New Approaches to Pulse Compression Techniques of Phase-Coded Waveforms in Radar

Anangi, Sailaja (2010) New Approaches to Pulse Compression Techniques of Phase-Coded Waveforms in Radar. MTech thesis.

[img]
Preview
PDF
2721Kb

Abstract

The present thesis aims to make an in-depth study of Radar pulse compression, Neural Networks and Phase coded pulse compression codes. Pulse compression is a method which combines the high energy of a longer pulse width with the high resolution of a narrow pulse width. The major aspects that are considered for a pulse compression technique are signal to sidelobe ratio (SSR) performance, noise performance and Doppler shift performance. Matched filtering of biphase coded radar signals create unwanted sidelobes which may mask important information. The adaptive filtering techniques like Least Mean Square (LMS), Recursive Least Squares (RLS), and modified RLS algorithms are used for pulse radar detection and the results are compared.
In this thesis, a novel approach for pulse compression using Recurrent Neural Network (RNN) is proposed. The 13-bit and 35-bit barker codes are used as signal codes to RNN and results are compared with Multilayer Perceptron (MLP) network. RNN yields better signal-to-sidelobe ratio (SSR), error convergence speed, noise performance, range resolution ability and Doppler shift performance than neural network (NN) and some traditional algorithms like auto correlation function(ACF) algorithm. But the SSR obtained from RNN is less for most of the applications. Hence a Radial Basis Function (RBF) neural network is implemented which yields better convergence speed, higher SSRs in adverse situations of noise and better robustness in Doppler shift tolerance than MLP and ACF algorithm. There is a scope of further improvement in performance in terms of SSR, error convergence speed, and Doppler shift. A novel approach using Recurrent RBF is proposed for pulse radar detection, and the results are compared with RBF, MLP and ACF. Biphase codes, namely barker codes are used as inputs to all these neural networks. The disadvantages of biphase codes include high sidelobes and poor Doppler tolerance.
The Golay complementary codes have zero sidelobes but they are poor Doppler tolerant as that of biphase codes. The polyphase codes have low sidelobes and are more Doppler tolerant than biphase codes. The polyphase codes namely Frank, P1, P2, P3, P4 codes are described in detail and autocorrelation outputs, phase values and their Doppler properties are discussed and compared. The sidelobe reduction techniques such as single Two Sample Sliding Window Adder (TSSWA) and double TSSWA after the autocorrelator output are discussed and their performances for P4 code are presented and compared. Weighting techniques can also be applied to substantially reduce the range time sidelobes. The weighting functions such as Kaiser-Bessel amplitude weighting function and classical amplitude weighting functions (i.e. Hamming window) are described and are applied to the receiver waveform of 100 element P4 code and the autocorrelation outputs, Peak Sidelobe Level (PSL), Integrated Sidelobe Level (ISL) values are compared with that of rectangular window. The effects of weighting on the Doppler performance of the P4 code are presented and compared.

Item Type:Thesis (MTech)
Uncontrolled Keywords:Pulse Compression,RNN, RRBF, Polyphase codes
Subjects:Engineering and Technology > Electronics and Communication Engineering > Signal Processing
Divisions: Engineering and Technology > Department of Electronics and Communication Engineering
ID Code:1993
Deposited By:SAILAJA ANANGI
Deposited On:01 Jun 2010 16:43
Last Modified:01 Jun 2010 16:43
Related URLs:
Supervisor(s):Sahoo, A K

Repository Staff Only: item control page