On the Development of Novel Encryption Methods for Conventional and Biometric Images

Acharya, Bibhudendra (2015) On the Development of Novel Encryption Methods for Conventional and Biometric Images. PhD thesis.

[img]
Preview
PDF
125Mb

Abstract

Information security refers to the technique of protecting information from unauthorized access, use, disclosure, disruption and modification. Governments, military, corporations, financial institutions, hospitals, and private businesses amass a great deal of confidential information about their employees, customers, products, research, and financial status. Most of this information is now collected, processed and stored on electronic media and transmitted across networks to other computers. Encryption clearly addresses the need for confidentiality of information, in process of storage and transmission. Popular application of multimedia technology and increasingly transmission ability of network gradually leads us to acquire information directly and clearly through images and hence the security of image data has become inevitable. Moreover in the recent years, biometrics is gaining popularity for security purposes in many applications. However, during communication and transmission over insecure network channels it has some risks of being hacked, modified and reused. Hence, there is a strong need to protect biometric images during communication and transmission. In this thesis, attempts have been made to encrypt image efficiently and to enhance the security of biometrics images during transmission.
In the first contribution, three different key matrix generation methods invertible, involuntary, and permutation key matrix generation have been proposed. Invertible and involuntary key matrix generation methods solves the key matrix inversion problem in Hill cipher. Permutation key matrix generation method increases the Hill system’s security. The conventional Hill cipher technique fails to encrypt images properly if the image consists of large area covered with same colour or gray level. Thus, it does not hide all features of the image which reveals patterns in the plaintext. Moreover, it can be easily broken with a known plaintext attack revealing weak security. To address these issues two different techniques are proposed, those are advanced Hill cipher algorithm and H-S-X cryptosystem to encrypt the images properly. Security analysis of both the techniques reveals superiority of encryption and decryption of images. On the other hand, H-S-X cryptosystem has been used to instil more diffusion
and confusion on the cryptanalysis. FPGA implementation of both the proposed techniques has been modeled to show the effectiveness of both the techniques. An extended Hill cipher algorithm based on XOR and zigzag operation is designed to reduce both encryption and decryption time. This technique not only reduces the encryption and decryption time but also ensures no loss of data during encryption and decryption process as compared to other techniques and possesses more resistance to intruder attack. The hybrid cryptosystem which is the combination of extended Hill cipher technique and RSA algorithm has been implemented to solve the key distribution problem and to enhance the security with reduced encryption and decryption time. Two distinct approaches for image encryption are proposed using chaos based DNA coding along with shifting and scrambling or poker shuffle to create grand disorder between the pixels of the images. In the first approach, results obtained from chaos based DNA coding scheme is shifted and scrambled to provide encryption. On the other hand in the second approach the results obtained from chaos based DNA coding encryption is followed by poker shuffle operation to generate the final result. Simulated results suggest performance superiority for encryption and decryption of image and the results obtained have been compared and discussed. Later on FPGA implementation of proposed cryptosystem has been performed. In another contribution, a modified Hill cipher is proposed which is the combination of three techniques. This proposed modified Hill cipher takes advantage of all the three techniques. To acquire the demands of authenticity, integrity, and non-repudiation along with confidentiality, a novel hybrid method has been implemented. This method has employed proposed modified Hill cipher to provide confidentiality. Produced message digest encrypted by private key of RSA algorithm to achieve other features such as authenticity, integrity, and non-repudiation To enhance the security of images, a biometric cryptosystem approach that combines cryptography and biometrics has been proposed. Under this approach, the image is encrypted with the help of fingerprint and password. A key generated with the combination of fingerprint and password and is used for image encryption. This mechanism is seen to enhance the security of biometrics images during transmission. Each proposed algorithm is studied separately, and simulation experiments are conducted to evaluate their performance. The security analyses are performed and performance compared with other competent schemes.

Item Type:Thesis (PhD)
Uncontrolled Keywords:Security, Image encryption, Hill cipher, Involuntary key matrix, Logistic chaotic map, DNA coding, Biometrics
Subjects:Engineering and Technology > Electronics and Communication Engineering > Image Processing
Divisions: Engineering and Technology > Department of Electronics and Communication Engineering
ID Code:6758
Deposited By:ETD Repository Administrator
Deposited On:08 Dec 2015 10:01
Last Modified:15 Jan 2016 17:48
Supervisor(s):Patra, Sarat Kumar and Panda, Ganpati

Repository Staff Only: item control page