Study and Development of Some Novel Image Segmentation Techniques

Kumari, Nirulata (2009) Study and Development of Some Novel Image Segmentation Techniques. MTech by Research thesis.

[img]PDF (Study and Development of Some Novel Fuzzy Image Segmentation Techniques )
4Mb

Abstract

Some fuzzy technique based segmentation methods are studied and implemented and some fuzzy c means clustering based segmentation algorithms are developed in this thesis to suppress high and low uniform random noise. The reason for not developing fuzzy rule based segmentation method is that they are application dependent
In many occasions, the images in real life are affected with noise. Fuzzy c means clustering based segmentation does not give good segmentation result under such condition. Various extension of the FCM method for segmentation are present in the literature. But most of them modify the objective function hence changing the basic FCM algorithm present in MATLAB toolboxes. Hence efforts have been made to develop FCM algorithm without modifying their objective function for better segmentation .
The fuzzy technique based segmentation methods that are studied and developed are summarized here.

(A) Fuzzy edge detection based segmentation: Two fuzzy edge detection methods are studied and implemented for segmentation: (i) FIS based edge detection and (ii) Fast multilevel fuzzy edge detector (FMFED).
(i): The Fuzzy Inference system (FIS) based edge detector consists of some fuzzy inference rules which are defined in such a way that the FIS system output (“edges”) is high only for those pixels belonging to edges in the input image. A robustness to contrast and lightining variations were also taken into consideration while developing these rules.The output of the FIS based edge detector is then compared with the existing Sobel, LoG and Canny edge detector results. The algorithm is seen to be application dependent and time consuming.
(ii) Fast Multilevel Fuzzy Edge Detector: To realise the fast and accurate detection of edges, the FMFED algorithm is proposed. It first enhances the image contrast by means of a fast multilevel fuzzy enhancement algorithm using simple transformation function based on two image thresholds. Second, the edges are extracted from the enhanced image by using a two stage edge detector operator that identifies the edge candidates based on local characteristics of the image and then determines the true edge pixels using edge detector operator based on extremum of the gradient values.
Finally the segmentation of the edge image is done by morphological operator by edge linking.

(B) FCM based segmentation: Two fuzzy clustering based segmentation methods are developed: (i) Modified Spatial Fuzzy c-Means (MSFCM) (ii) Neighbourhood Attraction Fuzzy c-Means (NAFCM). .

(i) Contrast-Limited Adaptive Histogram Equalization Fuzzy c-Means (CLAHEFCM): This proposed algorithm presents a color segmentation process for low contrast images or unevenly illuminated images. The algorithm presented in this paper first enhances the contrast of the image by using contrast limited adaptive histogram equalization. After the enhancement of the image this method divides the color space into a given number of clusters, the number of cluster are fixed initially. The image is converted from RGB color space to LAB color space before the clustering process. Clustering is done here by using Fuzzy c means algorithm. The image is segmented based on color of a region, that is, areas having same color are grouped together. The image segmentation is done by taking into consideration, to which cluster a given pixel belongs the most. The method has been applied on a number of color test images and it is observed to give good segmentation results
(ii) Modified Spatial Fuzzy c-means (MSFCM): The proposed algorithm divides the color space into a given number of clusters, the number of cluster are fixed initially. The image is converted from RGB color space to LAB color space before the clustering process. A robust segmentation technique based on extension to the traditional fuzzy c-means (FCM) clustering algorithm is proposed. The spatial information of each pixel in an image has been taken into consideration to get a noise free segmentation result. The image is segmented based on color of a region, that is, areas having same color are grouped together. The image segmentation is done by taking into consideration, to which cluster a given pixel belongs the most. The method has been applied to some color test images and its performance has been compared to FCM and FCM based methods to show its superiority over them. The proposed technique is observed to be an efficient and easy method for segmentation of noisy images.

(iv) Neighbourhood Attraction Fuzzy c Means Algorithm: A new algorithm based on the IFCM neighbourhood attraction is used without changing the distance function of the FCM and hence avoiding an extra neural network optimization step for the adjusting parameters of the distance function, it is called Neighborhood Atrraction FCM (NAFCM). During clustering, each pixel attempts to attract its neighbouring pixels towards its own cluster. This neighbourhood attraction depends on two factors: the pixel intensities or feature attraction, and the spatial position of the neighbours or distance attraction, which also depends on neighbourhood structure. The NAFCM algorithm is tested on a synthetic image (chapter 6, figure 6.3-6.6) and a number of skin tumor images. It is observed to produce excellent clustering result under high noise condition when compared with the other FCM based clustering methods.





Item Type:Thesis (MTech by Research)
Uncontrolled Keywords:Fuzzy techniques, Image Segmentation, Fuzzy c-means
Subjects:Engineering and Technology > Electronics and Communication Engineering > Image Processing
Divisions: Engineering and Technology > Department of Electronics and Communication Engineering
ID Code:1559
Deposited By:Prof Sarat Patra
Deposited On:18 Dec 2009 16:35
Last Modified:14 Jun 2012 09:19
Supervisor(s):Meher, S

Repository Staff Only: item control page