiae-based Methods’ (extract)

from Handbook of Fingerprint Recognition”, Springer, New York, pp. 141-144, 2003.

5. E. Hastings, “A Survey of Thinning Methodologies”, Pattern analysis and Machine

Intelligence, IEEE Transactions, vol. 4, Issue 9, pp. 869-885, 1992.

6. L. Hong, "Automatic Personal Identification Using Fingerprints", Ph.D. Thesis, 1998.

7. L. Lam, S. W. Lee, and C. Y. Suen, “Thinning Methodologies-A Comprehensive

Survey”, IEEE Transactions on Pattern analysis and machine intelligence, vol. 14, no. 9,

1992.

8. L.C. Jain, U. Halici, I. Hayashi, S.B. Lee, and S. Tsutsui, “Intelligent biometric

techniques in fingerprint and face recognition”, The CRC Press, 1999.

9. K. Nallaperumall, A. L. Fred, and S. Padmapriya, “A Novel Technique for Fingerprint

Feature Extraction Using Fixed Size Templates”, IEEE 2005 Conference, pp. 371-374,

2005.

10. P. Komarinski, P. T. Higgins, and K. M. Higgins, K. Fox Lisa, “Automated Fingerprint

Identification Systems (AFIS)”, Elsevier Academic Press, pp. 1-118, 2005.

